
Experimental Evaluation of Emerging Multi-core Architectures

Abdullah Kayi 1, Yiyi Yao 1, Tarek El-Ghazawi 1, Greg Newby 2

1The George Washington University
Dept. of Electrical and Computer Engineering

Washington, DC 20052 USA
{apokayi, yyy, tarek}@gwu.edu

2Arctic Region Supercomputing Center

Fairbanks, AK 99775 USA

Abstract

The trend of increasing speed and complexity in the
single-core processor as stated in the Moore’s law is
facing practical challenges. As a result, the multi-core
processor architecture has emerged as the dominant
architecture for both desktop and high-performance
systems. Multi-core systems introduce many challenges
that need to be addressed to achieve the best performance.
Therefore, a new set of benchmarking techniques to study
the impacts of the multi-core technologies is necessary. In
this paper, multi-core specific performance metrics for
cache coherency and memory
bandwidth/latency/contention are investigated. This study
also proposes a new benchmarking suite which includes
cases extended from the High Performance Computing
Challenge (HPCC) benchmark suite. Performance results
are measured on a Sun Fire T1000 server with six cores
and an AMD Opteron dual core system. Experimental
analysis and observations in this paper provide for a
better understanding of the emerging multi-core
architectures.

1. Introduction

The emerging multi-core architectures provide a
solution to increase the performance capability on a single
chip without requiring a complex system and increasing
the power requirements [1, 2, 3, 4]. However, these
architectures have introduced many challenges in

1-4244-0910-1/07/$20.00 ©2007 IEEE.

maximizing application performance. Thus, benchmarking
of the multi-core architectures becomes very important to
unveil the potentials of these systems. Most existing
benchmarks are not targeting these multi-core
architectures and thus are not able to exploit the multi-core
specific low level features such as shared cache coherence
overhead, memory resource contention and etc. To address
this problem, this paper first proposes a set of multi-core
specific performance metrics to be investigated in this
research study. In addition, all the experiments focus on
the sources of possible bottlenecks in these multi-core
architectures to be able to evaluate the potentials of these
systems. Some synthetic benchmarking cases, an
extension from HPCC benchmarking suites [5] (STREAM
[6] and RandomAccess [7]) and an FFTW [8] multi-
threaded application featuring the proposed performance
metrics are provided. Such benchmarking cases and
application are applied to the UltraSPARC T1 processor
[9] and the AMD Opteron processors [10]. The
experimental methodology is explained in Section 2
whereas Section 3 shows the results and observations
obtained during this study. And finally, Section 4 includes
the conclusion and the future remarks.

2. Experimental Methodology

At the beginning of this research study, a set of multi-
core specific performance metrics are identified to guide
the benchmarking of multi-core architectures as illustrated
in Table 1. Such metrics focus on the features that are
different from previous single core architectures and
exploit the potential sources of inefficiencies in the

Table 1. Multi-core specific benchmarking metrics

multi-core architectures. As shown in Table 1, the
performance metrics are developed in layers targeting the
architectural aspects of multi-core systems. The Cache
and the Memory are listed as the sources of performance
inefficiency that we expect to affect a multi-core system
performance. Within each of these sources, there are some
aspects that are multi-core specific and these are listed in
the second column of Table 1. Cache coherency among
the cores is the aspect we identified to be the most
important for the overall systems performance from cache
architectural point of view mainly for the shared cache
multi-core architectures. From the memory side,
bandwidth sustained from the cores to the main memory,
latency observed from the cores to the main memory and
resource contention among the cores while accessing the
main memory are selected as important aspects to be
examined in this study. According to these aspects
performance metrics are determined as the experimental
goals of this study. For each of these metrics, we
developed a synthetic benchmarking case to measure the
potential performance or overhead to get a better
understanding of the corresponding aspect in the
experimented multi-core architectures.

In order to convey the experiments, UltraSPARCT1 (6
cores) and AMD Opteron single/dual core processors are
utilized with Solaris and Linux operating systems
respectively. To fully exploit the multi-core architectures,
all the benchmarking cases were implemented using the
POSIX [11] thread library if necessary. In addition, for
both systems we used the gcc compiler. In order to
interpret the results better, following sub-sections will
describe the benchmarking schemes and methodology for
each and every aspect stated earlier.

