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Abstract 

 
Many performance problems observed in high end 

systems are actually caused by the runtime system and not 

the application code. Detecting these cases will require 

parallel performance tools to incorporate information 

about the runtime system; however many current tools do 

not.  We present a test suite for evaluating the ability of 

performance tools to reach a correct diagnosis in cases 

where a problem is caused by the runtime environment.  

We include a set of results for one of the tests, which 

measures application performance as NFS server load is 

increased.  We also present a model for performance 

diagnosis that combines system and application level 

information. 

 

 

1. Introduction     

 Developing high end applications requires solving a 
wide range of challenges:  hardware issues of power and 
speed; shortcomings of commodity operating systems; 
developing libraries that scale up to computation and 
communication across hundreds or thousands of 
processors; and of course, development of algorithms to 
simulate complex real world systems. Many of today’s 
high performance systems use a combination of shared 
memory and distributed memory, in which each node 
comprises several processors and a shared memory, and a 
collection of nodes are interconnected via a 
communication network.  Only applications that are 
considered important enough for such resources, and 
complex enough to need them, are developed for these 
platforms, and this drives the need for manageable and 
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accurate performance analysis of applications as they are 
developed, improved, ported, and scaled.  There are 
notable difficulties for conducting performance analysis in 
high end computing.  There are challenges due to factors of 
scale, including system size, application size, and the large 
volumes of analysis data.  Performance analysis often 
involves the use of several tools and many manual steps, 
both of which add delay to the performance analysis 
process. Even for a simple application, it would be 
extremely difficult to conduct a performance analysis study 
using only manual methods.  At most, one might be able to 
gather wall-clock timing information; and this would be at 
the granularity of the stop watch used, a granularity much 
coarser than that of the computing system.  Therefore, fast 
and accurate analysis requires automated or semi-
automated performance tools. 
 Many causes of poor application performance are 
actually found in the other layers of the runtime system:  
hardware, the network/interconnect, the operating system, 
or third-party library code.  For example, Tsafrir 
characterizes interference from the systems software stack 
as “an increasingly important factor in parallel cluster 
applications.”[1]  Hensbergen states “The impact of this 
so-called ‘OS noise’ creates problems synchronizing 
barriers across  large clusters and creates efficiency 
problems along with low-utilization of system 
resources.”[2]  However, the tools used to diagnose 
parallel application performance do not include analysis 
about the status and behavior of the runtime environment. 
They are only able to report the causes of poor 
performance in terms of the application. This makes 
performance problems related to the runtime system much 
more difficult to detect, and greatly increases the time to 
reach a correct diagnosis. 
 One category of possible interference scenarios is poor 
or unexpected system software behavior.  An example 
comes from a recent study of trace tool performance [3].  
Measurements were collected for executions of SMG2000, 



an ASC Purple benchmark, on MCR, a Linux cluster at 
Lawrence Livermore National Laboratory (LLNL) 
running the CHAOS operating system and the Lustre 
parallel file system. The researchers were surprised to 
discover that execution times for experiments with large 
trace buffers were greater than execution times for 
experiments with small trace buffers. After several weeks 
of testing, the researchers obtained unexpected results 
from an experiment set: the large buffer executions 
performed better than the small buffer executions, as 
originally expected.  All experiment data had been stored 
with PerfTrack [4], an experiment management system 
that  automatically collects information about execution 
environments.  The PerfTrack data showed that the 
operating system and file system had been upgraded.  The 
researchers concluded that the file system was the likely 
cause of the initial poor performance. 
 The research literature includes several examples of 
problems caused by a mismatch between normal 
operating system behavior and the common structure of 
parallel applications [5, 6, 7, 8]. One illustrative example 
involves ASCI Q, a 2,048-node high performance 
computer at Los Alamos National Laboratory 
(LANL) [6]. At the time of ASCI Q’s initial deployment, 
an analytical model was used to predict the application’s 
execution time using the data from previous runs on other 
platforms and hardware measurement data.  The first runs 
of the application on the full system performed much 
worse than predicted; at 4096 processors, the time to 
completion of one application cycle was twice the 
predicted value. The model was accurate if one to three 
processors per node were utilized, and quite inaccurate for 
runs using all four processors.  Each cycle in the 
application was configured to perform a consistent 
amount of work, and so the expectation was that each 
executed cycle would complete in the same amount of 
time; however, the results showed high variance. 
Synthetic benchmarks showed that in each 32-node 
cluster of ASCI Q, nodes 0, 1, and 31 showed consistently 
longer execution times than the other nodes. Ultimately, it 
was determined that system activities were causing 
application processes to be switched out on some nodes 
and not others, causing those nodes to lag behind due to 
context switch overhead. 
 Our goal is to develop diagnostic techniques for 
automated performance tools that incorporate 
measurements and knowledge of the runtime 
environment.  This paper describes two initial steps 
towards this goal:  development of a test suite, and a 
model for automated diagnosis. We have designed a test 
suite for characterizing the ability of existing performance 
tools to detect performance problems rooted in the 
runtime system; we include a full set of experimental 
results for one test from this suite.   Then we describe a 

