
Incorporating Latency in Heterogeneous Graph Partitioning

Eric Aubanel and Xiaochen Wu
Faculty of Computer Science
University of New Brunswick

Fredericton, N.B.
Canada, E3B 5A3

{aubanel, Xiaochen.Wu}@unb.ca

Abstract

Parallel applications based on irregular meshes make
use of mesh partitioners for efficient execution. Some mesh
partitioners can map a mesh to a heterogeneous computa-
tional platform, where processor and network performance
may vary. Such partitioners generally model the computa-
tional platform as a weighted graph, where the weight of a
vertex gives relative processor performance, and the weight
of a link indicates the relative transmission rate of the link
between two processors. However, the performance of a
network link is typically characterized by two parameters,
bandwidth and latency, which cannot be captured in a sin-
gle weight. We show that taking into account the network
heterogeneity of a computational resource can significantly
improve the quality of a domain decomposition obtained us-
ing graph partitioning. Furthermore, we show that taking
into account bandwidth and latency of the network links is
significantly better than just considering the former. This
work is presented as an extension to the PaGrid partitioner,
and includes a model for estimated execution time, which
is used as a cost function by the partitioner but could also
be used for performance prediction by application-oriented
schedulers.

1. Introduction

Mesh-based parallel programs, which employ a graph to
describe the computation and communication requirements
of an underlying mesh, form a large part of the increasing
role of simulation in science and engineering. Heteroge-
neous computational platforms are increasingly unavoid-
able, with the increasing hierarchical levels of computa-
tional resources, from multicore processors to clusters of

1-4244-0910-1/07/$20.00 c©2007 IEEE.

multiprocessors and mini-grids (clusters of clusters). Het-
erogeneous graph partitioners are vital in order to ensure the
efficient execution of mesh-based programs on these plat-
forms.

Given a mesh-based application and a computational
platform, the combinatorial mesh partitioning problem can
be defined as follows. A weighted graph G = (V,E),
consisting of a set of vertices, V , and a set of edges, E,
can be used to represent the mesh, and a weighted graph
S = (P,C), consisting of a set of processors, P , and a set
of connections, C, can be used to represent the platform.
The mesh partitioning problem is to map V onto P , that is
π : V −→ P , such that a specified cost function is mini-
mized.

Existing heterogeneous mesh partitioners, i.e. those that
partition and map meshes onto heterogeneous platforms, in-
clude PART [1], JOSTLE [13], MiniMax [6], SCOTCH [8],
and PaGrid [3, 15]. The latter partitioner uses a model of
the execution time of the application as a cost function,
and minimizes the maximum estimated execution time,
in contrast to most partitioners (except for MiniMax and
PART), which minimize a measure of total communication
cost. It was shown in [15] that PaGrid produces parti-
tions with up to 60% lower estimated execution times than
METIS [4], a commonly used homogeneous partitioner, and
JOSTLE [13]. Further discussion of these partitioners can
be found in [3, 15].

The importance of platform heterogeneity has also been
considered in recent work on hierarchical resource-aware
dynamic load balancing [2]. The execution environment is
represented by a tree, and the power of each node is com-
puted as the weighted sum of processing power and com-
munication power. The power of each node can then be
incorporated into load balancing algorithms.

In this paper we examine the importance of incorporat-
ing latency into a communication model for heterogeneous
mesh partitioning, in the context of the PaGrid partitioner.
PaGrid is a multilevel graph partitioner that minimizes an

estimate of the execution time of the application. The ini-
tial version of PaGrid [3] minimized total communication
cost during the refinement phase, and added a load balanc-
ing stage based on estimated execution time. This provided
promising results, but the partitioner itself was unstable. Pa-
Grid was then redesigned to use estimated execution time as
a cost function at all levels of refinement [15].

The outline of the paper is as follows. In Section 2, the
estimated execution time formula of PaGrid and the im-
proved formula, incorporating latency, are introduced. In
Section 3, the impact of this improvement on the perfor-
mance of PaGrid and on the estimated execution times of
the partitions are presented. Finally, Section 4 contains a
concluding discussion.

