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1 Introduction

Recent research results [4, 11, 12, 27, 9] and infrastructure
efforts [25, 24, 36, 15, 1] demonstrate the potential effective-
ness of large-scale distributed computing. However, effective
scheduling in these environments depends, increasingly, on
the ability to tolerate the dynamic performance response ex-
hibited by the underlying resources. Our approach has been to
use first modeling (to understand the dynamics) and then pre-
diction (to allow schedulers to avoid unfavorable conditions)
as a way of obtaining performance in these settings [6].

In this work, we investigate the dynamics exhibited by the
production Condor [35] pool at the University of Wisconsin
with the goal of understanding its distributional properties.
Condor is a cycle-harvesting service originally designed to
launch and control “guest” user jobs (in batch mode) on idle
workstations. Since its inception in 1985, however, it has ex-
panded to include the ability to run in dedicated mode on clus-
ters, to “glide in” to systems that are not strictly dedicated to
Condor, and to “flock” jobs from one site to another based on
pre-determined Service Level Agreements (SLAs). Thus it
has developed from an enterprise-wide desktop system into a
full-fledged global computing infrastructure over its lifetime.

The Condor project maintains a large active Condor pool at
the University of Wisconsin that comprises campus desktop
machines, dedicated clusters, and an automatic migration ca-
pability (called flocking) that can farm jobs to the National
Center for Supercomputer Applications (NCSA) and other
sites. In what is termed the “vanilla universe,” a job submit-
ted to Condor is directed to an idle machine, whence the job’s
standard input and output are redirected back to the submis-
sion machine. When a user or non-Condor job becomes active
on the resource (i.e. the machine is no longer available for an
external Condor job) the Condor job using the machine is ter-
minated.

During the 26-month period from April 1, 2003 through
July 1, 2005 we deployed an availability sensor designed for
the Network Weather Service (NWS) to sample the durations
of availability that “standard” jobs in the vanilla universe ex-
perience. In this paper, we describe our efforts to model the
distribution of availability which we measure as the duration
of time between when Condor schedules a job to a machine
and when the job is terminated due to eviction. The results
we have obtained are part of a larger effort that includes new
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predictive capabilities [5], new scheduling capabilities [26]
and efforts to translate machine availability to application-
level performance measurements [17]. Taken together, this
effort embodies a new and comprehensive approach to mod-
eling Global computing systems.

2 Automatically Determining an Avail-
ability Distribution

We have gathered machine availability data from from the
vanilla universe in the University of Wisconsin Condor pool
using the Network Weather Service (NWS) [39, 40, 41, 27],a
distributed, robust, and scalable performance monitoring and
forecasting system developed to support Grid and global com-
puting. After studying individual machine traces, we have
found that the two distribution families that consistently fit
the availability data we have gathered most accurately are
the Weibull and the Log-normal. These results are some-
what surprising, since a variety of previous efforts have fo-
cused on either exponential [37, 19, 31, 32, 20, 33, 42] or
Pareto [14, 30, 29, 38, 8, 18] models of behavior. We com-
pare the effectiveness of these more traditional approaches to
our findings in the next section.

The Weibull distribution is often used to model the lifetimes
of objects, including physical system components [3, 22]
and also to model computer resource availability distribu-
tions [16, 34]. Hyperexponentials have been used to model
machine availability previously [23] and are especially useful
for observed data requiring a model that can approximate a
wide variety of different shapes. Following are the formulas
for the statistical models we compare in this work, along with
a description of how we automatically estimate the model pa-
rameters from given a sample data set. Thus, with this system,
we extract historical availability information from the NWS
and generate a statistical models of previous availability. We
can then compare these models in terms of their accuracy and
“fit.”

2.1 Weibull Distribution

The density and distribution functions fw and Fw respectively
for a Weibull distribution are given by

fw(x) = αβ−αxα−1e−(x/β)α

(1)

Fw(x) = 1 − e−(x/β)α

(2)
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The parameter α is called the shape parameter, and β is called
the scale parameter 1. Note that the Weibull distribution re-
duces to an exponential distribution when α = 1.

