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Abstract 
 

The trend of increasing speed and complexity in the 
single-core processor as stated in the Moore’s law is 
facing practical challenges. As a result, the multi-core 
processor architecture has emerged as the dominant 
architecture for both desktop and high-performance 
systems. Multi-core systems introduce many challenges 
that need to be addressed to achieve the best performance. 
Therefore, a new set of benchmarking techniques to study 
the impacts of the multi-core technologies is necessary. In 
this paper, multi-core specific performance metrics for 
cache coherency and memory 
bandwidth/latency/contention are investigated. This study 
also proposes a new benchmarking suite which includes 
cases extended from the High Performance Computing 
Challenge (HPCC) benchmark suite.  Performance results 
are measured on a Sun Fire T1000 server with six cores 
and an AMD Opteron dual core system. Experimental 
analysis and observations in this paper provide for a 
better understanding of the emerging multi-core 
architectures.  
 
 
1. Introduction 
 

The emerging multi-core architectures provide a 
solution to increase the performance capability on a single 
chip without requiring a complex system and increasing 
the power requirements [1, 2, 3, 4]. However, these 
architectures have introduced many challenges in 
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maximizing application performance. Thus, benchmarking 
of the multi-core architectures becomes very important to 
unveil the potentials of these systems. Most existing 
benchmarks are not targeting these multi-core 
architectures and thus are not able to exploit the multi-core 
specific low level features such as shared cache coherence 
overhead, memory resource contention and etc. To address 
this problem, this paper first proposes a set of multi-core 
specific performance metrics to be investigated in this 
research study. In addition, all the experiments focus on 
the sources of possible bottlenecks in these multi-core 
architectures to be able to evaluate the potentials of these 
systems. Some synthetic benchmarking cases, an 
extension from HPCC benchmarking suites [5] (STREAM 
[6] and RandomAccess [7]) and an FFTW [8] multi-
threaded application featuring the proposed performance 
metrics are provided. Such benchmarking cases and 
application are applied to the UltraSPARC T1 processor 
[9] and the AMD Opteron processors [10]. The 
experimental methodology is explained in Section 2 
whereas Section 3 shows the results and observations 
obtained during this study. And finally, Section 4 includes 
the conclusion and the future remarks.   
 
2. Experimental Methodology 
 

At the beginning of this research study, a set of multi-
core specific performance metrics are identified to guide 
the benchmarking of multi-core architectures as illustrated 
in Table 1. Such metrics focus on the features that are 
different from previous single core architectures and 
exploit the potential sources of inefficiencies in the 



 

Table 1.  Multi-core specific benchmarking metrics 
 

multi-core architectures. As shown in Table 1, the 
performance metrics are developed in layers targeting the 
architectural aspects of multi-core systems. The Cache 
and the Memory are listed as the sources of performance 
inefficiency that we expect to affect a multi-core system 
performance. Within each of these sources, there are some 
aspects that are multi-core specific and these are listed in 
the second column of Table 1.  Cache coherency among 
the cores is the aspect we identified to be the most 
important for the overall systems performance from cache 
architectural point of view mainly for the shared cache 
multi-core architectures. From the memory side, 
bandwidth sustained from the cores to the main memory, 
latency observed from the cores to the main memory and 
resource contention among the cores while accessing the 
main memory are selected as important aspects to be 
examined in this study. According to these aspects 
performance metrics are determined as the experimental 
goals of this study.  For each of these metrics, we 
developed a synthetic benchmarking case to measure the 
potential performance or overhead to get a better 
understanding of the corresponding aspect in the 
experimented multi-core architectures.  

In order to convey the experiments, UltraSPARCT1 (6 
cores) and AMD Opteron single/dual core processors are 
utilized with Solaris and Linux operating systems 
respectively. To fully exploit the multi-core architectures, 
all the benchmarking cases were implemented using the 
POSIX [11] thread library if necessary. In addition, for 
both systems we used the gcc compiler. In order to 
interpret the results better, following sub-sections will 
describe the benchmarking schemes and methodology for 
each and every aspect stated earlier. 
 
2.1 Cache Aspects  
 

Different multi-core architectures use different ways of 
caching and cache sharing among the cores [12, 13, 14, 
15]. For instance, each UltraSPARC T1 processor has a 
twelve-way associative (four banks) unified Level 2 (L2) 
on-chip cache, and each cache hardware strand shares the 
entire L2 cache [9, 16]. Besides this, each UltraSPARC 

T1 processor core has its own L1 instruction cache, L1 data 
cache, instruction TLB and data TLB. Thus, cache 
coherency effect is very important for such systems to be 
examined in detail. On the other hand, the AMD Opteron 
processor cores share neither the L1 cache nor the L2 
cache [17]. However, cache coherency is still an important 
effect to be considered for these multi-core systems. In our 
benchmarking suite, we created cache trashing cases and 
accordingly tried to measure the cache coherency overhead 
in these scenarios. Further information will be given in 
Section 3 for this experiment with the results.  
 