model for combining measurable metrics to reach accurate 
diagnoses related to runtime system interference. 

2. Related Work 

 We are not aware of any existing techniques for 
automated diagnosis of parallel applications that take into 
account problems originating outside of the application. 
 A number of tools support collecting measurement data 
related to both application performance and system related 
metrics. Often this is done by the inclusion of hardware 
counter data in traces (Vampir [9], SCALEA [10], 
PerfSuite [11], and TAU [12]) or by user-defined metrics 
(IPS-2 [13] and Paradyn [14]).  Several tools integrate 
system metrics more directly.  SCALEA-G [15] is a system 
monitoring and performance analysis package designed for 
Grid applications that provides integrated visualizations of 
application and system level analysis results.  Active 
Harmony [16] performs automatic runtime adaptation of 
applications and workloads in parallel and distributed 
computing environments. Active Harmony considers the 
application and the resources utilized by the application as 
tunable parameters of the execution environment.  
Continuous Program Optimization (CPO) combined with 
vertical profiling [17, 18] involves cyclic phases of 
monitoring and optimization.  In the monitoring phase, 
data collected across system layers is analyzed. In the 
optimization phase, the analysis is used to improve 
application performance by adapting an application to its 
execution environment and/or changing aspects of 
execution environment.  The monitoring facility is 
presented as a vertical set of layers; this is similar to the 
notion of layers presented in this work. The CPO research, 
to date, focuses on dual processor workstations and does 
not extend to high end systems. 
 Paradyn [14, 19] conducts online performance analysis 
of parallel applications.  The search strategy for identifying 
performance bottlenecks, as implemented by the Paradyn 
Performance Consultant, incorporates a top-down approach 
of testing hypotheses.  If a high-level hypothesis evaluates 
to true then subsequent hypotheses along that branch of 
inquiry will be tested; and, conversely, while a hypothesis 
is not true, lower-level hypotheses are not tested.  In this 
manner, the search forms a directed acyclic graph, where a 
child node is only investigated if its parent hypothesis has 
evaluated to true.  Since evaluation always causes 
additional instrumentation of the running application, this 
method bounds instrumentation overhead and perturbation 
by substantially reducing the search space. Paradyn may 
run into an instrumentation cost limit before the bottleneck 
search has been sufficiently refined.  When this 
predetermined limit is reached, further downward 
searching is halted, presenting diagnostic results which 
may be too general for correctly identifying the cause of a 
performance problem.  In our model for determining a 



correct diagnosis, we propose a bottom-up approach 
where low-level tests trigger the testing of more complex 
diagnoses.  We also incorporate a flexible and dynamic 
scheme for assigning priorities to diagnoses that allows us 
to specify the order of evaluation for diagnoses.   

