
Experiments in running a scientific MPI application on Grid’5000

Stéphane Genaud1, Marc Grunberg2 and Catherine Mongenet3

1,3LSIIT-ICPS, UMR 7005 CNRS-ULP 2IPGS, UMR 7516 CNRS-ULP
Ple API, Boulevard Sébastien Brant, 5 rue R. Descartes

67412 Illkirch, France 67084 Strasbourg
{genaud,mongenet}@icps.u-strasbg.fr grunberg@eost.u-strasbg.fr

Abstract

Over the last couple of years, several dedicated grid
platforms have been set up to test applications and middle-
ware for grids. Among these is Grid’5000, a reconfigurable
platform gathering resources at nine remote geographical
sites in France. This paper presents one of the eight exper-
iments that have tested software scalability at the scale of
a thousand processors (i.e. 500-1000) on this grid testbed.
The experiment aims at analyzing the behavior of a geo-
physical application (a seismic ray tracing in a 3D mesh of
the Earth [14]). The application is computationnally inten-
sive but requires an all-to-all communication phase during
which processors exchange their results, which has shown
to be a real bottleneck on many hardware platforms. We
analyze various runs and show that this application scales
well up to about 500 processors on such a grid.

1 Introduction

Grid computing [10] aims at taking advantage of the
many disparate computers interconnected through networks
such as the Internet. The idea is to use these machines as a
virtual computer architecture and offer distributed resources
(processors, memory, disk storage, or even remote instru-
ments) to solve large-scale applications. Grid computing is
therefore becoming a very attractive alternative to parallel
machines for many scientific applications.

However, the behavior of applications on grids is diffi-
cult to predict because of the heterogeneity of resources.
In order to better assess an application’s performance on
grids, large dedicated grids have been built to serve as sci-
entific instruments, such as DAS-3[1] in the Netherlands,
or Grid’5000 [8] in France. The experiments conducted in
this paper have been realized on the Grid’5000 platform.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

It is currently composed of 9 french campus sites gather-
ing about 2600 CPUs (and growing towards 5000) inter-
connected with the national education and research network
Renater.

In this work we analyze the behavior on Grid’5000 of
a scientific code, namely a geophysical application which
performs a seismic ray tracing in a 3D mesh of the Earth.
The application is computationally intensive as millions
of seismic rays (extracted from seismicity recorded since
1965) have to be traced. This application exhibits two
main phases: an embarrassingly parallel phase in which all
rays can be independently computed, followed by an all-to-
all communication phase during which processes exchange
their results.

We show that this type of application scales well up to
about 500 processors on such a grid. We put forward the
impact of the network and we show that the network perfor-
mance has increased by an order of magnitude in the light
of experiments conducted 3 years ago.

The paper is structured as follows. Section 2 browses
the contexts in which message-passing applications may be
deployed today and discusses current issues related to de-
ployment on grids as well as perspectives introduced by ex-
periments on dedicated grids. Section 3 presents the seis-
mology application used in the experiments. The Grid’5000
platform is described in section 4 while section 5 analyzes
the various benchmarks conducted on this platform. Finally,
concluding remarks and future works are presented in sec-
tion 6.

2 Parallel message-passing applications on
Grids

Many scientific codes are parallel programs that follow
the message passing paradigm and most of them use an im-
plementation of the MPI [2] standard. When considering
which platform would be best suited to exploit a scientific

code using MPI, one should consider their respective bene-
fits and constraints.