2. Estimated Execution Time Metric

PaGrid uses multilevel graph partitioning, which has
been proven compared to other methods [10]. In this multi-
level graph partitioning process of PaGrid, the mesh graph
is first repeatedly coarsened using a matching heuristic,
modified heavy edge matching [4], until the number of ver-
tices equals the number of processors. Afterward, each
processor is randomly assigned one vertex, the estimated
execution time tp of each processor is computed (Equa-
tion 2), and the assignment is modified in order to decrease
the total execution time over all processors. This assign-
ment is redone at the beginning of each uncoarsening stage,
where subdomains are swapped between processors to min-
imize total execution time t =

∑
p∈P tp. PaGrid then

proceeds to the refinement phase, where it repeatedly un-
coarsens the coarser graph in stages until the finest graph
is reached. At each uncoarsening stage, the partition is re-
fined by moving vertices between subdomains in order to
minimize the maximum estimated execution time of all pro-
cessors tmax = maxp∈P tp and balance the tp of all proces-
sors. To accomplish this the change (gain) of tp is computed
for each move of boundary vertices between subdomains.
These gains are sorted and filtered to make sure that only
advantageous moves are made. More details can be found
in [14, 15].

We now introduce PaGrid’s estimated execution time
formula, discuss its limitations, then add a new term to ac-
count for communication latency.

2.1. PaGrid’s Original Estimated Execution
Time Model

The estimated execution time cost function used in Pa-
Grid is given by:

tp = tpcomp|πp| +
∑
v∈πp

∑
r∈P

|Er(v)|t(p,r)
comm (1)

tp ≈ |p|
(
|πp| +

∑
v∈πp

∑
r∈P

|Er(v)|Rp,r

)
(2)

where |p| is the relative computational power slowdown of
processor p compared to the fastest processor; πp is the set
of vertices that are mapped to processor p and |πp| is the
total weight of these vertices; |Er(v)| represents the sum
of edge weights from vertex v to vertices assigned to pro-
cessor r, Er(v) = {(v, u)|u ∈ πr}. Rp,q is given by

t
(p,q)
comm/tpcomp, where t

(p,q)
comm is the communication cost per

vertex between p and q, and tpcomp is the computation cost
per vertex of p. This ratio is pre-computed ∀(p, q) ∈ P 2

from the given Rref , pfrom, and pto for a reference link
obtained from user input:

Rp,q = Rref × |pfrom|
|(pfrom, pto)| ×

|(p, q)|
|p| (3)

where |(p, q)| is the sum of weights of the shortest path from
p to q, and represents the transfer time per vertex relative to
that of the fastest link.

We discuss two limitations of this model. First, counting
edges crossing subdomain boundaries overestimates some-
what the communication required [10]. If a vertex v ∈ V
is assigned to processor p, and has multiple edges with ver-
tices assigned to processor r, the associated communication
cost is counted multiple times, whereas transferring vertex
v’s data to r once is enough. This can be remedied by using
the number of boundary vertices instead of the number of
edges cut, however this adds significant overhead to the re-
finement phase. We have found that the slight improvement
in the estimated execution times of the partitions does not
justify the extra work.

A more significant limitation is that a single weight is
used for each edge in platform graph S, whereas two pa-
rameters are needed for any reasonable model of network
performance: bandwidth and latency.

2.2. Communication Model

The communication time for a message to be sent over a
network link depends on a number of factors, including the
size of the message, communication protocols, and network
contention. However, a simple model which accounts for
the size of the message is commonly used:

tcomm = λ +
m

β
(4)

where λ represents latency, m represents the size of the
message, and β represents the bandwidth of the link. The
first term models the startup time and the second models
the transmission time of the message. The tradeoff between
these two is an important factor in the design and analysis
of parallel algorithms (see, e.g. [9]). Failing to account for

2

Network Type Band-
width β
(MB/s)

Band-
width
Weight
wβ

Latency
λ(µs)

Latency
Weight
wλ

MyriNet 10G 1280 1 2 256
1 Gigabit E. 128 10 80 10240

Table 1. Network Types and Weights

latency can lead to inefficient communication patterns, such
as frequent short messages.

