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Abstract

In future high-performance systems it will be essential to
balance often-conflicting objectives of performance, power,
energy, and temperature under variable workload and en-
vironmental conditions. In this work, we describe a goal-
driven approach that conveys multiple expectations to man-
agers that dynamically tune operating states to best meet
those demands. We show the benefit of a concise goal spec-
ification for complex objectives and the feasibility of man-
aging multiple constraints while maintaining high perfor-
mance and safe operation. We evaluate key features of our
approach with a prototype implementation on a Pentium M
platform with Red Hat Enterprise 4 that controls voltage
and frequency scaling to achieve the desired performance,
power and temperature goals.

1 Introduction

In this work, we describe a run-time manager for mul-
tiple constraints, named PET for performance, power, en-
ergy, and temperature management. A run-time manager
should respond quickly to workload and environmental con-
ditions, and maintain safe operation while pushing the sys-
tem to its limits for best performance. PET accomplishes
this with goal-driven control that adapts to a wide range of
operating conditions and resource usage. PET continuously
monitors the system, chooses appropriate power states (p-
states, such as voltage and frequency levels), and takes ac-
tion to reach desired goal targets.
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Our concise goal-specification method enables the user
to easily specify multi-dimensional constraints and direc-
tives while our underlying implementation transparently
translates resulting objectives to metrics appropriate for the
system under current conditions. PET separates constraints
into hard limits and soft limits to enforce safety-related
boundaries such as maximum temperatures or power draw,
while allowing flexibility for additional objectives. To ex-
plore the key features of the PET approach, we built a
prototype software implementation that controls a single-
core Intel Pentium M processor via DVFS, dynamic volt-
age and frequency scaling. The prototype platform of-
fers a controlled environment for observing software and
hardware behavior with a low-power processor architecture
that has been incorporated into high-density server systems
such as IBM’s Integrated xSeries servers [7], HP’s ProLiant
BL10e G2 [5], and Fujitsu Siemens’ PRIMERGY Blade
BX300 [4].

In this paper, we demonstrate the prototype PET man-
ager’s abilities in two situations. First, we show how PET
maximizes performance within power and thermal budgets
by adapting DVFS settings to dynamic workload behavior
with the SPEC CPU2000 suite, with fixed goal conditions.
In the second case, we create a scenario where the goal
also changes during execution, moving along a spectrum
between lower operating cost and higher performance. In
both cases, the manager chooses appropriate frequencies to
achieve the best possible performance with minimal con-
straint violations.

Section 2 discusses related work. Section 3 outlines the
PET model. Section 4 describes the experimental prototype.
Section 5 presents data collected from our experiments and
Section 6 concludes the paper.



2 Related Work

The cluster of power problems—power, energy, heat and
heat density—has been studied extensively. The primary
distinctions of our work are the multi-dimensional and goal-
oriented aspects. We apply DVFS to an Intel Pentium M
system to meet power, thermal, and performance targets.
DVES is a popular technique for power and energy manage-
ment and is widely available in commercial systems, includ-
ing implementations in AMD’s PowerNow [1] and Intel’s
Enhanced SpeedStep [9] and dual-core Dynamic Power Co-
ordination [11].

Juang, et al. propose closed-loop control to coordinate
DVES levels for individual cores within a chip multipro-
cessor to match frequencies to the amount of work in paral-
lel segments between software synchronization points [10].
Ranganathan et al. employ a centralized, policy-driven con-
troller to dictate power levels on individual blades primarily
to meet total power budget constraints, with policies to min-
imize performance degradation [15]. Weissel, et al. imple-
mented a hierarchy of energy containers within an operating
system to track energy usage throughout a multi-core sys-
tem, estimate temperature, and dynamically assign work to
meet individual components’ thermal budgets. Cameron, et
al. developed PowerPack, a framework to measure and
manage power in large-scale high-performance systems by
lowering CPU frequency at opportune times to save power
and energy (and therefore, operating costs) with minimal
performance impact [2].

One solution designed for explicitly managing both
power and temperature simultaneously is Intel’s Foxton
Technology [12], which employs a feedback control sys-
tem to maximize processor frequency, and therefore perfor-
mance, within a power-thermal envelope. As the processor
power consumption and temperature vary with workload
and environment, on-die sensors provide information ev-
ery 8 usec to the embedded Foxton micro-controller, which
first enforces the thermal limits. If the processor is within a
safe thermal zone, the controller raises or lowers frequency
in small increments until it reaches a programmable power
limit. Our work also provides the capability to maximize
performance within power and thermal limits. PET also
allows the user to express preferences within constraints
and translates objectives on the fly to current conditions, to
finely tune the system response.

