
Detecting Runtime Environment Interference with Parallel Application Behavior

Rashawn L. Knapp1, Karen L. Karavanic1, and Douglas M. Pase2

1Portland State University

Department of Computer Science
P.O. Box 751

Portland, OR 97207-0751
{knappr, karavan}@cs.pdx.edu

2IBM System x HPC Portfolio Development
P.O. Box 12195, Dept. E1WA/205/EE154

3039 Cornwallis Rd.
Research Triangle Park, NC 27709-2195

pase@us.ibm.com

Abstract

Many performance problems observed in high end

systems are actually caused by the runtime system and not

the application code. Detecting these cases will require

parallel performance tools to incorporate information

about the runtime system; however many current tools do

not. We present a test suite for evaluating the ability of

performance tools to reach a correct diagnosis in cases

where a problem is caused by the runtime environment.

We include a set of results for one of the tests, which

measures application performance as NFS server load is

increased. We also present a model for performance

diagnosis that combines system and application level

information.

1. Introduction

 Developing high end applications requires solving a
wide range of challenges: hardware issues of power and
speed; shortcomings of commodity operating systems;
developing libraries that scale up to computation and
communication across hundreds or thousands of
processors; and of course, development of algorithms to
simulate complex real world systems. Many of today’s
high performance systems use a combination of shared
memory and distributed memory, in which each node
comprises several processors and a shared memory, and a
collection of nodes are interconnected via a
communication network. Only applications that are
considered important enough for such resources, and
complex enough to need them, are developed for these
platforms, and this drives the need for manageable and

1-4244-0910-1/07/$20.00 ©2007 IEEE

accurate performance analysis of applications as they are
developed, improved, ported, and scaled. There are
notable difficulties for conducting performance analysis in
high end computing. There are challenges due to factors of
scale, including system size, application size, and the large
volumes of analysis data. Performance analysis often
involves the use of several tools and many manual steps,
both of which add delay to the performance analysis
process. Even for a simple application, it would be
extremely difficult to conduct a performance analysis study
using only manual methods. At most, one might be able to
gather wall-clock timing information; and this would be at
the granularity of the stop watch used, a granularity much
coarser than that of the computing system. Therefore, fast
and accurate analysis requires automated or semi-
automated performance tools.
 Many causes of poor application performance are
actually found in the other layers of the runtime system:
hardware, the network/interconnect, the operating system,
or third-party library code. For example, Tsafrir
characterizes interference from the systems software stack
as “an increasingly important factor in parallel cluster
applications.”[1] Hensbergen states “The impact of this
so-called ‘OS noise’ creates problems synchronizing
barriers across large clusters and creates efficiency
problems along with low-utilization of system
resources.”[2] However, the tools used to diagnose
parallel application performance do not include analysis
about the status and behavior of the runtime environment.
They are only able to report the causes of poor
performance in terms of the application. This makes
performance problems related to the runtime system much
more difficult to detect, and greatly increases the time to
reach a correct diagnosis.
 One category of possible interference scenarios is poor
or unexpected system software behavior. An example
comes from a recent study of trace tool performance [3].
Measurements were collected for executions of SMG2000,

an ASC Purple benchmark, on MCR, a Linux cluster at
Lawrence Livermore National Laboratory (LLNL)
running the CHAOS operating system and the Lustre
parallel file system. The researchers were surprised to
discover that execution times for experiments with large
trace buffers were greater than execution times for
experiments with small trace buffers. After several weeks
of testing, the researchers obtained unexpected results
from an experiment set: the large buffer executions
performed better than the small buffer executions, as
originally expected. All experiment data had been stored
with PerfTrack [4], an experiment management system
that automatically collects information about execution
environments. The PerfTrack data showed that the
operating system and file system had been upgraded. The
researchers concluded that the file system was the likely
cause of the initial poor performance.
 The research literature includes several examples of
problems caused by a mismatch between normal
operating system behavior and the common structure of
parallel applications [5, 6, 7, 8]. One illustrative example
involves ASCI Q, a 2,048-node high performance
computer at Los Alamos National Laboratory
(LANL) [6]. At the time of ASCI Q’s initial deployment,
an analytical model was used to predict the application’s
execution time using the data from previous runs on other
platforms and hardware measurement data. The first runs
of the application on the full system performed much
worse than predicted; at 4096 processors, the time to
completion of one application cycle was twice the
predicted value. The model was accurate if one to three
processors per node were utilized, and quite inaccurate for
runs using all four processors. Each cycle in the
application was configured to perform a consistent
amount of work, and so the expectation was that each
executed cycle would complete in the same amount of
time; however, the results showed high variance.
Synthetic benchmarks showed that in each 32-node
cluster of ASCI Q, nodes 0, 1, and 31 showed consistently
longer execution times than the other nodes. Ultimately, it
was determined that system activities were causing
application processes to be switched out on some nodes
and not others, causing those nodes to lag behind due to
context switch overhead.
 Our goal is to develop diagnostic techniques for
automated performance tools that incorporate
measurements and knowledge of the runtime
environment. This paper describes two initial steps
towards this goal: development of a test suite, and a
model for automated diagnosis. We have designed a test
suite for characterizing the ability of existing performance
tools to detect performance problems rooted in the
runtime system; we include a full set of experimental
results for one test from this suite. Then we describe a