In a partitioned mesh, a connection between two ver-
tices that are assigned to different processors results in a
communication requirement. The startup time between two
processors is given by the latency of the network path be-
tween them, if they are assigned adjacent subdomains of the
partition, and is equal to zero otherwise. The transmission
time between two processors is proportional to the number
of edges cut by the subdomain boundary (|Er(v)|) and in-
versely proportional to the bandwidth of the network path.

In the execution time model of Equation 2 there is only
one weight for each link in the platform graph S. A sin-
gle weight alone cannot account for both latency and band-
width. Therefore for our new model each link is represented
by two weights. Table 1 displays the latency and bandwidth
weights for two common switched networks [11]. The
weights are assigned as follows. Let wβ represent trans-
mission weight of a link with bandwidth β, βmax represent
the highest link bandwidth in the network, and wλ repre-
sent the latency weight of a link. Transmission weights are
relative to the link with the largest bandwidth:

wβ =
⌈βmax

β

⌉
(5)

In this paper we assume that the data that needs to be com-
municated per vertex is 10 Bytes long. This can easily be
modified for each application. The latency weight of a link
is given by:

wλ =
⌈ λ

10/βmax

⌉
(6)

The new execution time formula is obtained by adding a
new term lp,r representing startup time between processors
p and r to Equation 1:

tp = tpcomp|πp| +
∑
v∈πp

∑
r∈P

|Er(v)|t(p,r)
comm +

∑
r∈P

Cp,rlp,r

(7)

Cp,r =
{

1 if ∃(v, w)|w ∈ πr ∧ v ∈ πp ∧ r �= p
0 otherwise

Factoring tpcomp gives:

tp = tpcomp

(
|πp|+

∑
v∈πp

∑
r∈P

|Er(v)| t
p,r
comm

tpcomp
+

∑
r∈P

Cp,r
lp,r

tpcomp

)

tp = tpcomp

(
|πp| +

∑
v∈πp

∑
r∈P

|Er(v)|Rp,r +
∑
r∈P

Cp,rSp,r

)

(8)

Sp,r =
lp,r

tpcomp

Since tpcomp is proportional to |p|, tp can be approxi-
mated by:

tp ≈ |p|
(
|πp|+

∑
v∈πp

∑
r∈P

|Er(v)|Rp,r+
∑
r∈P

Cp,rSp,r

)
(9)

In this equation, Rp,r and Sp,r are both given by Equation 3
above, except that now for the former |(p, r)| is given by
the maximum bandwidth weight wβ on the shortest path
between p and r, and for the latter |(p, r)| is given by the
sum of the latency weights wλ on the same path. Note how
this differs from the previous communication model, where
|(p, r)| was given by the sum of the weights on the shortest
path from p to r.

Equation 9 was incorporated into PaGrid’s algorithm, by
replacing the previous cost function (Equation 2). We call
the result PaGridL. This change only affects the initial par-
titioning and refinement phases. In this paper, we also use
this equation in order to compare the quality of different
partitions.

3. Experimental Results

We have evaluated PaGridL using two criteria: perfor-
mance of the partitioner itself, and quality of the parti-
tions based on the estimated execution time (Equation 9).
The meshes and system graphs used are described in Sec-
tions 3.1 and 3.2. The performance of PaGridL is presented
in Section 3.3, and the quality of the partitions are analyzed
in Section 3.4.