2.1 Cache Aspects

Different multi-core architectures use different ways of
caching and cache sharing among the cores [12, 13, 14,
15]. For instance, each UltraSPARC T1 processor has a
twelve-way associative (four banks) unified Level 2 (L2)
on-chip cache, and each cache hardware strand shares the
entire L2 cache [9, 16]. Besides this, each UltraSPARC

T1 processor core has its own L1 instruction cache, L1 data
cache, instruction TLB and data TLB. Thus, cache
coherency effect is very important for such systems to be
examined in detail. On the other hand, the AMD Opteron
processor cores share neither the L1 cache nor the L2
cache [17]. However, cache coherency is still an important
effect to be considered for these multi-core systems. In our
benchmarking suite, we created cache trashing cases and
accordingly tried to measure the cache coherency overhead
in these scenarios. Further information will be given in
Section 3 for this experiment with the results.

2.2 Memory aspects

It is quite interesting and important to examine how
more than one core on a single chip will affect the overall
system performance while accessing the main memory
[18]. It is crucial to discover the challenges and limits of
these multi-core systems for the earlier stated memory
aspects. In order to examine the memory subsystem of
these multi-core systems, we adapted two of the HPCC
benchmarking tests, STREAM and RandomAccess [6, 7].
However, these tests were modified by POSIX threads
library in order to be able to serve our needs. STREAM
results were used mainly to obtain the memory bandwidth
sustained by using various numbers of cores and
RandomAccess results were utilized to investigate the
memory latency and memory contention issues for the
experimental test beds.

3. Experimental Results and Analysis

In this section, results from our experiments and
corresponding analyses will be provided. Starting from the
benchmarking efforts on cache, the experimental analysis
will be presented in the same order they were described in
the previous section with some additional benchmarking
cases at the end. Figure 1 shows the cache coherency
overhead observed in the UltraSPARC T1 processor. And
Figure 2 represents the same analysis on the AMD Opteron
dual core processor. Both of these figures include results

Sources of Performance Inefficiency in
Multi-core Architectures

Aspects Metrics

CACHE Cache coherency among the cores Cache Coherency Overhead
Bandwidth sustained from the cores

to the main memory
Bandwidth

Latency observed from the cores to
the main memory

Latency

MEMORY

Contention among the cores while
accessing the main memory

Percentage of Memory
Contention

which were normalized according to a single element
inside given workloads. Results were obtained using
different problem sizes starting with 10^5 elements to
10^8 elements in order to guarantee the cache trashing on
both of the systems. As it is mentioned in section 2.1 both
of these systems have cores which have dedicated L1
cache, but UltraSPARC T1 processor is a unique system
in the sense that it provides hardware strands inside each
core leading to four threads per given core, which is a part
of chip multi threading (CMT) technology [19]. Thus, L1
cache is shared between the strands inside the core
between four threads and on the upper level L2 cache is
shared among all the available cores. Accordingly,
caching becomes a very important issue for such
processor in the sense that it may yield to bigger
advantages and/or disadvantages. Considering the cache
coherency effect since we are testing the corner cases,
which includes aggressive cache trashing this type of
shared L2 cache resulted in bigger overheads compared to
the AMD Opteron processor (dual core) in which each
core has its own L1 and L2 caches. We implemented the
scheme used in this test as a part of our benchmarking
suite.

Cache Coherency overhead on UltraSparcT1

0

100

200

300

400

500

2 4 6 8 16 24 32 64

#of pthreads

O
ve

rh
ea

d
(m

ic
ro

se
cs

)

10 5̂ 10 6̂ 10^7 10 8̂

Figure 1: Cache Coherency Overhead on
UltraSPARC T1 processor

Cache Coherency Overhead on AMD Opteron (dual core)

0

50

100

150

200

2 4 6 8 16 24 32 64

of pthreads

O
ve

rh
ea

d
(m

ic
ro

se
cs

)

10 5̂ 10 6̂ 10^7 10 8̂

Figure 2: Cache Coherency Overhead on
AMD Opteron processor

Figure 3 and Figure 4 demonstrate the results gathered
from HPCC Stream benchmark on the UltraSPARC T1
processor and the AMD Opteron processor respectively.
The figures include all different cases provided in the
Stream benchmark by modifying the original
implementation according to our needs using POSIX
threads library. Although the original Stream benchmark is
based on floating point computations the following results
are based on integer operations. The reason for this change
is to avoid any performance degrade that might have
occurred due to the one floating point unit (FPU) for six
cores on the UltraSparcT1 chip. In figure 3, we see a nice
scaling up to 24 threads for the copy operation which
actually is the physical limit since we have six cores and
four threads per core. Scale and add operations also scale
up to 24 threads but in a slower fashion resulting almost
the half bandwidth compared to the copy operation.
However, the triad operation which is a combination of
both scaling and addition operations scales only up to 6
threads. The reason behind this behavior is most likely
based on the performance of the Modular Arithmetic Unit
(MAU) on the UltraSparcT1 chip where there is one MAU
per core. Since copy operation is not affected by this unit it
results in a bigger bandwidth but the scale, add and triad
operations are directly affected from the capabilities of
these units. Figure 4 represents consistent trend between
different operations. It is easy to understand the physical
limit of the system considering the curves scale up to 2
threads and start hanging in a steady state after that.