2.2 Memory aspects 
 

It is quite interesting and important to examine how 
more than one core on a single chip will affect the overall 
system performance while accessing the main memory 
[18]. It is crucial to discover the challenges and limits of 
these multi-core systems for the earlier stated memory 
aspects. In order to examine the memory subsystem of 
these multi-core systems, we adapted two of the HPCC 
benchmarking tests, STREAM and RandomAccess [6, 7]. 
However, these tests were modified by POSIX threads 
library in order to be able to serve our needs. STREAM 
results were used mainly to obtain the memory bandwidth 
sustained by using various numbers of cores and 
RandomAccess results were utilized to investigate the 
memory latency and memory contention issues for the 
experimental test beds. 
 
3. Experimental Results and Analysis 
 

In this section, results from our experiments and 
corresponding analyses will be provided. Starting from the 
benchmarking efforts on cache, the experimental analysis 
will be presented in the same order they were described in 
the previous section with some additional benchmarking 
cases at the end. Figure 1 shows the cache coherency 
overhead observed in the UltraSPARC T1 processor. And 
Figure 2 represents the same analysis on the AMD Opteron 
dual core processor. Both of these figures include results 

Sources of Performance Inefficiency in 
Multi-core Architectures 

Aspects Metrics 

CACHE Cache coherency among the cores  Cache Coherency Overhead 
Bandwidth sustained from the cores 

to the main memory 
Bandwidth 

Latency observed from the cores to 
the main memory 

Latency 

 
 

MEMORY 

Contention among the cores while 
accessing the main memory 

Percentage of Memory 
Contention 



which were normalized according to a single element 
inside given workloads. Results were obtained using 
different problem sizes starting with 10^5 elements to 
10^8 elements in order to guarantee the cache trashing on 
both of the systems. As it is mentioned in section 2.1 both 
of these systems have cores which have dedicated L1 
cache, but UltraSPARC T1 processor is a unique system 
in the sense that it provides hardware strands inside each 
core leading to four threads per given core, which is a part 
of chip multi threading (CMT) technology [19]. Thus, L1 
cache is shared between the strands inside the core 
between four threads and on the upper level L2 cache is 
shared among all the available cores. Accordingly, 
caching becomes a very important issue for such 
processor in the sense that it may yield to bigger 
advantages and/or disadvantages. Considering the cache 
coherency effect since we are testing the corner cases, 
which includes aggressive cache trashing this type of 
shared L2 cache resulted in bigger overheads compared to 
the AMD Opteron processor (dual core) in which each 
core has its own L1 and L2 caches. We implemented the 
scheme used in this test as a part of our benchmarking 
suite.   
 

Cache Coherency overhead on UltraSparcT1
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Figure 1: Cache Coherency Overhead on 
UltraSPARC T1 processor 

 

Cache Coherency Overhead on AMD Opteron (dual core)
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Figure 2: Cache Coherency Overhead on 
AMD Opteron processor 

 

Figure 3 and Figure 4 demonstrate the results gathered 
from HPCC Stream benchmark on the UltraSPARC T1 
processor and the AMD Opteron processor respectively. 
The figures include all different cases provided in the 
Stream benchmark by modifying the original 
implementation according to our needs using POSIX 
threads library. Although the original Stream benchmark is 
based on floating point computations the following results 
are based on integer operations. The reason for this change 
is to avoid any performance degrade that might have 
occurred due to the one floating point unit (FPU) for six 
cores on the UltraSparcT1 chip. In figure 3, we see a nice 
scaling up to 24 threads for the copy operation which 
actually is the physical limit since we have six cores and 
four threads per core. Scale and add operations also scale 
up to 24 threads but in a slower fashion resulting almost 
the half bandwidth compared to the copy operation. 
However, the triad operation which is a combination of 
both scaling and addition operations scales only up to 6 
threads. The reason behind this behavior is most likely 
based on the performance of the Modular Arithmetic Unit 
(MAU) on the UltraSparcT1 chip where there is one MAU 
per core. Since copy operation is not affected by this unit it 
results in a bigger bandwidth but the scale, add and triad 
operations are directly affected from the capabilities of 
these units.  Figure 4 represents consistent trend between 
different operations. It is easy to understand the physical 
limit of the system considering the curves scale up to 2 
threads and start hanging in a steady state after that.  
 