When PaGridL was first tested, we found that its per-
formance was exceptionally bad in some cases. Analysis
revealed that the particularly high latency weights (wλ - see
Table 1) caused an increase of the number of moves dur-
ing the refinement phase. This particularly affected parti-
tions of small meshes and those of low average degree. A
move that created a new communication requirement be-
tween two processors caused a large increase in estimated
execution time, which then resulted in a number of vertex
migrations to mitigate this increase. To avoid this problem
we experimented with scaling back the latency weights by

3

Graph |V | |E| Avg(degree)
auto 448,695 3,314,611 14.77
144 144,649 1,074,393 14.86
ocean 143,437 409,593 5.71
4elt 15,606 45,878 5.88
crack 10,240 30,380 5.93

Table 2. Application Graphs

System # of
proce-
ssors

Proce-
ssor
weight

Intra-
cluster
network

Inter-
cluster
network

32-Homo 32 1 Myrinet
10G

N/A

HS16-2 32 1 Myrinet
10G

gigabit
ethernet

Table 3. Chosen Platforms

factors of 100, 50, 10, and 5. In the following we present
the results of these experiments, compared with the previ-
ous PaGrid algorithm (based on Equation 2), PaGridL with
latency weights set to zero, and PaGridL with the full la-
tency weights. In all cases the full latency weight is used in
Equation 9 when comparing partitions.

3.1. Graphs

Although the results for five test graphs are presented
here, they are representative of a larger number of experi-
ments carried out. Test graphs were taken from the graph
archives of METIS [5], JOSTLE [12], and PARTY [7], and
all graphs are unweighted (all weights set to 1). Some char-
acteristics of the five chosen graphs are shown in Table 2,
where |V | means the number of vertices, |E| means the
number of edges, and Avg(degree) means the average de-
gree of all vertices. Results are mainly given for the first
four graphs in Table 2, which have varied numbers of ver-
tices, edges, and average degrees.

3.2. Platform Graphs

Results are presented for partitions onto two platform
graphs, 32-Homo and HS16-2, as shown in Table 3. 32-
Homo represents a fully connected processor cluster with
32 identical processors, and a Myrinet 10G network. HS16-
2 represents a grid of two identical clusters of 16 processors
and Myrinet 10G networks connected by a single gigabit
ethernet link. All partitions are generated using a reference
ratio Rref = 0.25 (Equation 3).

Figure 1. An example of gain update after a
move using Equation 9

3.3. Performance

In this section we present a comparison of the run times
of PaGrid and PaGridL, which shows the overhead of in-
corporating latency into the cost function. The main impact
of this change is on the computation of the gains of vertex
moves in the refinement phase.

In PaGrid, the gains of vertices that are connected to the
moved vertex need to be updated after a move. However,
PaGridL sometimes has to update the gains of vertices that
may have no relationship to the moved vertex.

For example, in Figure 1, when computing the gain of
vertex v0 moving to processor p1, because there still exists
a connection, (v1, v3), between p0 and p1, the startup time
between p0 and p1 remains unchanged. However, if vertex
v3 is moved to processor p2, (v0, v2) is the only edge be-
tween p0 and p1. Therefore, the gain of vertex v0 moving to
processor p1 changes, and the startup time between p0 and
p1 needs to be substracted from the gain associated with the
migration of vertex v0 to p1. As shown in Figure 1, the
moved vertex v3 has no relationship to the affected vertex
v0.

Table 4 shows the performance of the refinement phase
and the overall performance for partitioning of two meshes
onto HS16-2 grid. In this table, the second column shows
PaGrid or PaGridL using different fractions of the original
latency weights (latency = 0 and 1/100, 1/50, 1/10, 1/5
and 100% of full latency weights wλ). The third and fourth
columns show the running time, which is averaged over five
runs, in seconds for both the refinement phase and the whole

4

Graph Latency
Weight

Refine-
ment
Phase(s)

Whole
Parti-
tioner(s)

of
Moves

PaGrid 4.09 6.80 12604
L = 0 6.37 9.07 11766
L /= 100 5.12 7.82 11787

144(15) Lty /= 50 5.67 8.38 11597
L /= 10 5.37 8.07 12211
L /= 5 5.85 8.55 13677
L 5.03 7.73 12959
PaGrid 0.11 0.18 1245
L = 0 0.14 0.21 884
L /= 100 0.16 0.24 1204