Stream Results on UltraSparcT1

0

1000

2000

3000

4000

5000

6000

1 2 4 6 12 24 30 32 36 48 64

of pthreads

B
a

n
d
w

id
th

 (
M

B
/
S
)

COPY SCALE ADD TRIAD
Figure 3: Memory Bandwidth Results on
UltraSPARC T1 processor

Stream Results on AMD Opteron

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8

of pthreads

B
a

n
d
w

id
th

 (
M

B
/
s
)

COPY SCALE ADD TRIAD
Figure 4: Memory Bandwidth Results on
AMD Opteron dual core processor

Switching to the RandomAccess scheme from Stream, we
used the dual core dual processor AMD Opteron and the
same UltraSPARC T1 processor. Figure 5 illustrates the
results for UltraSPARC T1 processor which actually
presents a different result compared to the earlier analysis
provided on Figure 1. In fact, this difference comes from
the difference between Stream and RandomAccess
benchmarking tests. RandomAccess provides its results in
terms of Giga updates per Second (GUPS), which is a
measurement that profiles the memory architecture of a
system. UltraSPARC T1 processor used in our
experiments has 6 cores and accordingly 12 memory
banks which makes the actual physical limit for
RandomAccess scheme. Figure 5 shows this limit and the
actual GUPS values obtained on this processor. Figure 6
represents a clear indication of the physical limit in the
test bed utilized which includes a dual core/dual processor
(total of 4 processing cores) AMD Opteron processor as
well as the GUPS values from this system.

RandomAccess - Memory Bandwidth - UltraSparc T1

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

1 2 4 6 8 10 16 20 24 28 32 36 40 44 48 52 56 60 64

of pthreads

G
U

P
S

Figure 5: Memory Bandwidth analysis on
UltraSPARC T1 processor using
RandomAccess scheme

Random Access - Memory Bandwidth on
AMD Opteron (dual core)

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

1 2 4 6 8 16 24 32

of pthreads

G
U

P
S

Figure 6: Memory Bandwidth analysis on
AMD Opteron processor (dual core/dual
processor) using RandomAccess scheme

Figure 7 and Figure 8 were also obtained from a similar
test bed and the same test case which further shows the
same indications as Figure 5 and Figure 6. However, these
figures also present results for another performance metric
which is the latency observed from the cores to the main
memory.

Memory Read/Write Latency - RA - UltraSparc T1

0

100

200

300

400

500

600

1 2 4 6 8 10 16 20 24 28 32 36 40 44 48 52 56 60 64

of pthreads

T
im

e
 (

m
se

c.
)

Figure 7: Memory Read/Write Latency on
UltraSPARC T1 processor

Memory Read/Write Latency on AMD Opteron

0
10
20
30
40
50
60
70
80

1 2 4 6 8 16 24 32

of pthreads

Ti
m

e
(m

s)

Figure 8: Memory Read/Write Latency on
AMD Opteron dual core/dual processor

Furthermore, Figure 9 and Figure 10 demonstrate the
memory contention experiments on both of these systems.
In both of the figures, the y-axis represents the values for
the metric that was stated earlier in Table 1 which is the
percentage of memory contention between the cores while
accessing the main memory.

Memory Contention - UltraSparc T1

-100

0

100

200

300

400

500

600

700

2 4 6 8 10 16 20 24 28 32 36 40 44 48 52 56 60 64

of Threads

(%
)

Figure 9: Memory Contention analysis on
UltraSPARC T1 processor

Memory Contention - AMD Opteron

0
100
200
300
400
500
600
700
800

2 4 6 8 16 24 32

of pthreads

%

Figure 10: Memory Contention analysis on
AMD Opteron processor

Finally, in addition to all the aspects and sub-features

described in section 2 we used one application benchmark
called “FFTW” in our benchmarking suite to further test
these architectures for different type of workloads. Figure
11 represents the FFTW results on UltraSPARC T1
processor. It is not fair to compare these results with the
ones from AMD Opteron as shown in Figure 12, since
FFTW application is heavily based on floating point
arithmetic and UltraSPARC T1 processor has only a
single Floating Point Unit (FPU) for the whole chip, in
other words all 6 cores and 24 hardware strands are using
the same FPU. However, these values give us a better
understanding of the FPU on the UltraSPARC T1
processor as it provides scalability up the number of cores
as it is shown in Figure 11. On the other hand, Figure 12
represents the same experimental analysis on the AMD

Opteron processor in which each core has its own
dedicated FPU.