Dedicated parallel computers or clusters This is the
preferred hardware for running MPI programs for two main
reasons. First, MPI does not include built-in fault tolerance
features and with almost all MPI implementations the fail-
ure of one process during the execution leads to the crash of
the whole application. Hence, a dedicated reliable execu-
tion platform is highly desirable. Moreover, such platforms
are generally characterized by the homogeneity of the re-
sources (e.g. processors), and by the quality of the network
interconnecting the processors and its I/O performances.
These parameters deeply impact the performance of MPI
programs since they may involve numerous communica-
tions between any pair of processors, and frequent global
synchronizations between processors. Of course, the draw-
back of these systems is the economic cost which results in
numerous users sharing the equipment. As a consequence,
the processors are often a scarce resource: a user may wait
for a long time, for example, if he requests hundreds of pro-
cessors for a single program. For instance, when we were
regularly running the application described in this paper, we
never got more than 256 out of the 768 processors of an SGI
Origin 3800 in a french national computing center.

Grids Ideally, grids are a means to overcome the above-
mentioned limitations since they are generally depicted as
virtual supercomputers composed of a potentially unlimited
number of computers (mostly individual PCs) offering their
resources to others. In reality, the exploitation of parallel
applications on grids is, in our opinion, still a challenge for
regular users due to two main obstacles:

• Performances: The first obstacle lies in the inherent
heterogeneity of grids, which implies that applications
specifically designed for supercomputers may see their
performances drop when run on grids. Even if sched-
ulers could eventually select homogeneous processors,
the presence of long distance communications incur
unavoidable latencies that have to be taken into ac-
count. A re-design of the original application using a
loosely synchronized algorithm (e.g. [4]) is sometimes
the only solution that yields efficient results.

• Middleware: Second, the lack of operating system ab-
straction that existing middleware currently provides
to applications induces cumbersome manual configu-
rations, making MPI application deployments prone to
failures. Consider for instance mpich-G2 [15], one of
the most popular available environments for message-
passing. Though the library improves the perfor-
mances of collective operations in heterogeneous en-
vironments, it does not get much support from its un-

derlying middleware (the Globus tool kit): there is no
resource scheduler(users have to explicitly say which
computers will take part in the computation via a RSL
description) and no fault-tolerance facility is provided.
Some other projects (e.g. [9], [6]) have addressed
fault-tolerance issues but not the problem of automatic
resource selection.

Contrary to applications involving independent tasks,
where early large-scale experiments on the grid have
achieved runs with thousands of processors (see for exam-
ple the Condor-G installed grid used to solve the NUG30
problem in year 2000 using a total of 2500 CPU’s [16]), we
know of very few experiments involving message-passing
applications deployed at large-scale. Furthermore, the re-
ported large-scale grid experiments generally involve sev-
eral super-computers rather than numerous individual com-
puters. For instance Allen et al [3] reports the behavior of an
application in astrophysics using 1500 processors on four
super-computers at SDSC San-Diego and NSCA Urbana-
Champaign. Some other similar experiments have been re-
ported with PACX-MPI [12] (for instance experiments over
a European and an intercontinental testbed [11]) but they
are mostly “proof-of-concept” demonstrations, set up once,
and not permanent infrastructures. Studies that aim to eval-
uate the underlying grid software or hardware depending
on the sites and on the number of processors used, report
more technical details affecting performance (e.g. [5]) but
are generally less spectacular because the number of hosts
involved is smaller.

However, given the ever increasing performance of “off-
the-shelf” hardware and networks, and provided grid mid-
dleware becomes more sophisticated, one can expect grids
to become competitive infrastructures in the near future. In
the meantime, dedicated grids such as Grid’5000, which use
high performance equipments predetermine how MPI appli-
cations may behave on grids at large scale.

3 The seismic ray-tracing application

The geophysical application used in this paper consists
in building a seismic tomography model for the Earth, in
which the seismic wave velocities in the Earth interior are
determined according to the geological nature of the differ-
ent parts of the Earth. The application and its parallelization
have been described in [14] and we quickly recall here its
main characteristics.