model for combining measurable metrics to reach accurate
diagnoses related to runtime system interference.

2. Related Work

 We are not aware of any existing techniques for
automated diagnosis of parallel applications that take into
account problems originating outside of the application.
 A number of tools support collecting measurement data
related to both application performance and system related
metrics. Often this is done by the inclusion of hardware
counter data in traces (Vampir [9], SCALEA [10],
PerfSuite [11], and TAU [12]) or by user-defined metrics
(IPS-2 [13] and Paradyn [14]). Several tools integrate
system metrics more directly. SCALEA-G [15] is a system
monitoring and performance analysis package designed for
Grid applications that provides integrated visualizations of
application and system level analysis results. Active
Harmony [16] performs automatic runtime adaptation of
applications and workloads in parallel and distributed
computing environments. Active Harmony considers the
application and the resources utilized by the application as
tunable parameters of the execution environment.
Continuous Program Optimization (CPO) combined with
vertical profiling [17, 18] involves cyclic phases of
monitoring and optimization. In the monitoring phase,
data collected across system layers is analyzed. In the
optimization phase, the analysis is used to improve
application performance by adapting an application to its
execution environment and/or changing aspects of
execution environment. The monitoring facility is
presented as a vertical set of layers; this is similar to the
notion of layers presented in this work. The CPO research,
to date, focuses on dual processor workstations and does
not extend to high end systems.
 Paradyn [14, 19] conducts online performance analysis
of parallel applications. The search strategy for identifying
performance bottlenecks, as implemented by the Paradyn
Performance Consultant, incorporates a top-down approach
of testing hypotheses. If a high-level hypothesis evaluates
to true then subsequent hypotheses along that branch of
inquiry will be tested; and, conversely, while a hypothesis
is not true, lower-level hypotheses are not tested. In this
manner, the search forms a directed acyclic graph, where a
child node is only investigated if its parent hypothesis has
evaluated to true. Since evaluation always causes
additional instrumentation of the running application, this
method bounds instrumentation overhead and perturbation
by substantially reducing the search space. Paradyn may
run into an instrumentation cost limit before the bottleneck
search has been sufficiently refined. When this
predetermined limit is reached, further downward
searching is halted, presenting diagnostic results which
may be too general for correctly identifying the cause of a
performance problem. In our model for determining a

correct diagnosis, we propose a bottom-up approach
where low-level tests trigger the testing of more complex
diagnoses. We also incorporate a flexible and dynamic
scheme for assigning priorities to diagnoses that allows us
to specify the order of evaluation for diagnoses.