4elt(6) Lty /= 50 0.19 0.26 1812
L /= 10 0.34 0.41 4528
L /= 5 0.68 0.76 11425
L 1.19 1.27 22387

Table 4. Performance comparison of PaGrid
and PaGridL

partitioner. Finally, the fifth column shows the number of
vertex moves for PaGrid and PaGridL when different frac-
tions of the full latency weights are used. One can see that
when the full latency weights are used in PaGridL, the per-
formance of PaGridL is poor for graph 4elt. Similar results
were also noted for other meshes, particularly those with
low average degree. This is not surprising, as meshes with
high vertex degree offer more possibilities for migration of
vertices. As noted earlier, this was the reason for the exper-
imentation with scaling back latency weights.

From Table 4, one can see that the performance of Pa-
GridL using full latency weights is worse than that of Pa-
Grid, particularly for the mesh 4elt. This is not solely be-
cause of the overhead in computing gains as noted above,
but is also a result of the greater number of moves made dur-
ing the refinement phase. PaGridL is less than 50% slower
than PaGrid if the same number of moves is made. As the
latency weights are scaled back the number of moves gen-
erally decreases, and the performance of the partitioner in-
creases.

In summary, we have found that when the latency
weights used by PaGridL are no higher than 1/5 of the full
latency weights, the execution time for the partitioner is ac-
ceptably larger than PaGrid in most cases, especially for
high degree graphs. However, when the full latency weights
are used, the execution time for the partitioner can be much
higher than that of PaGrid.

Graph Latency Weight tmax

32-Homo 81026.00
PaGrid 33927.25
L = 0 33916.00
L /= 100 34049.00

auto(15) L /= 50 35775.00
L /= 10 33069.00
L /= 5 32092.50
L 25485.75
32-Homo 59471.75
PaGrid 39387.00
L = 0 32066.75
L /= 100 26590.50

144(15) L /= 50 31449.00
L /= 10 27904.50
L /= 5 20174.25
L 15291.75
32-Homo 52776.00
PaGrid 18986.75
L = 0 21757.00
L /= 100 16456.25

ocean(6) L /= 50 21078.00
L /= 10 20393.25
L /= 5 15073.50
L 10472.75
32-Homo 44837.50
PaGrid 8679.00
L = 0 8942.50
L /= 100 8820.00

4elt(6) L /= 50 8624.75
L /= 10 5896.50
L /= 5 5655.75
L 5735.75

Table 5. Estimated Execution Times (Equa-
tion 9) of Partitions onto HS16-2

5

Graph Partitioner tmax tcomp ttran tlate

PaGrid 17618.25 12773 3821.25 1024
L=0 17564.50 13363 3241.50 960
L/=100 17524.75 13400 3164.75 960

auto L/=50 17714.00 13167 3395.00 1152
L/=10 17399.25 13037 3530.25 832
L/=5 17447.50 12975 3448.50 1024
L 17210.00 14876 2014.00 320
PaGrid 7231.00 3809 1822.00 1600
L=0 7227.25 3810 1817.25 1600
L/=100 6984.50 3991 1649.50 1344

144 L/=50 6911.50 3952 1679.50 1280
L/=10 6869.75 3943 1646.75 1280
L/=5 6814.50 3997 1537.50 1280
L 6204.00 4906 914.00 384
PaGrid 5609.50 4365 540.50 704
L=0 5609.50 4365 540.50 704
L/=100 5543.25 4404 499.25 640

ocean L/=50 5545.00 4390 515.00 640
L/=10 5590.00 4279 607.00 704
L/=5 5516.25 4326 550.25 640
L 5278.00 4889 261.00 128
PaGrid 1230.75 445 81.75 704
L=0 1230.75 445 81.75 704
L/=100 1032.75 464 56.75 512

4elt L/=50 1091.50 450 65.50 576
L/=10 1073.25 446 51.25 576
L/=5 1044.00 407 61.00 576
L 809.25 510 43.25 256

Table 6. Estimated Execution Times (Equa-
tion 9) of Partitions onto 32-Homo

3.4. Comparison of Partitions

We first compare in Table 5 partitions onto the HS16-2
graph using PaGrid and PaGridL. As in the previous section
we also examine the impact of scaling back latency weights
in the cost function used during refinement. We also look
at the quality of partitions generated using PaGrid for 32-
Homo and mapped to HS16-2, which show the importance
of taking into account network heterogeneity when parti-
tioning.