Application Description In order to build such a tomog-
raphy model, we use the seismic event’s information as it is
recorded in international databases. These seismic events
are captured by the many stations located all around the

world. After such an event, the seismogram data are ana-
lyzed in order to localize the earthquake hypocenter. Each
earthquake is recorded in the databases by its location, the
waves arrival times at the different stations and the charac-
teristics - also called signature - of the wave front propaga-
tion. Hence, each time the front reaches a geological inter-
face (such as the one between the mantle and the core) is can
be either transmitted or reflected and its propagation mode
may change from compression to shear (or vice-versa). The
ray signature records these changes.

A seismic wave is modeled by a set of rays, where
each ray represents the wave front propagation from the
hypocenter to one station. The application consists in trac-
ing these seismic rays in a regular mesh of the Earth, ac-
cording to their signature. The ray tracing algorithm is an it-
erative process that builds the ray path as a set of discretized
points in the 3D space defining the Earth interior. The num-
ber of points can go from several hundred to several thou-
sands depending on the length and nature of the ray. Notice
that since international databases contain several millions of
rays, the ray tracing algorithm consists in computing mil-
lions of discretization points. A parallel method is therefore
necessary to tackle such huge quantities of data. In the ex-
periments presented in this paper we trace 1.17 million rays.

The computed ray information is stored into the 3D
mesh, in each of the cells it intersects. This mesh is de-
composed into layers from the surface to the center of the
Earth, each layer is then decomposed into regular angular
sectors (in latitude and longitude) issued at the center of the
Earth. Each elementary volume thus obtained defines a cell
that can be approximated by a hexahedron. Each cell of the
3D mesh will contain all information related to its intersect-
ing rays, that is at least the number of rays, and for each ray
the length of the ray in the cell, the input and output impact
points, the input and output incidence angles.

Application Parallelization Due to the large amounts of
memory required, the application has been parallelized.
The parallel approach we have used consists in replicating
the mesh structure on different processors. A master pro-
cess then decomposes the set of rays to be traced in equal-
size blocks (the default block size has been set to N/10pi,
where N is the number of rays and p the number of pro-
cesses) and distributes a block to each slave process which
then proceeds to the tracing of these rays in its private copy
of the mesh, storing the corresponding information in the
impacted cells. When a process has traced its current block
of rays, it calls the master process for another block. Once
all the rays have been traced, the copies of the 3D mesh held
by the different processes must be merged together in order
to construct the final mesh in which each cell sums up all
the information related to all the rays intersecting with its
volume.

This merging phase is realized as follows. The 3D mesh
is decomposed into disjoint geographic subsets, called sub-
meshes. Each process holds one submesh and has to merge
all the information related to the cells of its submesh. This
requires an all-to-all communication step since each process
has to first send the data it has computed to the appropriate
processes (according to the mesh decomposition) and then
to receive data computed by others and related to its sub-
mesh. This step is obviously expensive as each process has
to exchange data with all the other ones. In the experiments
presented in this paper, the total amount of data exchanged
(called in-transit traffic) is in the order of tens of gigabytes.

The ray tracing algorithm can be decomposed into three
main steps : (1) ray tracing and mesh update by each pro-
cess with blocks of rays successively fetched from the mas-
ter process, (2) all-to all communications to exchange sub-
mesh information between the processes, (3) merging of
cell information of the submesh associated with each pro-
cess.

Since each ray can be traced independently from any
other ray, the first step is highly parallel and can be im-
plemented efficiently on a grid. As millions of rays have
to be traced, this step can benefit from the many processors
available on Grid’5000. Moreover we will show in section
5 that, despite the cost of the all-to-all communication step,
it can be done efficiently thanks to the quality of the inter-
connection network between the different sites of the Grid.

4 The Grid’5000 testbed

Grid’5000 architecture The Grid’5000 testbed is a fed-
eration of dedicated computers hosted across 9 campus sites
in France, and organized in a VPN (Virtual Private Net-
work) over Renater, the national education and research net-
work. Each site has currently about 100 to 700 processors
arranged in one to several clusters at each site. The to-
tal number of processors is currently around 2500 and will
be funded to grow up to 5000 processors. The testbed is
partly heterogeneous concerning the processors since 75%
are AMD Opteron (2, 2.2 or 2.4 GHz), and Itanium2, Xeon
and G5 makeup the remainder.