3. A Test Suite for Performance Diagnosis
Tools

 To survey current tool capabilities, we have developed
a test suite for parallel performance tools. Our specific
goal was to measure each tool’s ability to determine
causes of poor application performance. The framework
for our test suite includes a set of four layers
encompassing all aspects of a running application:
application, library, operating system, and physical. Each
test simulates or creates a condition existing in a
particular layer that will negatively affect application
performance. The results are interpreted by comparing
the diagnosis reported by the tool to the real diagnosis.
To fully pass a test, a tool must correctly identify the root
cause layer and correctly identify at least one condition
within the layer responsible for the performance problem.
In the remainder of this section we briefly describe the
individual tests.
 The Naive Broadcast Test. The Naive Broadcast Test
is designed to simulate performance problems originating
in the application. This test is included in the suite to
check a tool’s ability to distinguish application level and
system level problems. For these kinds of problems the
most reasonable approach to optimize the application
performance is by directly modifying the application
source code. The test uses an MPI application in which
one sending process uses a point to point communications
operation to send the same message content to every other
participating MPI process, rather than using the collective

operation MPI_Bcast. To pass this test, a tool must

identify the application layer as the layer containing the

root cause and identify that the MPI_Send could

potentially be replaced by MPI_Bcast.
 The MPI Library Bottleneck Test. The MPI Library
Bottleneck test is designed to simulate performance
problems originating in the Library Layer. This test
involves running an MPI application that uses the

MPI_Allreduce operation, linked to a modified profiling

library with extra wait time inserted before the call to the

MPI_Allreduce code. To pass this test, the tool must
identify the library layer as the layer containing the root

cause and identify that the MPI_Allreduce function is a
costly function.
 The NFS Server Test. The NFS Server Test is
designed to simulate performance problems in the
Operating Systems Layer. This experiment creates a
scenario where an NFS server receives a high number of

requests for the same file from various clients. In this test
one machine that is separate from the application’s cluster
is designated as the NFS server. An MPI application is
configured to run on one node in the cluster, and it does a
series of file reads on a single file. Two other processes on
separate nodes perform repeated writes to the same file that
the MPI application is trying to read. To fully pass this
test, the tool must identify the operating system layer as the
layer containing the root cause and identify that the
problem is file contention.
 The Memory Difference Test. The Memory Difference
Test is designed to simulate performance problems
originating in the physical layer. This experiment requires
a physical environment where one node in a cluster has
less memory than the other nodes, or a simulation of such
an environment via software. Other than the memory
difference, the nodes are homogeneous. An MPI
application is run on a set of nodes that includes the node
with less memory, with one process assigned to each node.
The application is constructed so that every MPI process
does the same set of memory intensive tasks. The process
assigned to the node with less memory takes longer to
complete its work than the other processes. To pass this
test, the tool must identify the physical layer as the layer
containing the root cause and identify performance is
constrained by the size of memory available on one of the
participating nodes.
 The Interconnect Test. The Interconnect Test is
designed to simulate performance problems originating in
the Physical, Library, or Operating System Layer. The
experiment measures the performance of a communication
intensive MPI application when available bandwidth is far
below the theoretical capacity. In this test a very large
message is passed back and forth between two processes

running on separate nodes, using the blocking MPI_Send

and MPI_Recv communication methods. Available

network bandwidth for the participating processes is
reduced by generating extra traffic on the links between the
two nodes. To pass this test, the tool must identify the
interconnect bandwidth as the root cause, and point to the
particular cause for the bandwidth reduction.

4. Experimental Results

 In this section we show results for the NFS Server Test
from the test suite. For this experiment we constructed two
environments: a normal environment, representing a
baseline environment for application performance; and a
suboptimal environment, in which some aspect of the
normal environment was purposefully changed to affect
application performance. Our goal was to determine the
extent to which application based methods could correctly
diagnose the root cause of the observed performance
degradation in the suboptimal environment. We analyzed
application performance using application level timing

routines, MPI profiling, and event tracing. The profiles
and traces were collected with TAU [20], and we used
ParaProf [20] and Vampir to visualize the profile and
trace data.
 We designed an MPI application in which the master,
or rank zero process, reads a file and stores a work value
based on the file contents. The time spent by the master

in this I/O stage is measured using MPI_Wtime. The
master assigns work to each of the participating MPI

processes through MPI_Bcast. As a collective operation,
all processes call this function: the master sends the work
value to all worker processes, and each worker process,
before returning from the function call, receives a work
value. In the final phase, the application’s work is
performed by each of the participating processes. Each
process knows how much work to perform based on the
received work value. In addition to timing the I/O phase
of rank zero, the execution time for all processes is