The first column of Table 5 shows the meshes with aver-
age degree in parentheses. The second column indicates the
partitioner used, including PaGrid, PaGridL with six differ-
ent latency weights, and 32-Homo means partitions gener-
ated using Pagrid for 32-Homo, but mapped to HS16-2. The
figures shown are the maximum estimated execution times
tmax using Equation 9 with full latency weights.

The first observation to be made is that partitions pro-
duced without considering the heterogeneity of the network

of HS16-2 result in estimated execution times up to five
times higher than those produced with PaGrid and HS16-
2. Next, one can observe that the difference between par-
titions from PaGrid and PaGridL with latency weights set
to zero are not significant. This is not surprising, since the
fact that the former sums transmission weights along a path
whereas the latter uses the maximum weight does not make
a big difference for the system graph used. Finally, incor-
porating latency into the cost function reduces the estimated
execution time by up to a factor of two. As latency weights
are increased the estimated execution times decrease. Fur-
thermore, PaGridL using full latency weights generates the
highest partition quality in most cases. However, when the
average degree of the graph is small, such as the mesh graph
of 4elt, PaGridL using full latency weights does not neces-
sarily generate the best partition quality.

Table 6 shows that incorporating latency not only im-
proves partitions onto heterogeneous platforms, but also on
homogeneous platforms. In Table 6, tmax decreases as
latency increases. The breakdown of tmax into computa-
tion time tcomp, transmission time ttran, and latency tlate

is also shown in Table 6. One can see that incorporating
latency into the cost function decreases transmission time
and latency components of tmax, not just the latter. This
decrease in communication time is a result of a rebalanc-
ing of the vertex assignments, which leads to imbalances in
vertex weights. These imbalances are not a cause for con-
cern, since what matters is the magnitude of tmax, of which
computation time is only one component.

From Table 6, one can also see how, for a fixed number
of processors, the contribution of latency to the execution
time of the application increases as the size of the mesh
decreases, reflecting a common observation for the perfor-
mance of parallel programs employing domain decompo-
sition. One can see the increasing contribution of latency
as the number of processors increases in Figures 2 and 3.
These figure shows the breakdown of tmax for partitions of
mesh 144 and crack on homogeneous networks from 2 to 64
processors. These graphs illustrate the diminishing return of
partitioning these meshes onto more than 32 processors. Ig-
noring latency in the partitioning of the crack mesh would
lead one to think erroneously that additional speedup would
be possible if more than 32 processors were used.

The partitions in this paper employed a value of Rref =
0.25 (Equation 3), which gives a measure of the granularity
of the application on a particular platform. For higher val-
ues of Rref , corresponding to a finer grain, the importance
of latency increases concomitantly with the increasing con-
tribution of communication to the execution time.

6

Figure 2. Breakdown of tmax for partitions of mesh 144

Figure 3. Breakdown of tmax for partitions of mesh crack

7

4. Conclusions

There are three main conclusions of this work. First, tak-
ing into account the network heterogeneity of a computa-
tional resource can significantly improve the quality of a
domain decomposition obtained using graph partitioning.
Second, taking into account bandwidth and latency of the
network links is significantly better than just considering
the former. An improvement can even be found for the case
of homogeneous resources, a result of the rebalancing of the
partition to reduce communication cost. Third, we present
an execution time model for mesh-based applications that
leads to realistic speedup curves, which could be used for
performance prediction by application-oriented schedulers.