3 PET

The PET management approach provides a level of in-
direction between macro objectives—such as throughput,
operating cost, reliability—and micro directives—clock
frequency, sleep modes, etc.—to allow true preferences ex-
pressed at a high level while providing direction to tight

lower-level control. One obstacle to effective manage-
ment is translating the desired outcome to multiple mea-
sured and controlled quantities. Our solution is a multi-
dimensional space that allows the PET manager to evalu-
ate trade-offs among each dimension simultaneously. The
manager maps actuator settings to their expected outcomes
within the space; each point in the space represents the ef-
fect of a p-state setting. A user (whether a human operator
or management software) provides a goal that defines the
desired outcome within the space.

Formal methods exist for reasoning about goals specified
in the form of qualitative conditional preferences. Dom-
shlak, et al. [3], introduce methods of approximating quali-
tative preferences such as “I prefer to save power when uti-
lization is low.” These preferences can be represented via
Conditional Preference nets (CP-nets), but identifying op-
timal solutions on the resulting partially-ordered graphs is
NP-hard. Domshlak introduces a mechanism for approx-
imating CP-nets as soft-constraint satisfaction problems,
taking into account both constraints and qualitative prefer-
ences simultaneously. In PET, the goal specification con-
sists of three components, designed to capture constraints
and conditional preferences in an interface suitable for con-
trolling hardware systems:

1. hard limits for each dimension to enforce strict re-
quirements for safety

2. soft limits for each dimension, defining a preferred re-
gion

3. objective function to identify the best candidate
within the set of acceptable solutions.

The PET manager first finds the set of points that meet
all hard constraints. If no such points exist, the manager
retreats to a pre-determined ‘safe mode’ p-state and reports
an error. In the typical case, multiple p-states would meet
hard constraints, and the manager proceeds to find the set
of points within the preference region bounded by soft con-
straints. The PET manager then evaluates that set within
soft constraints and chooses the point with the maximum
benefit as defined by the objective function.

Figure 1 shows a snapshot for one sample period of PET
prototype operation. The manager collected power, per-
formance, and temperature samples while the benchmark
gzip executed at a 1200 MHz frequency p-state. Mea-
sured data for this point and expected outcomes for all other
p-states, 8 total, are projected into a performance-power-
thermal multi-dimensional space; details of the projection
follow in Section 4. The plot illustrates the inter-related
effects of performance, power, and temperature; higher-
performance p-states yield higher power and temperatures.
For illustration, consider a case where the highest point in
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Figure 1. PET multi-dimensional goal space

the graph (x) would violate hard limits and the remain-
ing points (¢) are acceptable by safety standards, though
the soft limits indicate the lowest 3 points are preferable.
An objective function of “maximum performance” within
the hard and soft constraints selects one p-state (*). Note
that the goal syntax allows a performance-oriented objec-
tive within a preference region of lower power, allowing the
user to tailor the goals to accurately reflect the objectives.
The figure shows the multi-dimensional space for one snap-
shot in time; point locations within the space will change
over time due to workload activity, ambient temperature,
etc. The manager continuously loops through the sequence:
monitor the system, map the multi-dimensional space, and
choose an appropriate p-state to achieve the goal.

4 PET Prototype
4.1 Hardware

The prototype hardware consists of an Intel Pentium M
755 desktop processor system: a single-core “Dothan” se-
ries 90-nm processor supported by a Foxconn heat-sink
and fan-assembly, an Intel 855GME chipset, 512 MB of
DDR SDRAM memory and a Radisys uni-processor moth-
erboard [13]. The motherboard resides in a conventional PC
enclosure, with the top panel removed to allow access for
probe cables. The photo in Figure 2 shows the Pentium M
(left) with the probe cables for voltage and current measure-
ments running to the data acquisition modules (right).

Intel’s Pentium M employs two power-management
mechanisms: dynamic voltage and frequency scaling and
clock throttling. DVFS supports 8 frequency-voltage pairs
listed in Table 1, with 200 MHz steps from 600 MHz to
2.0 GHz, and voltages corresponding to the most conserva-
tive settings, VID#A in the processor datasheet [8]. Chang-

Figure 2. Pentium M system (left) and mea-
surement PC (right).