Enhancements to Renater’s equipments have been
brought in with a new version (Renater-4) completed in
November 2005. Left part of Figure 1 shows the leased
lines (light-colored lines) between sites which all have been
upgraded to 2.5 Gbps (Gigabit per second) since Renater-3.
The novelty of Renater-4 lies in the introduction of DWDM
(Dense Wave Division Multiplexing) equipments. This
technology based on optical networks, is a promising candi-
date for Next-Generation Internet. Thanks to optical cross-
connects interconnected by fiber links, all-optical point-to-
point connections, often referred to as a lightpaths (which
uses a single given wavelength usually called a lambda),

can be established between site network interfaces.
In Renater-4, the DWDM equipments are dedicated

to (currently three) specific projects among which is
Grid’5000. The black links on Figure 1 (left) represent the
“dark fibers” segments that are progressively exploited to
set up DWDM links, and the map on the right of Figure 1
shows the current lightpaths. When connected to this in-
frastructure, a Grid’5000 site is able to see other sites in the
same VLAN and benefits from a connection with a through-
put of 10 Gbps.

At the time of writing, three sites can benefit from a
10 Gbps VLAN, namely Nancy, Rennes and Nice (Sophia-
Antipolis campus), and three others are connected at 1 Gbps
(Grenoble, Lille, Toulouse). The remaining sites Orsay
(near Paris) and Bordeaux are still using the initial inter-
connection system based on Ethernet over MPLS (Multi-
Protocol Label Switching), which offers in practice 1 Gbps
VLANs.

Not that the new network infrastructure hardly improves
latencies: the distance between sites (1500 and 2000 kms
of fiber length for the more distant sites) yields an incom-
pressible delay due to the speed of light in fiber. Table 1
shows typical latencies observed at the time of experiments.
Latencies inside a given site are unsignificant in compari-
son (inner cluster latency). Rather, we expect an improved
throughput and almost no congestion because the VPN only
carries data from Grid’5000 users on its WDM links. On the
contrary, the leased lines used in Renater-3 mix Grid’5000
proper traffic with an heavy cross traffic.

Mode of operation Grid’5000 has the fantastic capability
of deploying an environment on almost any of its nodes. It
means a user can reserve any node during a time-slot, re-
format one disk partition and install a full system of his
choice and finally reboot the node with that system.This
mode of operation avoids uncertainties related to different
OS or software layers encountered in most experimental en-
vironments. In our case, we deployed a system image based
on a linux 2.6.13 kernel, and LAM [7] ver. 7.1.1 as the MPI
implementation. To minimize the hardware influence, we
chose to deploy our image on as many homogeneous nodes
as possible. On all selected sites, we use bi-Opteron nodes
with 2GB RAM, and only CPU frequencies vary (Nancy,
Rennes, Nice 2.0 GHz, Toulouse 2.2 GHz, and Orsay 2.4
GHz).

5 Benchmarks on Grid’5000

5.1 Objectives and Metrics

The objective is to understand how the behavior of an
MPI application such as the one described in section 3, is
influenced by: (a) the number of processors used (from 32

to several hundreds), and (b) the number of geographical
sites involved (from one to five, distant from 400 to 1500
kms).

We expected the latencies incurred by long-distance
communications to be the main source of load-imbalance
and hence speedup limitations. The metrics we chose in or-
der to describe imbalance was the mean time spent by pro-
cessors in the two main phases of the application, together
with the standard deviation to measure dispersion around
the mean.

• In the computation phase, a high dispersion may indi-
cate either heterogeneity in the computation power of
CPUs (this does not apply with our homogeneous con-
figurations), or latencies in work requests to the master
process, leading to idle time for some processors. The
average number of rays computed by a processor and
its correlated standard deviation are also good indica-
tors of workload imbalance.