measured using MPI_Wtime. These simple timing
constructs were coded into the MPI application, and the
same executable was used for all executions in both
environments. LAM/MPI 7.0.6 [21] was the
implementation of MPI used in this experiment.
 All experiments were conducted on an eight node
Linux cluster (See Figure 1). Each node was running
kernel version 2.6.15-26-686 and was configured with a
3.2 GHz Intel Pentium 4 hyper-threaded CPU, 1 GB of
memory, and one network interface card capable of 100
Mbps transmission. Each node was directly connected to
a central switch. We designated one of the machines as an
NFS server, four machines for the MPI application, and
the remaining three for unrelated processes in the
suboptimal environment. The MPI application was always
executed with four processes on the same four machines,

and the master process was always launched on the same
machine. In the suboptimal environment processes issued
frequent update requests to the NFS server for the file
required by the MPI application.
 We captured a baseline for the normal environment by
executing 30 trials of the MPI application under three
settings: without additional instrumentation, with profiling
instrumentation, and with tracing instrumentation. In each
setting, there was very little variation in execution wall-
clock time among the trials, and there was negligible
variation among the processes in a single trial.
Additionally, rank zero’s I/O times were consistent across
the execution set. We collected similar measurements for
the application in the suboptimal environment, under the
three settings described above. In the suboptimal
environment there was noticeable variation in total
execution times, such that the total execution time for some
executions was much greater than what was observed for
the well-behaved executions. There was also variation in
rank zero’s I/O time. In Table 1 we summarize this data
for the master process in the normal and suboptimal
environments. The presented measurements are reported
in seconds and were obtained from the execution sets that
did not include additional instrumentation. We see large
differences between the normal and suboptimal
environments for the maximum, average, and variance
values for wall-clock time and I/O time. Although these
simple timing constructs identify the existence of a
performance problem in the suboptimal environment, they
are not sufficient for determining the root cause.
 We analyzed the TAU profiling data in the two
environments. Figure 2 contains two ParaProf screenshots
showing the dominating functions in each environment. In
the normal environment main is the dominating function

Figure 1. General and Experimental Scenarios. The left figure shows the typical scenario as it
would be found in practice: several applications are running and accessing the same NFS server,
from different machines. The middle and right figures show the experimental environments used
to model the key characteristics of the real scenario, with the optimal environment in the middle
and the suboptimal environment on the right.

Table 1: Execution and I/O Times for Master
Process

Wall-Clock I/O

Normal Sub-

optimal

Normal Sub-

optimal

Min. 11.30 11.27 0.00038 0.00036

Max. 12.05 41.28 0.00096 30.00

Avg. 11.48 14.71 0.00051 3.43

Var. 0.03 73.15 <0.000001 73.14

for all processes, and the MPI functions are negligible.
This is contrasted against the suboptimal environment in
which ranks one through three are dominated by time

spent in MPI_Bcast and the master process is dominated

by time spent in main.

 We then analyzed the TAU trace data. The left side of
Figure 3 shows a screenshot of a Vampir timeline for a
representative poor performing execution in the

suboptimal environment. We see that MPI_Bcast is the
dominating function for three processes and that these
processes have matching intervals for MPI activities.
Conversely, the master process is dominated by main and
its MPI activities do not register at this scale. The second
screenshot examines this timeline at a finer granularity.
In this view, we see that the Master process does not

begin execution of its call to MPI_Bcast, until 22.329

seconds into the overall execution. Knowing that the
master process is responsible for placing data into the
broadcast buffer, we readily see that the other processes
are waiting for most of the time that they spend in

MPI_Bcast.

 We conclude that it is difficult to determine the root
cause of the performance variability in the suboptimal
environment using only techniques available in application
based performance tools. In this experiment, the
performance problems were caused by processes which
were not part of the MPI set of processes and were
executing on machines outside the scope of the executing
MPI application. This type of situation presents a
challenge to application based performance tools, as these
tools are not designed to simultaneously track application
events and events in the rest of the runtime environment.
The types of additional data that would be of use in this
problem scenario would capture the activities of the shared
NFS server resource in relation to the MPI application’s
activities.