’ Frequency \ Voltage ‘

2000 1.340
1800 1.292
1600 1.244
1400 1.196
1200 1.148
1000 1.100
800 1.052
600 0.988

Table 1. Pentium M p-states: frequency and
voltage pairs

ing the DVFS setting incurs a stall up to 10usec, effectively
instantaneous at millisecond sampling time scales. The pro-
cessor is also equipped with clock throttling, which effec-
tively stops the clock for a specified percentage of the time.
We studied clock throttling alone and in combination with
DVEFS and found that for this system, DVFS provided su-
perior power-performance behavior. The rare situation that
would warrant clock throttling would be to reduce power
below the 2-3 watts which the 600 MHz p-state could pro-
vide; clock throttling was not used in this study.

We tapped the high-precision resistors between each of
voltage regulator modules and the processor with a voltage
probe, providing voltages to a National Instruments data ac-
quisition system that monitors processor supply voltage and
also calculates supply current from the voltage drop across
the sense resistors. The monitor on the right in Figure 2
displays our custom virtual oscilloscope program in NI Lab-
View software that displays voltage and current information
and sends UDP packets of measured data to the Pentium M.

4.2 PET Prototype Software

We created prototype software for the Pentium M with
customized drivers to monitor performance, power, and



temperature and control DVFS settings. During bench-
mark execution, the software reads Pentium M performance
counter values for Instructions Retired and Data-Cache Unit
Miss Outstanding events with the RDPMC instruction at
each sampling interval and generates an output file of times-
tamps and counter values at the conclusion of benchmark
execution. At a nominal sampling rate of 100 samples per
second, the sample interval length varies slightly, with most
samples within 10-15 ms and a mean sample length of 13
ms. Power samples arrive in UDP packets at a rate of 100
samples per second. Temperature is sampled less often, at
a user-controlled rate of 1 temperature sample per N per-
formance samples (50 temperature samples per second in
these experiments), via a custom driver to the LM85 fan
controller chip.

The manager software initializes event counters and
software timers, establishes a connection via UDP to the
measurement PC, then spawns a benchmark as a child
process with the highest user-level priority. The manager
continously samples performance, power, and temperature
measurements while the benchmark executes. During each
sampling period, the manager uses data collected at the
current p-state to estimate performance, power, and tem-
perature for all p-states to populate the multi-dimensional
space with expected outcome for present run-time con-
ditions. The manager uses a performance metric of
instructions per second, IPS, gleaned from hardware event
counters and applies a non-linear performance estimator
from [14] to predict performance at other frequencies,
considering the present compute-bound or memory-bound
application behavior. We explored several power models,
with a range of complexity and accuracy; for this work, we
use a simple power model:

Ppredicted = aPmea,sured + ﬁ (1)

where Pyeqsured 15 the most-recent measured power value
at a known p-state. Coefficients o and 3 are empirically
derived through regression analysis of SPEC CPU2000
benchmarks with the ‘“TRAIN’ input set, with separate
coefficients for each p-state. We constructed a linear model
for temperature estimation from regression analysis of
empirical ambient temperature and power for steady-state
microbenchmarks measured at each p-state. The model
captures the effects of both environmental conditions and
power consumption on the CPU temperature:

Tcpu = (7— * Ppredicted) + Tambient ()

where 7 varies slighly with CPU activity due to spatial dis-
tribution of chip hotspots relative to the single temperature
sensor in the processor package. We applied 7 = 1.25 for
all benchmarks in experiments presented in this paper. In
reality, CPU and ambient temperatures affect each other; a

rising CPU temperature causes a rise in ambient, even with
the maximum cooling capacity. This model neglects the ef-
fect of the CPU temperature on the ambient due to the slow
rate of ambient temperature change; the ambient tempera-
ture is approximately steady during the next sample, regard-
less of CPU temperature changes.