2.2 Hyperexponential Distribution

Hyperexponentials are distributions formed as the weighted
sum of exponentials, each having a different parameter. The
density function is given by

fH(x) =
k∑

i=1

[pi · fei
(x)] (3)

where
fei

(x) = λie
−λix (4)

defines the density function for an exponential having param-
eter λi. In the definition of fH(x), all λi �= λj for i �= j, and∑k

i=1 pi = 1. The distribution function is defined as

FH(x) = 1 −
k∑

i=1

pi · e−λix (5)

for the same definition of fei
(x). Thus, to fit a hyperexpo-

nential to a given data set, the value of k, each λi and each pi

must be estimated.

2.3 Log-normal Distribution

A population has a Log-normal distribution if the logarithm
of the values in question has a normal distribution The density
and distribution functions fln(x) and Fln(x) respectively are
given by

fln(x) = (1/(xσ
√

2π))e−(ln(x)−µ)2/(2∗σ2) (6)

Fln(x) = 1/2 ∗ 1/2(erf((ln(x) − µ)/(σ
√

2))) (7)

where µ and σ are the mean and standard deviation of loga-
rithm of the population values and erf is the “error function”
or cumulative distribution function from a standard normal .

2.4 Distribution Parameter Estimation

For repeatability, we describe the exact method used to per-
form all of the model fitting in this work. Given a set of
sample data {x1...xn}, there are many common techniques
for estimating distribution parameters based on some set of
sample data, including visual inspection (e.g. using a two-
dimensional graph) and analytic methods. A commonly ac-
cepted approach to the general problem of parameter estima-
tion is based on the principle of maximum likelihood. The
maximum likelihood estimator (MLE) is calculated for any

1The general Weibull density function has a third parameter for location,
which we can eliminate from the density simply by subtracting the minimum
lifetime from all measurements. In this paper, we will work with the two-
parameter formulation.

data set, based on the assumptions that each of the sample
data points xi is drawn from a random variable Xi an that the
Xi are independent and identically distributed (i.i.d.). The
method defines the likelihood function L, depending on the
parameters of the distribution, as the product of the density
function evaluated at the sample points. Thus in the case of
the Weibull distribution, L will be a function of α and β given
by

L(α, β | {xi}) =
∏

i

f(xi |α, β) =
∏

i

αβ−αxi
α−1e−(x/β)α

(8)
Roughly speaking, maximizing L is equivalent to maximiz-
ing the joint probability that each random variable will take
on the sample value. Large values of the density function
correspond to data that is “more likely” to occur, so larger
values of L correspond to values of the parameters for which
the data was “more likely” to have been produced. Thus, the
MLE for the parameters is simply the choice of parameters
(if it exists) which maximizes L. Our approach to computing
MLE parameters numerically is to set the partial derivatives
of log−likelihood function equal to 0 and solve for the dis-
tribution parameters.

We have implemented a software system that takes a set of
measurements as an ordinary text file and computes the MLE
Weibull and Log-normal automatically (as well as a variety
of other distributions). Perhaps unsurprisingly, the quality of
the numerical methods that we use is critical to the success
of the method. In particular, the MLE computations can in-
volve hundreds or thousands of terms (the data sets can be
quite large) and thus require robust and efficient techniques.
At present, the implementation uses a combination of the Oc-
tave [28] numerical package, Mathematica [21] (for solver
quality). The resulting system, however, takes data (as de-
scribed in Section 3) and automatically determines the neces-
sary parameters.

The case of the hyperexponential is somewhat different.
For a specified value of k (which indicates how many phases
will be included in the hyperexponential), one can in princi-
ple set up and solve the necessary optimization problem to
find MLE values for the remaining 2k − 1 parameters. How-
ever, this problem, even small values of k, is in general too
complex for commonly available computers to solve, espe-
cially for the larger data sets. Therefore, we used the EMpht
software package [10] for all estimated hyperexponentials in
this paper. EMpht implements the estimation-maximization
(EM) algorithm described in [2]. While this software was able
to compute the EM estimate of the 2-phase hyperexponential
parameters for the smaller data set described in Section 4, it is
still too computationally intensive for us to use with the larger
data sets. We are studying this issue as part of our future work.

The number of exponential phases (denoted by k) that make
up a hyperexponential, on the other hand, is a parameter that
must be specified rather than estimated. Our approach is is
to use EMpht to estimate parameters and then to calculate the
log-likelihood values produced by the data for successively
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larger values of k. The algorithm terminates when an addi-
tional phase produces no discernible improvement in the met-
rics.