5. A Model for Automated Diagnosis

 Detecting runtime interference with parallel application
behavior will require online application monitoring to
collect a combination of system and application level
metrics. Due to hardware limitations and perturbation
caused by unbounded software instrumentation, it is
impossible to collect all possible performance data at all
times. In this section we describe our model for
determining a correct diagnosis.
 Our model for automated diagnosis incorporates
metrics, expectations, diagnoses, and triggers. Each high
level condition or behavior is a diagnosis. Each diagnosis
is either a comparison of a metric and an expectation or it

Figure 2. ParaProf Screenshots of TAU Profile Data for the NFS Server Test.
The screenshots show the exclusive time for the dominating functions for
each MPI process, for the normal environment (top) and the suboptimal
environment (bottom).

Figure 3. Vampir Timeline Screenshots of TAU Trace Data for the NFS Server Test for an
Execution in the Suboptimal Environment. In the left screenshot, it is evident that the processes
on nodes 1, 2, and 3 spend more than half of their execution time in MPI_Bcast, while the MPI
activities of the process on node 0 (the master) barely register at this scale. On the right, a
zoomed in view of the timeline displays a granularity in which the MPI_Bcast execution time for the
master process can be visualized, showing that the master process does not execute its MPI_Bcast
function until 22.329 seconds into the overall execution.

is a logical combination of diagnoses. A metric is any
measurable value. An expectation is a particular value for
a metric, used as a threshold in evaluating possible
diagnoses. Note that each diagnosis may have more than
one definition; a diagnosis is correct if any one of its valid
definitions is true. Each diagnosis may be assigned a
priority. A trigger is a unidirectional link from a base
diagnosis to a target diagnosis. When a base diagnosis is
true the trigger is active, and when the base diagnosis is
false or has not been tested the trigger is inactive. When a
trigger becomes active, its target diagnosis is placed on an
evaluation queue.
 Given the search space formed by all possible
diagnoses, exhaustive search is not practical for reasons
of scalability and perturbation. A key challenge to
automated performance diagnosis is to develop an
algorithm for ordering traversal of the search space, on
the assumption that most of the measurements in the fully
expanded space will never be made. Our approach is to
navigate the search space in priority order, where
priorities are assigned to diagnoses.
 In the remainder of this section we present an
illustrative example which corresponds to the NFS Server
Test scenario. The definitions for the diagnoses used in
this scenario are shown in Table 2. NFSs_Bottleneck
represents the file server contention present in the
suboptimal environment in the NFS Server Test. This
diagnosis is assessed as true based on the values of three

other diagnoses, each of which is defined as a combination
of diagnoses or as a combination of metrics and
expectations (see Table 3). The diagnosis of
App_LowReadRate exists when the time required for
accomplishing an application read operation exceeds an
expectation for how long it should take. By evaluating the
number of bytes read in relation to the length of time
required to accomplish the reading task, an application
read rate can be established. If this rate is less than the
expectation for minReadRate, then the application is
diagnosed as having a low read rate.
NFSc_HighReadReqCount, the second diagnosis in the
top level composition, indicates that the number of NFS
client read requests is high compared to the actual number
of bytes read by the application. This diagnosis is a
combination of two diagnoses: NFSc_LowReadRate and
NFSc_ReadCount. NFSc_LowReadRate is evaluated by
comparing the number of bytes read per client read request
to a specified expectation for the minimum number of
bytes read per NFS client read request. The assessment for
NFSc_ReadCount tests if the number of read requests,
issued by an NFS client over an interval of time, is greater
than one. The NFS client has a high read request count if
both NFSc_LowReadRate and NFSc_ReadCount evaluate
to true. NFSs_HighServerReqToClientReqs is the third
diagnosis contained in the top level definition, and it
indicates that the ratio of the number of requests served by
an NFS server to the number of requests made by a

specific NFS client is high. In the simple case, where
only one client interacts with an NFS server, we expect
this ratio to be close to one; and this would indicate that
the server is responding to the client’s requests. In the
general case, where the server interacts with multiple
clients, this ratio will be greater than one; and if it exceeds
some expectation we know that the ratio of server
requests to client requests is high.
 Continuing this example, we now illustrate the use of
triggers and a priority scheme. The priorites used in this
example are shown in Table 2. We represent priorities as
numeric values, where lower numbers have higher

priority. In Table 4 we list the triggers, and in this
example we have two triggers. We have assigned a
priority of one to App_LowReadRate, and we have
assigned all the other diagnoses a priority of two. We
assume App_LowReadRate is the first diagnosis

considered, If eminReadRat<teApp_readRa , the target

diagnosis NFSc_HighReadReqCount would be placed on
the evaluation queue. By definition, it is evaluated by
NFSc_LowReadRate and NFSc_ReadCount. If both are
true, the diagnosis NFSc_HighReadReqCount would
change to true and the trigger pointing to