The PET manager software compiles estimates for three
dimensions (performance, power, and temperature) for each
p-state, then proceeds to evaluate each p-state’s outcome
relative to the goal. Initial goal parameters are specified on
the manager command line, and can be adjusted via soft-
ware signals SIGUSR1 and SIGUSR2 during execution.
The manager finds the set of p-states that satisfy both hard
and soft constraints, calculates the benefit of each point ac-
cording to the objective function, and chooses the p-state
with the maximum benefit. Linux drivers change the CPU
voltage and frequency to the selected p-state setting. The
process of monitoring system status, evaluating projected
outcomes, and directing p-state changes repeats each sam-
pling period.

5 Experimental Results

In this section, we use our single-processor prototype to
illustrate how the PET approach guides the system to a de-
sired outcome by adapting p-state choices in response to
variable run-time environment and workload behavior. The
capability to sense present conditions on the fly and take
appropriate action at the processor level demonstrated here
applies to large-scale systems, as well, where a centralized
controller can provide global goals and low-level decisions
can be distributed throughout the system to local managers.
In the first experiment, the manager chooses appropriate p-
states to provide the best performance within fixed power
and thermal limits. In the second experiment, we illustrate
a scenario where the goal changes as a user moves the de-
sired operating point along a spectrum of performance to
cost trade-offs.

5.1 Experiment 1: Fixed Goal, Variable
Workload

In the first experiment, the manager’s goal is the best
performance within a power and thermal budget. Hard lim-
its delineate strict bounds of 17 Watts and 70 C. Soft lim-
its impose additional preferences for a 10-Watt power bud-
get and 43 C thermal limit and the objective function is
“maximize performance.” The workload is the ref input
set of the SPEC CPU2000 suite, consisting of 11 integer
and 15 floating-point applications. For reference, the SPEC
CPU2000 suite completes in approximately 70 minutes us-
ing the maximum frequency of 2 GHz on our Pentium M
system, with an average power consumption of 13 Watts.



Graphs in Figure 3 show how the manager directs frequency
changes in response to varying workload demands to meet
the fixed goal specification. The CPU frequency hovers be-
tween 1200 and 1400 MHz with excursions up to the maxi-
mum 2000 MHz and down to 1000 MHz, tracking the work-
load intensity.

The next graph illustrates the power profile; most mea-
surements are recorded between 5-10 Watts, with occa-
sional lower- and higher-power points. The unpredictable
timing of the power feedback by UDP in this experimental
system causes outdated information from periods of previ-
ous low activity to adversely affect frequency choices, caus-
ing higher power than the budget would allow for the cur-
rent activity. Even with unreliable power information, the
manager rarely violates hard power constraints in these ex-
periments, overshooting the hard constraints for a total of
91 milliseconds out of 99.1 minutes of execution, approx-
imately 0.0015% of total execution time. The manager re-
spects soft power limits for most decisions, violating the
preference bounds for 0.52% of the execution time with an
average of 1 Watt, a 10% overshoot. The temperature plot
shows that measured temperatures were well within a gen-
erous 70-C hard limit (not shown on this scale). The CPU
temperature occasionally breached the 43 C soft-limit, 0.5%
of the time with a mean of 1.1 C overshoot.

While the PET manager intends to respect all constraints,
run-time system behavior does not always match the man-
ager’s expectations. Using previously measured data to
predict future response poses a fundamental problem for
controlling variable system behavior. In addition, the pro-
totype PET manager relies on low-overhead estimates of
power, performance, temperature, etc. based on sensor data
recorded for one p-state and extrapolated to all other p-
states. Estimation error in each prediction increases the
the risk of constraint violations. However, permitting oc-
casional mis-steps—with the capability to correct over-
shoots quickly—allows the system to operate near con-
straint boundaries without being hampered by more conser-
vative margins.

Overall, the manager chooses appropriate p-states on the
fly to meet the desired goal with variable workload activ-
ity in most cases. Mild constraint violations such as those
observed this experiment may be acceptable in most situ-
ations. Systems that do require tighter control could add
additional safety measures, including conservative guard-
bands on the constraints, more detailed estimation mod-
els, or upgrades in monitoring hardware (such as integrated
power monitoring features available on blade servers).