• In the all-to-all communication phase, a large disper-
sion would denote highly variable durations in send
and receive operations of submeshes.

Finally, in order to better understand a potential saturation
of the network during the all-to-all communication phase,
we measure the total amount of data in-transit, i.e. the sum
of individual transfers for all processors.

5.2 Results

Table 2 summarizes the experimental results. The first
and second columns respectively define the number of sites
and the total number of processors involved. Column 3 in-
dicates the distribution of processors at each site. Columns
4, 5 and 6, respectively, report the times for the ray com-
putation phase, the all-to-all communication phase and the
total time. The number of computed rays is given in column
7 and the total amount of data in-transit is in column 8.

These results are a real surprise. Figure 2 shows the
measured times on the left hand side, and their respec-
tive speedups on the right hand side. Note that the strict
definition of speedup (ratio of the best sequential time to
the time of parallel program with p processors) does not
make sense in our case since the sequential execution on
the dataset used in these experiments required us to activate
intermediate results files writing to bypass memory limi-
tations. The smallest configuration known to achieve this
dataset computation without out-of-core mechanism invo-
cation is a quadri-processor Xeon 3.2 Ghz, 8 GB RAM on
which it took 9 hours. The speedup is thus evaluated from
the times obtained with the 32 processor configuration.

We observe a quasi-linear speedup of the total execution
time for various configurations, with up to 458 processors.
Such a good speedup would obviously decrease when using

!"#$%&'())* +

!"#$%"!&'&()*+,()-&

.)/0.,(1

!"#$%"!&' !"#$%"!&(

)**+,-./01

233+,-./01

34*+5-./01
34*+5-./01

6789+:.-8;

!"#$

Lambdas (10 Gbit/s)

CERN

Figure 1. The Renater-4 network underlying Grid’5000.

nancy orsay rennes toulouse nice lyon
nancy – 5.06/0.03 7.64/0.03 9.74/0.03 11.92/0.02 6.49/0.02
orsay 3.28/0.03 – 3.54/0.03 5.44/0.03 9.07/0.02 2.49/0.02
rennes 7.80/0.02 5.39/0.02 – 6.36/0.01 9.14/0.01 8.17/0.01
toulouse 8.13/0.02 5.34/0.02 4.40/0.01 – 2.85/0.01 2.53/0.01
nice 12.23/0.02 10.95/ 9.11/0.01 4.77/0.01 – 5.78/0.01
lyon 6.51/0.02 5.25/0.02 7.93/0.02 4.21/0.01 5.48/0.02 –

Table 1. Typical latencies between Renater-4 sites (delay/jitter in ms).

significantly more processors as the ratio of communication
time to ray computation time would increase.

Slave responsiveness A first necessary condition met by
the application throughout the tests to reach a linear speedup
is load-balance. The figures clearly show that the standard
deviation related to durations of computations is small: 3%
of mean duration in all configurations, except for 458 pro-
cessors where it reaches 9%. This is correlated with the
average number of rays computed that is nearly the same
on all processors. This means that the messages sent by
slaves to request work to the master do not suffer idle time,
or, in other words, the slave responsiveness is perfect. In
a previous study [13] we showed that distant processors on
Renater-2 were in a state of starvation, i.e. were not receiv-
ing work as quickly as they could compute, even in small
configurations with 16 processors. This clearly shows that
the network improvement between Renater-2 and Renater-4
impacts drastically this type of application.

Network performance Apparently, the performances do
not suffer from long distance communications, even when

several distant sites are involved with many processors.
When the number of processors increases, the number of
messages in the all-to-all communication phase increases
quadratically, but the total amount of computed data in the
submeshes stays constant as it corresponds to the same set
of traced rays. However, each cell has a constant header
and as more cells have to be transmitted when the number
of processors increases, it results in an increase of the in-
transit data, as can be seen in table 2. In addition to the
increasing overall volume to communicate, more numerous
but smaller messages have to be transmitted. Consequently,
more latency overhead is paid on the whole communica-
tion phase. For instance, in the test with 192 processors,
a processor located in Rennes sends 64 messages of 457
KB on average towards Nancy, 64 other messages towards
Toulouse, and 63 to neighbour processors.