This work is presented in the context of the PaGrid graph
partitioner, which we extend to incorporate communication
latency. We demonstrate the first two conclusions above, on
a simple computational grid consisting of two clusters: not
considering network heterogeneity can cost a factor of five
in execution time of the mesh-based application, and only
considering bandwidths can cost a factor of two. We have
found that scaling back of the actual weights used to model
latency by a factor of five or ten may be necessary to avoid
an excessive exploration of the solution space in the refine-
ment phases of the partitioner. Interestingly, even includ-
ing a small fraction (1/100) of the actual latency weights
can lead to noticeable improvement, which continues as the
weights are increased. In the case of small meshes and those
with low average degree, using large latency weights may
lead to poor results, due to the limited solution space explo-
ration possible for these graphs.

We also show that incorporating latency when partition-
ing onto a homogeneous network can also improve the
estimated execution times of the resulting partitions, al-
though the improvements are smaller than for the hetero-
geneous network considered. We use our execution time
model to show how the communication, transmission, and
startup time components vary as the number of processors
increases.

These results clearly still need to be validated with per-
formance data from actual mesh-based applications. Work
is ongoing toward this goal to create benchmark applica-
tions and to emulate heterogeneous networks. The cost
function is the only difference so far between PaGridL and
PaGrid. Performance improvements can still be made, in-
cluding modifying the filter functions used when selecting
moves and consideration of other algorithms for partition-
ing of the coarsest graph before the refinement phases.

Acknowledgement

This work was funded by a Discovery grant of the Natu-
ral Sciences and Engineering Research Council of Canada.

References

[1] J. Chen and V. E. Taylor. Mesh partitioning for efficient use
of distributed systems. IEEE Trans. Parallel and Distributed
Systems, 13(1):67–79, January 2002.

[2] K. Devine and et. al. New challenges in dynamic load bal-
ancing. Appl. Numer. Math., 52(2):133–152, 2005.

[3] S. Huang, E. Aubanel, and V. Bhavsar. Pagrid: A mesh par-
titioner for computational grids. Journal of Grid Computing,
4(1):71–88, March 2006.

[4] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing, 20(1):359–392, 1998.

[5] G. Karypis and V. Kumar. Metis graph archive.
ftp://ftp.cs.umn.edu/dept/users/kumar/graphs. Last accessed
July 2006.

[6] S. Kumar, S. Das, and R. Biswas. Graph partitioning for par-
allel applications in heterogeneous grid environments. In-
ternational Parallel and Distributed Processing Symposium,
2002.

[7] Party graph collection. http://www.uni-paderborn.de/cs/ag-
monien/research/part/graphs.html. Last accessed July 2006.

[8] F. Pellegrini and J. Roman. Scotch: A software package for
static mapping by dual recursive bipartitioning of process
and architecture graphs. High-Performance Computing and
Networking(HPCN’96 Europe), 1067:493–498, 1996.

[9] M. J. Quinn. Parallel Programming In C With MPI and
OpenMP. McGraw-Hill Companies, Inc, 2004.

[10] K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning
for high-performance scientific simulations. In e. a. Don-
garra, J., editor, Sourcebook of Parallel Computing, pages
491–541. Morgan Kaufmann, 2003.

[11] Top 500 supercomputing sites: http://www.top500.org. Last
accessed July 2006.

[12] C. Walshaw. Walshaw graph collection.
http://staffweb.cms.gre.ac.uk/ c.walshaw/partition. Last
accessed July 2006.

[13] C. Walshaw and M. Cross. Multilevel mesh partitioning for
heterogeneous communication networks. Future Generation
Comput. Syst., 17(5):601–623, March 2001.

[14] R. Wanschoor. Mesh partitioning for computational grids.
Master’s thesis, Faculty of Computer Science, University of
New Brunswick, Fredericton, NB, Canada, 2004.

[15] R. Wanschoor and E. Aubanel. Partitioning and mapping
of mesh-based applications onto computational grids. Fifth
IEEE/ACM International Workshop on Grid Computing,
pages 156–162, November 2004.

8