NFSs_HighServerReqsToClientReqs would become
active, causing this diagnosis to be placed on the
evaluation queue. If this diagnosis evaluates to true, then
the diagnosis for NFSs_Bottleneck would evaluate to true.
In this example, we start with App_LowReadRate, so that
the limited resources available for monitoring and
conducting online diagnosis are allocated efficiently,
delaying tests for diagnoses related to NFS server
performance problems if an application is not exhibiting a
related symptom.

6. Conclusions

 A large number of published and anecdotal examples
describe instances of communications libraries, the
Operating System, and hardware preventing well-
developed parallel applications from achieving good
performance in practice. This problem is exacerbated by
the inability of most parallel performance tools to detect
and report these root causes. Analysts tuning applications
must try a number of different tools and approaches to
determine the true cause for performance that does not
meet expectations. Traditional performance analysis tools

Table 2: Diagnosis Definitions and Priorities for the NFS Server Test Example

Diagnosis Definition Priority

NFSs_Bottleneck

soClientReqerverReqsTNFSs_HighS

teadReqCounNFSc_HighRdRateApp_LowRea ∧∧

2

App_LowReadRate eminReadRat<teApp_readRa 1

NFSc_HighReadReqCount ountNFSc_ReadCadRateNFSc_LowRe ∧ 2

NFSc_LowReadRate eqadPerReadRminBytesRe<ReadReqtesReadPerAppNFSc_by 2

NFSc_ReadCount 1>tountNFSc_readC 2

NFSs_HighServerReqsToClientReqs RatemaxNFSsReq>teNFSs_reqRa 2

Table 3: Metrics and Expectations for the NFS Server Test Example

Metric Definition

App_readRate The number of bytes read per second by an application

App_bytesReadt The total number of bytes read by an application over an interval of time, t

NFSc_readCountt Total number of client read requests issued over an interval of time, t

AppNFSc_bytesReadPerReadReq

t

t

ountNFSc_readC

eadApp_bytesR

NFSs_reqRate The number of requests received by an NFS server per second

Expectation Definition

minReadRate A minimum value for the number of bytes that should be read per second

minBytesReadPerReadReq A minimum number of bytes that should be read per client read request

maxNFSsReqRate A maximum number of requests a NFS server can handle per second

Table 4. Triggers for the NFS Server Test Example

Base Diagnosis Target Diagnosis

App_LowReadRate NFSc_HighReadReqCount

NFSs_HighReadReqCount NFSs_HighServerReqsToClientReqs

are unable to provide adequate guidance to analysts in
determining the causes of performance problems rooted in
the runtime environment.
 We are developing a new approach for performance
analysis called Environment Aware Performance
Analysis. This approach seeks to identify root causes of
observed performance in a selected set of common
scenarios. Environment Aware Performance Analysis
combines analysis of an application’s execution behavior
with analysis of the runtime environment, resulting in a
more accurate performance diagnosis.

References

1. D. Tsafrir, Y. Etsion, et al. System noise, OS clock ticks,
and fine-grained parallel applications. In Proceedings of the

19th Annual International Conference on Supercomputing

(ICS ’05), pages 303-312, Jun. 2005.
2. E. Van Hensbergen. The effect of virtualization on OS

interference. In Proceedings of the First Workshop on

Operating System Interference in High Performance

Applications (PACT ’05), Sep. 2005.
3. K. Mohror and K.L. Karavanic, A study of tracing overhead

on a high-performance Linux cluster. Portland State
University , Computer Science Dept., Portland, OR, Tech.

Rep. TR-06-06, Dec. 2006.
4. K. L. Karavanic, J. May, K. Mohror, B. Miller, K. Huck, R.