In the tests, the all-to-all communication time decreases
linearly up to 128 processors, whatever the number of sites
(1, 2 or 3). From 128 processors, the communication time
nearly stops decreasing to reach a floor of about 30 sec-
onds. Although we expected these 30 seconds to be an in-
flexion point and to see an increase in the communication
time due to the multiplication of messages as well as the

sites procs site(procs) ray comp. all-to-all total nb rays in transit

1

32 nice!(32) 2651.62/86.79 344.85/61.94 3164.19 35351.60/1265.52 7.29 GB
62 nancy!(62) 1316.91/44.94 93.13/11.92 1496.71 17965.60/992.46 9.02 GB
62 nice!(62) 1349.09/45.48 98.78/12.65 1536.36 17965.60/1099.80 8.88 GB
138 nice!(138) 647.12/21.72 37.39/3.32 729.54 8629.14/547.12 15.47 GB

2 64 nancy!(62) toulouse(2) 1271.91/43.17 90.89/11.45 1445.46 17395.30/972.66 9.26 GB
128 nancy!(62) toulouse(66) 610.91/20.40 34.68/3.08 688.28 8629.14/573.01 15.29 GB

3 128 rennes(42) nancy!(44) toulouse(42) 620.27/21.21 33.56/2.98 699.57 8629.14/648.83 15.47 GB
192 rennes(64) nancy!(64) toulouse(64) 412.16/13.70 30.84/2.23 474.65 5737.70/410.90 16.77 GB

5 458 rennes(152) nancy!(32) orsay(184)
nice(58) toulouse(32)

177.07/5.69 31.43/1.47 227.53 2398.03/221.91 20.82 GB

Table 2. Experiments results. Columns 4-7 report average/standard deviation values per process.
Columns 4-6 are times in seconds. The ! symbol indicates the input dataset location.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300 350 400 450 500

tim
e (

s)

number of processors

total
ray comp.
all−to−all

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400 450 500

sp
ee

d−
up

number of processors

total
ray comp.
all−to−all

Figure 2. Execution times and speedups for various configurations.

increasing data volume exchanged, it appears to stay nearly
stable at 458 processors and 5 sites. Of course, this is the
limiting factor for the speedup of this parallel application
but given the mass of computations to perform, the com-
munication overhead does not preclude the benefits that can
be drawn from using hundreds of processors scattered over
distant sites.

6 Conclusion

In this paper, we have reported the behavior of a scien-
tific code in the field of geophysics. The application belongs
to a class of parallel applications made up of an embarrass-
ingly computation phase followed by an all-to-all commu-
nication phase. We believe that exploitation of parallel ap-
plications on grids depends on two main factors: a) the mid-
dleware capabilities of transparently handling the execution,
namely supporting fault-tolerance, discovering resources,
scheduling processes, etc, and b) the hardware system’s ca-
pabilities and performances, in particular network latencies.
In our opinion, no software is mature enough to fulfill the
former requirement (middleware factor) and this issue is not

in the scope of this paper. We have focused here on the lat-
ter requirement by conducting experiments on Grid’5000.
Though this platform may not be considered as a true rep-
resentative of many current grid environments because it is
composed of state-of-the-art equipments, it prefigures next
generation performances.