FFTW on UltraSparc T1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 6 8 10 12 16 20

Threads

G
F
lo

p
s

2048 4096 8192 16384 32768 65536

131072 262144 524288
Figure 11: FFTW on UltraSPARC T1
processor

FFTW on AMD Opteron

0

0.5

1

1.5

2

2.5

1 2 4 6 8 10 12 16 20 24 28 32

Threads

G
F
lo

p
s

2048 4096 8192 16384 32768 65536

131072 262144 524288
Figure 12: FFTW on AMD Opteron processor

4. Conclusion and Future Remarks

We presented a benchmarking methodology including
some multi-core specific performance metrics as well as
test cases for the emerging multi-core systems. As we see
more and more of these multi-core systems are provided
from the processor vendors, also considering the fact that
the tendency of putting more processing cores inside a
single chip grows it is crucial to understand the advantages
and challenges come up with these systems. This study was
intended as a case study to provide such information
covering different features and layers of multi-core
systems. Experimental analysis was conducted on the
UltraSPARC T1 (six cores) and the AMD Opteron (dual
core) processors as a proof of concept. The findings and
observations from test cases were presented to give a better
understanding of the multi-core systems in general. As a
future study, utilizing hardware counters in the
benchmarking suite might give a better understanding of
the results and lead to more findings. Also as an extension
to this study, in order to exploit the software aspect like the
operating system (OS), we are planning to use a light-

weight OS maybe just a scheduler to measure the OS
overhead and efficiency while running jobs in these multi-
core systems.

References

[1] http://multicore.amd.com/GLOBAL/WhitePapers/Multi-

Core_Processors_WhitePaper.pdf
[2] Hofstee, H.P., "Future microprocessors and off-chip SOP

interconnect," Advanced Packaging, IEEE Transactions
on [see also Components, Packaging and Manufacturing
Technology, Part B: Advanced Packaging, IEEE
Transactions on], vol.27, no.2pp. 301- 303, May 2004

[3] Balakrishnan, S.; Ravi Rajwar; Upton, M.; Lai, K., "The
impact of performance asymmetry in emerging multicore
architectures," Computer Architecture, 2005. ISCA '05
Proceedings 32nd International Symposium on , vol.,
no.pp. 506- 517, 4-8 June 2005

[4] Kistler, M.; Perrone, M.; Petrini, F., "Cell
Multiprocessor Communication Network: Built for
Speed," Micro, IEEE , vol.26, no.3pp. 10- 23, May-June
2006

[5] http://icl.cs.utk.edu/hpcc/
[6] http://www.cs.virginia.edu/stream/
[7] http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
[8] http://www.fftw.org/
[9] http://www.sun.com/processors/UltraSPARC-T1
[10] http://www.amd.com/

usen/Processors/ProductInformation/0,,30_118_8825,00.
html

[11] http://www.opengroup.org/austin/papers/posix_faq.html
[12] Kumar, R.; Zyuban, V.; Tullsen, D.M., "Interconnections

in multi-core architectures: understanding mechanisms,
overheads and scaling," Computer Architecture, 2005.
ISCA '05 Proceedings 32nd International Symposium on,
vol., no.pp. 408- 419, 4-8 June 2005

[13] Jichuan Chang; Sohi, G.S., "Cooperative Caching for
Chip Multiprocessors," Computer Architecture, 2006
33rd International Symposium on , vol., no.pp. 264- 276,
17-21 June 2006

[14] Ying Zheng; Davis, B.T.; Jordan, M., "Performance
evaluation of exclusive cache hierarchies," Performance
Analysis of Systems and Software, 2004 IEEE
International Symposium on - ISPASS, vol., no.pp. 89-
96, 2004

[15] Yeh, P.C.C.; Patel, J.H.; Davidson, E.S., "Shared Cache
for Multiple-Stream Computer Systems," Computers,
IEEE Transactions on , vol.C-32, no.1pp. 38- 47, Jan
1983

[16] http://www.sun.com/
servers/coolthreads/coolthreads_architecture_wp.pdf

[17] http://multicore.amd.com/en/
[18] http://www.embedded.com/

showArticle.jhtml?articleID=183702075
[19] http://www.sun.com/

processors/whitepapers/throughput_whitepaper.pdf