Stream Results on UltraSparcT1
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Figure 3: Memory Bandwidth Results on 
UltraSPARC T1 processor 

 
 



Stream Results on AMD Opteron
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Figure 4: Memory Bandwidth Results on 
AMD Opteron dual core processor 

 
Switching to the RandomAccess scheme from Stream, we 
used the dual core dual processor AMD Opteron and the 
same UltraSPARC T1 processor. Figure 5 illustrates the 
results for UltraSPARC T1 processor which actually 
presents a different result compared to the earlier analysis 
provided on Figure 1. In fact, this difference comes from 
the difference between Stream and RandomAccess 
benchmarking tests. RandomAccess provides its results in 
terms of Giga updates per Second (GUPS), which is a 
measurement that profiles the memory architecture of a 
system. UltraSPARC T1 processor used in our 
experiments has 6 cores and accordingly 12 memory 
banks which makes the actual physical limit for 
RandomAccess scheme. Figure 5 shows this limit and the 
actual GUPS values obtained on this processor. Figure 6 
represents a clear indication of the physical limit in the 
test bed utilized which includes a dual core/dual processor 
(total of 4 processing cores) AMD Opteron processor as 
well as the GUPS values from this system.  
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Figure 5: Memory Bandwidth analysis on 
UltraSPARC T1 processor using 
RandomAccess scheme 

 

Random Access - Memory Bandwidth on 
AMD Opteron (dual core)
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Figure 6: Memory Bandwidth analysis on 
AMD Opteron processor (dual core/dual 
processor) using RandomAccess scheme 

 
Figure 7 and Figure 8 were also obtained from a similar 
test bed and the same test case which further shows the 
same indications as Figure 5 and Figure 6. However, these 
figures also present results for another performance metric 
which is the latency observed from the cores to the main 
memory. 
 

Memory Read/Write Latency - RA - UltraSparc T1
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Figure 7: Memory Read/Write Latency on 
UltraSPARC T1 processor 

 

Memory Read/Write Latency on AMD Opteron
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Figure 8: Memory Read/Write Latency on 
AMD Opteron dual core/dual processor 

 



Furthermore, Figure 9 and Figure 10 demonstrate the 
memory contention experiments on both of these systems. 
In both of the figures, the y-axis represents the values for 
the metric that was stated earlier in Table 1 which is the 
percentage of memory contention between the cores while 
accessing the main memory.  
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Figure 9: Memory Contention analysis on 
UltraSPARC T1 processor 

 

Memory Contention - AMD Opteron
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Figure 10: Memory Contention analysis on 
AMD Opteron processor 

 
Finally, in addition to all the aspects and sub-features 

described in section 2 we used one application benchmark 
called “FFTW” in our benchmarking suite to further test 
these architectures for different type of workloads. Figure 
11 represents the FFTW results on UltraSPARC T1 
processor. It is not fair to compare these results with the 
ones from AMD Opteron as shown in Figure 12, since 
FFTW application is heavily based on floating point 
arithmetic and UltraSPARC T1 processor has only a 
single Floating Point Unit (FPU) for the whole chip, in 
other words all 6 cores and 24 hardware strands are using 
the same FPU. However, these values give us a better 
understanding of the FPU on the UltraSPARC T1 
processor as it provides scalability up the number of cores 
as it is shown in Figure 11. On the other hand, Figure 12 
represents the same experimental analysis on the AMD 

Opteron processor in which each core has its own 
dedicated FPU.  
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Figure 11: FFTW on UltraSPARC T1 
processor 

 
FFTW on AMD Opteron
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Figure 12: FFTW on AMD Opteron processor 

 
4. Conclusion and Future Remarks 
 

We presented a benchmarking methodology including 
some multi-core specific performance metrics as well as 
test cases for the emerging multi-core systems. As we see 
more and more of these multi-core systems are provided 
from the processor vendors, also considering the fact that 
the tendency of putting more processing cores inside a 
single chip grows it is crucial to understand the advantages 
and challenges come up with these systems. This study was 
intended as a case study to provide such information 
covering different features and layers of multi-core 
systems. Experimental analysis was conducted on the 
UltraSPARC T1 (six cores) and the AMD Opteron (dual 
core) processors as a proof of concept. The findings and 
observations from test cases were presented to give a better 
understanding of the multi-core systems in general. As a 
future study, utilizing hardware counters in the 
benchmarking suite might give a better understanding of 
the results and lead to more findings. Also as an extension 
to this study, in order to exploit the software aspect like the 
operating system (OS), we are planning to use a light-



weight OS maybe just a scheduler to measure the OS 
overhead and efficiency while running jobs in these multi-
core systems. 
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