Knapp, and B. Pugh. Integrating database technology with
comparison-based parallel performance diagnosis: the

PerfTrack performance experiment management tool. In
Proceedings of the 2005 ACM/IEEE Conference on

Supercomputing (SC ’05), Nov. 2005.
5. T. R. Jones, L. B. Brenner, and J. M. Fier. Impacts of

operating systems on the scalability of parallel applications.
Lawrence Livermore National Laboratory, Livermore, CA.,
Tech. Rep. UCRL-MI-202629, 2003.

6. F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the

missing supercomputer performance: achieving optimal
performance on the 8,192 processors of ASCI Q. In
Proceedings of the 2003 ACM/IEEE Conference on

Supercomputing (SC ‘03), Nov. 2003.
7. J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé. NAMD:

biomolecular simulation on thousands of processors. In
Proceedings of the 2002 ACM/IEEE Conference on

Supercomputing (SC ‘02), Nov. 2002.

8. L. V. Kale, S. Kumar, G. Zheng, and C. W. Lee. Scaling
molecular dynamics to 3000 processors with projections: a
performance analysis case study. In Proceedings of the
Terascale Performance Analysis Workshop, International

Conference on Computational Science (ICCS ‘03), Jun.
2003, pages 25-32.

9. H. Brunst, D. Kranzlmüller, and W. E. Nagel. Tools for
scalable parallel program analysis - Vampir VNG and

DeWiz. In Distributed and Parallel Systems: Cluster and
Grid Computing, Vol. 777, Z. Juhasz, P. Kacsuk and D.
Kranzlmüller, Eds. New York: Springer Kluwer
International Series in Engineering and Computer Science,

2004, pages 93-102.

10. H-L. Truong, T. Fahringer, G. Madsen, A. D. Malony, H.
Moritsch, and S. Shende. On using SCALEA for performance
analysis of distributed and parallel programs. In Proceedings

of the 2001 ACM/IEEE Conference on Supercomputing (SC

‘01), Nov. 2001.
11. R. Kufrin. PerfSuite: An accessible, open source performance

analysis environment for Linux. In 6th International

Conference on Linux Clusters: The HPC Revolution 2005.
Apr. 2005.

12. S. Shende and A. D. Malony. The TAU parallel performance
system. International Journal of High Performance

Computing Applications, vol. 20, no. 2, 2006.
13. B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S.-S.

Lim, and T. Torzewski. IPS-2: The second generation of a
parallel program measurement system. IEEE Transactions on

Parallel and Distributed Systems, vol. 1, no. 2, pages 206-
217, Apr. 1990.

14. B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K.
Kunchithapadam, and T. Newhall. The Paradyn parallel
performance measurement tool. IEEE Computer, vol. 28, no.

11, pages 37-46, Nov. 1995.
15. H.-L. Truong and T. Fahringer. SCALEA-G: A unified

monitoring and performance analysis system for the grid.
Scientific Programming, vol. 12, no. 4, pages 225-237, 2004.

16. J. K. Hollingsworth and P. J. Keleher. Prediction and
adaptation in Active Harmony. In Proceedings of the Seventh
IEEE International Symposium on High Performance

Distributed Computing(HPDC-7 ’98), pages 180-188, Jul.
1998.

17. C. Cascaval, E. Dusterwald, P. F. Sweeney, and R. W.
Wisniewski. Performance and environment monitoring for

continuous program optimization. IBM Journal of Research

and Development, vol. 50, no. 2-3, pages 239-247, Mar./May
2006.

18. R. W. Wisniewski, et al. Performance and environment
monitoring for whole-system characterization and

optimization. PAC2 Conference on Power/Performance

Interaction with Architecture, Circuits, and Compilers, Oct.
2004.

19. H. W. Cain, B. P. Miller, and B. J. N. Wylie. A callgraph-

based search strategy for automated performance diagnosis.
In Proceedings of the 6th International Euro-Par Conference
(Euro-Par ’00), Aug./Sep., 2000.

20. TAU User’s Guide, Department of Computer and Information

Science, University of Oregon, LANL, and NM Research
Centre Julich, Germany, 2005. [online]. Available:
http://www.cs.uoregon.edu/research/tau. [Accessed: Jan 15,
2006].

21. The LAM/MPI Team, LAM/MPI User’s Guide, Version 7.0.6,
Pervasive Technology Labs, Indiana University, 2004.
[online]. Available: http://www.lam-mpi.org. [Accessed:
Mar. 17, 2006].