3 Experimental Data

Condor [7, 35] is a cycle-harvesting system designed to sup-
port high-throughput computing. Under the Condor model,
the owner of each machine allows Condor to launch an ex-
ternally submitted job (i.e., one not generated by the owner)
when the machine becomes “idle.” Each owner is expected to
specify when his or her machine can be considered idle with
respect to load average, memory occupancy, keyboard activ-
ity, etc. When Condor detects that a machine has become idle,
it takes an unexecuted job from a queue it maintains and as-
signs it to the idle machine for execution. If the machine’s
owner begins using the machine again, Condor detects the lo-
cal activity and evacuates the external job. The result is that
resource owners maintain exclusive access to their own re-
sources, and Condor uses them only when they would other-
wise be idle.

In this study, we take advantage of the vanilla (i.e.,
terminate-on-eviction) execution environment to build a Con-
dor occupancy monitor. A set of monitor processes (10 in this
study) are submitted to Condor for execution. When Condor
assigns a process to a processor, the process wakes period-
ically and reports the number of seconds that have elapsed
since it began executing. When that process is terminated
(due to an eviction) the last recorded elapsed time value mea-
sures the occupancy the sensor enjoyed on the processor it
was using. We associate availability with Internet address and
port number; therefore, if a monitor process is subsequently
restarted on a particular machine (because Condor determined
the machine to be idle), the new measurements will be associ-
ated with the machine running the process. In our study, Con-
dor used 900 different Linux workstations to run the monitor
processes over the 26-month measurement period.

Measuring processor availability in this way introduces
“load” into Condor system in the form of sensor processes
that use their occupancy time simply to record their occu-
pancy time. Condor uses a sophisticated (and unrevealed)
scheduling mechanism to decide when processes should run,
and on what machine. It is possible that by introducing sensor
load our measurements are preventing “real” work from be-
ing done, and such a perturbation affects the idle-busy cycle
of each machine. Note that the name of the binary launched
by Condor is obfuscated, however, so a machine owner cannot
make a reclamation decision based on the name of the Condor
processes running on his or her machine. That is, the machine
owners at the University of Wisconsin could not tell the dif-
ference between our sensors and other computational work
Condor assigned to the various machines. Notice also that in
this study we consider only the availability of each machine
to a Condor user once the machine is assigned to a process
running on behalf of that user. We do not consider the time

between assignments during which a particular machine is ei-
ther busy because its owner is using it, or because Condor as
scheduled other useful work.

4 Results

We are interested in the utility of different automatically fit
models in describing the Condor data. We begin with a graph-
ical analysis in which we compare the fits of an MLE Weibull
having parameters α = 0.46 and β = 6227 and a Log-normal
distribution in which µ = 7.6 and σ = 2.2 to the empiri-
cal data in cumulative distribution form (CDF) (Figure 1). To
better show any differences in convexity, we put the x-axis
on a log scale. In the figure, the empirical CDF includes all

Figure 1: Comparison of Weibull and Log-normal Fits to Em-
pirical Availability Data.

availability measurements taken from all 900 hosts during the
observation period. The Weibull curve does not fit the tails of
the distribution as well as the Log-normal does as evidenced
by the greater density near the left tail of its curve in the figure.
In contrast, the Log-normal fit is quite good throughout. No-
tice, however, that the empirical curve seems to have a pair of
inflection points near its center that neither method captures.
It may be that a hyperexponential distribution will be able to
capture this feature better than either Weibull or Log-normal
distributions. the computational complexity associated with
automatically fitting even a 2-phase hyperexponential to this
data makes it a subject of our future work.

Thus, it is clear from the figure that the two-parameter Log-
normal distribution is a good candidate for modeling avail-
ability in the general Condor pool. A second question we
wished to investigate is whether the distributional character-
istics Condor were the for desktop machines as they are for
the dedicated clusters. Recall that the Wisconsin Condor pool
includes both cycle-harvested desktop resources and clusters
that serve as dedicated Condor “compute engines.”