5.2 Experiment 2:
workload.

Variable goal and

The next challenge is to demonstrate that the manager
is capable of tracking variable workload behavior while the
goal also varies. Conceptually, experiment 2 emulates an
operator moving a sliding bar between two extremes, high
performance and lower operating cost, to indicate the cur-
rent desired outcome as priorities shift due to task urgency,
quality-of-service contracts, system load, etc. In this proto-
type system without a graphical interface, user actions are
conveyed by a bash shell script that sends signals to the
manager’s process to modify the soft limits, nudging the
soft-limit boundary one notch either toward better perfor-
mance with SIGUSR1 or toward lower cost with SIGUSR2
every 4 seconds. The arbitrary pattern of SIGUSR1 and SI-
GUSR?2 signals mimics the change in objectives over time
by an external operator, independent of application activ-
ity. The objective function is set to ‘maximize performance’
and hard limits are fixed at 80 C and 17 Watts, and 50% per-
formance. Performance requirements specify the minimum
acceptable instructions per second (IPS), as a percentage of
IPS expected at the maximum frequency. Soft limits are
initially set to 75 C, 14 Watts, and 80% of max IPS.

Throughout benchmark execution, the software signals
representing external inputs intermittently modify the goal.
SIGUSRI1 increases soft limits and SIGUSR2 decreases soft
limits; each signal received adjusts the limits by +/-10%
performance, +/-5 degrees C, and +/-1 Watt.

Graphs in Figure 4 show how soft constraints change
in each dimension. Note that as the soft limits shift in re-
sponse to the user preference, they may exceed hard limits,
in which case the manager overrides user preferences and
clips the soft region boundaries to the hard limit values.

The first plot shows performance as IPS. The hard limit
is 50% of max IPS. The soft limit slides higher or lower
every few seconds; the measured performance should be
equal or greater to this minimum performance preference.
The power plot illustrates the soft power limit adjusting in
concert with the performance limit. As the user indicates
higher performance, the power budget is relaxed; for lower
operating costs, the power budget becomes tighter. The
thermal plot also shows the hard and soft limits, although
in this experiment, temperature was not a limiting factor,
as evidenced by the slack between the limits and measured
values. The frequency plot illustrates the fluctuating fre-
quency levels chosen to meet the moving target and work-
load behavior. The frequency ranges from 1000 MHz at the
more restrictive power budgets to 2000 MHz for regions of
higher performance expectations and/or workload behavior
that could meet the power budgets at higher frequencies.

The manager meets the performance hard requirement
and maintains performance near the soft limits, violating
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the soft limits 0.3% of execution time with a slight under-
shoot of 0.06% on average. The manager violates power
hard constraints in 0.01% of execution time and power soft
limits for 12.5% of execution time. The manager does not
violate hard or soft temperature constraints in this experi-
ment.

The greater number of violations in this experiment is
due primarily to exposing regions of lower fidelity in the es-
timation models as the system moves through a wider range
of operation as the goal shifts from higher performance
through lower-cost targets. It is important to note that de-
spite the limited accuracy afforded by imprecise models, the
manager maintains control of the system due to continuous
monitoring that provides opportunities to re-evaluate p-state
choices, every 10-15 ms.

6 Conclusion

In this work, we demonstrate a multi-dimensional, goal-
oriented approach to achieving high performance within
power and thermal constraints. We describe PET, a run-
time manager that translates macro objectives from the user
level to micro directives in the hardware, tailored to work-
load and environmental conditions.

We illustrate the key features with a prototype imple-
mentation in user-level software that manages a Pentium M
system. In this paper, we demonstrate that the PET ap-
proach continuously adapts to workload behavior as it
strives to meet target operating points in two situations.
First, we show how PET maximizes performance within
power and thermal budgets by adapting DVES settings to
dynamic workload behavior with the SPEC CPU2000 suite,
both integer and floating-point benchmarks, with the REF
input set. In this case, the prototype manager generally
adheres to hard constraints throughout execution and over-
shoots soft limits with minor excursions. In the second set
of experiments, both the workload behavior and the goal
modulate during execution. In this scenario, the manager
violates soft limits more often as it handles a wider range of
operation; in the worst case, it violates power soft limits for
12.5% of execution time, though it maintains performance
within preferred range 99.7% of the time.

This paper demonstrated the feasibility of the PET ap-
proach with a single-processor system. The prototyped
approach is extensible to management of additional con-
straints, and holds promise for large-scale systems with a
hierarchy of PET managers that each control a local region
and together manage a larger system. In a cluster-level PET
manager, goal specifications would be determined by sys-
tem administrators, either tuned by human operators or au-
tomatically updated by operational utilities such as IBM’s
PowerExecutive [6].
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