We show the application performances on large-scale
configurations on this testbed. The conclusion is that this
kind of application is today perfectly suited to the modern
equipments Grid’5000 offers. The new network Renater-4
equipments (in particular WDM equipments) have latencies
next to the physical limit induced by long distances, and
enough bandwidth to transfer the gigabytes of results com-
puted in this application, with an interesting ratio of com-
putations to communications up to 458 processors taken on
5 geographical sites. In practice, geophysicists would be in-
terested in running this application with more than 10 mil-
lions rays, as opposed to the 1 million used in this exper-
iment. In this case, it would be interesting to check if the
application would keep a good speedup when using signifi-
cantly more processors.

Similar performances evaluations should now address

the class of message-passing applications with regular
global synchronizations between computing phases. Many
scientific codes such as numerical simulations follow this
scheme. Until now, they have not shown to perform well on
wide area grids because of their sensitivity to communica-
tion latencies.

References

[1] http://www.cs.vu.nl/das/.
[2] MPI: A message passing interface standard, version 1.1.

Technical report, University of Tennessee, Knoxville, TN,
USA, June 1995.

[3] G. Allen, T. Dramlitsch, I. Foster, N. T. Karonis, M. Ri-
peanu, E. Seidel, and B. Toonen. Supporting efficient exe-
cution in heterogeneous distributed computing environment
with cactus and globus. In Proceedings of SuperComputing
2001, page 52. ACM/IEEE, November 2001.

[4] J. Bahi, S. Contassot-Vivier, and R. Couturier. Evaluation of
the asynchronous iterative algorithms in the context of dis-
tant heterogeneous clusters. Parallel Computing, 31(5):439–
461, 2005.

[5] M. Bornemann, R. V. van Nieuwpoort, and T. Kielmann.
Mpj/ibis: a flexible and efficient message passing platform
for java. In Euro PVM/MPI 2005, volume 3666 of LNCS,
Sept. 2005.

[6] A. Bouteiller, F. Cappello, T. Hérault, G. Krawezik,
P. Lemarinier, and F. Magniette. MPIch-V2: a fault toler-
ant MPI for volatile nodes based on the pessimistic sender
based message logging. In SuperComputing 2003, Phoenix
USA, Nov. 2003.

[7] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster
Environment for MPI. In Proceedings of Supercomputing
Symposium, pages 379–386, 1994.

[8] F. Cappello et al. Grid’5000: A large scale, reconfigurable,
controlable and monitorable grid platform. In Proceedings
of the 6th IEEE/ACM International Workshop on Grid Com-
puting Grid’2005, Nov. 2005.

[9] G. Fagg and J. Dongarra. FT-MPI: Fault tolerant MPI, sup-
porting dynamic applications in a dynamic world. In Eu-
roPVM/MPI 2000, pages 346–353. Springer, 2000.

[10] I. Foster and C. Kesselman. The Grid, Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers,
Inc., 1998.

[11] E. Gabriel, R. Keller, P. Lindner, M. S. Mller, and M. Resch.
Software development in the grid: The damien tool-set. In
Proceedings of Computational Science, ICCS 2003, volume
2659 of LNCS, pages 235–244, 2003.

[12] E. Gabriel, M. Resch, T. Beisel, and R. Keller. Distributed
Computing in an Heterogeneous Computing Environment.
In EuroPVM/MPI, LNCS, pages 180–187, 1998.

[13] S. Genaud and M. Grunberg. Calcul de rais en tomographie
sismique : exploitation sur la grille. Technique et Science
Informatiques, 24(5):591–608, 2005.

[14] M. Grunberg, S. Genaud, and C. Mongenet. Seismic ray-
tracing and earth mesh modeling on various parallel archi-
tectures. The Journal of Supercomputing, 29(1):27–44, July
2004.

[15] N. T. Karonis, B. Toonen, and I. Foster. MPICH-G2:
A Grid-enabled implementation of the Message Passing
Interface. Journal of Parallel and Distributed Systems,
63(5):551–563, May 2003.

[16] D. Thain, T. Tannenbaum, and M. Livny. Distributed com-
puting in practice: The condor experience. Concurr. Com-
put. : Pract. Exper., 17(2-4):323–356, 2005.