While we do not possess detailed information on the actual
local administration policies governing each machine, by ex-
amining the Domain Name Services (DNS) names associated
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with each IP address in the study, we were able to perform a
rough classification. In so doing, we divide the data set into
one containing availability

In Figure 2 we compare the MLE Log-normal to the em-
pirical CDF for only those hosts whose DNS name seemed to
indicate that they were part of a cluster. The parameters for

Figure 2: Comparison of Log-normal Fit to Empirical Avail-
ability Data for Hosts with Cluster-like DNS Names.

the MLE Log-normal shown in this figure are µ = 7.7 and
σ = 2.2. Clearly, the shape of the availability curve is is pre-
dominantly determined by machines that are part of Condor
clusters and not desktops. For the cluster systems, occupancy
is determined by competitive load and by the priority schedul-
ing mechanisms that Condor uses internally as well as exter-
nal load introduced by local cluster users. From Figure 2 the
distribution of availability durations that was available to our
sensor is well-modeled by a Log-normal distribution.

This observation indicates that the Condor scheduling
mechanisms are effective in delivering reasonable availability
periods to user applications. It has been well-documented that
process lifetimes are well-modeled by heavy-tailed distribu-
tions [13]. Despite the potential for large variance in lifetime
which might, in turn, impose a large variance in availability,
the actual observed availability durations are not heavy-tailed
due to Condor’s scheduling algorithms.

In Figure 3 we show the empirical CDF for the availability
durations that we observed from machines in the Condor pool
with DNS names that did not imply membership in a cluster.
Note that in the case of cluster processors, this categorization
methodology is most likely conservative; the DNS names are
fairly obviously part of a cluster. The complement, however,
is less certain as it is possible that cluster machines may have
been identified by only their head node, and the head node
did not have an obvious cluster-like name. The curves in this
figure are difficult to differentiate without the use of color. In
print form, moving from left to right the order in which each
curve touches the x-axis is Weibull, 2-phase hyperexponen-
tial, Log-normal and empirical. The parameters for the MLE
Weibull, in this case, are α = 0.56 and β = 975 and for

Figure 3: Comparison of Various Fits to Empirical Availabil-
ity Data for Hosts without Cluster-like DNS Names.

the MLE Log-normal are µ = 6.1 and σ = 1.35. In this
case, because the dataset is smaller, we were also able to use
the EM algorithm to fit a hyperexponential with parameters
p0 = 0.88, λ0 = −0.002, and λ1 = −0.00005.

From the figure, it is not clear which method fits “best.” The
Weibull distribution overestimates the probability density at
the left end by substantial amount. The empirical data, itself,
shows a probability density that is more concentrated near the
center of the curve than any of the models are able to capture.
To the left of the mode, the Log-normal is closer, but to the
right of it, the 2-phase hyperexponential is closest.

5 Discussion

In terms of model fitting, the strength of these results are
mixed. For dedicated Condor clusters, the quality of the fit
provided by an MLE determined Log-normal appears quite
good. In a simulation context, for example, this correspon-
dence is probably good enough to warrant its use. This cir-
cumstance is particularly fortuitous since the Log-normal is
relatively easy to implement and cheap to compute. This re-
sult is especially important since no existing simulation mech-
anisms of which we are aware currently hypothesize or advo-
cate the use of the Log-normal for Global computing systems
such as Condor.

For desktop machines, however, the results are less clear.
Certainly, the availability durations are far from heavy-tailed
as the Weibull (the distribution among those we tested with
the greatest right-tail weight) seems to fit the least well. In
this case, the decision on which distribution to use may de-
pend on whether it is more important to be “close” on the left
side of the mode or on the right. That is, if one were interested
in in a small quantile, then an MLE Log-normal would most
likely to yield a good result. Alternatively, if a large quan-
tile is the statistic of interest, an EM-determined 2-phase hy-
perexponential might be more appropriate. Again, however,
we know of no simulation environment in which these results
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have been actualized.

6 Conclusion

The focus of this effort is on an examination of which au-
tomatically determined models best capture the distributional
properties of Condor – an active and successful Global com-
puting system. To facilitate this study, we have gathered an
extensive survey of Condor availability using a new NWS
sensing capability. We present methodologies for automati-
cally fitting parametric models to machine availability data.
We find that the Log-normal model most suitable for part of
the Condor survey (those machines that appear to be part of
a Condor-dedicated cluster) but that for desktop machines, no
single model seems definitively best.

Taken as part of a larger effort [5, 17, 26] this work consti-
tutes an important step toward achieving a new and powerful
global computing infrastructure. Through a combination of
newly developed modeling and prediction techniques, their
application in simulation to the problem of scheduling, and
their empirical verification with simulation and functioning
application, our goal is to lay the groundwork for the scien-
tific study of next generation distributed computing.
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