3. A Test Suite for Performance Diagnosis 
Tools 

 To survey current tool capabilities, we have developed 
a test suite for parallel performance tools.  Our specific 
goal was to measure each tool’s ability to determine 
causes of poor application performance.  The framework 
for our test suite includes a set of four layers 
encompassing all aspects of a running application:  
application, library, operating system, and physical.  Each 
test simulates or creates a condition existing in a 
particular layer that will negatively affect application 
performance.  The results are interpreted by comparing 
the diagnosis reported by the tool to the real diagnosis.  
To fully pass a test, a tool must correctly identify the root 
cause layer and correctly identify at least one condition 
within the layer responsible for the performance problem.  
In the remainder of this section we briefly describe the 
individual tests. 
 The Naive Broadcast Test.  The Naive Broadcast Test 
is designed to simulate performance problems originating 
in the application.  This test is included in the suite to 
check a tool’s ability to distinguish application level and 
system level problems.  For these kinds of problems the 
most reasonable approach to optimize the application 
performance is by directly modifying the application 
source code.  The test uses an MPI application in which 
one sending process uses a point to point communications 
operation to send the same message content to every other 
participating MPI process, rather than using the collective 

operation MPI_Bcast.  To pass this test, a tool must 

identify the application layer as the layer containing the 

root cause and identify that the MPI_Send could 

potentially be replaced by MPI_Bcast. 
 The MPI Library Bottleneck Test.  The MPI Library 
Bottleneck test is designed to simulate performance 
problems originating in the Library Layer.  This test 
involves running an MPI application that uses the 

MPI_Allreduce operation, linked to a modified profiling 

library with extra wait time inserted  before the call to the 

MPI_Allreduce code.  To pass this test, the tool must 
identify the library layer as the layer containing the root 

cause and identify that the MPI_Allreduce function is a 
costly function. 
 The NFS Server Test.  The NFS Server Test is 
designed to simulate performance problems in the 
Operating Systems Layer.  This experiment creates a 
scenario where an NFS server receives a high number of 

requests for the same file from various clients.  In this test 
one machine that is separate from the application’s cluster 
is designated as the NFS server.  An MPI application is 
configured to run on one node in the cluster, and it does a 
series of file reads on a single file.  Two other processes on 
separate nodes perform repeated writes to the same file that 
the MPI application is trying to read.  To fully pass this 
test, the tool must identify the operating system layer as the 
layer containing the root cause and identify that the 
problem is file contention. 
 The Memory Difference Test.  The Memory Difference 
Test is designed to simulate performance problems 
originating in the physical layer.  This experiment requires 
a physical environment where one node in a cluster has 
less memory than the other nodes, or a simulation of such 
an environment via software.  Other than the memory 
difference, the nodes are homogeneous.  An MPI 
application is run on a set of nodes that includes the node 
with less memory, with one process assigned to each node.  
The application is constructed so that every MPI process 
does the same set of memory intensive tasks.  The process 
assigned to the node with less memory takes longer to 
complete its work than the other processes.  To pass this 
test, the tool must identify the physical layer as the layer 
containing the root cause and identify performance is 
constrained by the size of memory available on one of the 
participating nodes. 
 The Interconnect Test.  The Interconnect Test is 
designed to simulate performance problems originating in 
the Physical, Library, or Operating System Layer.  The 
experiment measures the performance of a communication 
intensive MPI application when available bandwidth is far 
below the theoretical capacity.  In this test a very large 
message is passed back and forth between two processes 

running on separate nodes, using the blocking MPI_Send 

and MPI_Recv communication methods.  Available 

network bandwidth for the participating processes is 
reduced by generating extra traffic on the links between the 
two nodes.  To pass this test, the tool must identify the 
interconnect bandwidth as the root cause, and point to the 
particular cause for the bandwidth reduction. 

4. Experimental Results 

 In this section we show results for the NFS Server Test 
from the test suite.  For this experiment we constructed two 
environments:  a normal environment, representing a 
baseline environment for application performance; and a 
suboptimal environment, in which some aspect of the 
normal environment was purposefully changed to affect 
application performance.  Our goal was to determine the 
extent to which application based methods could correctly 
diagnose the root cause of the observed performance 
degradation in the suboptimal environment.  We analyzed 
application performance using application level timing 



routines, MPI profiling, and event tracing. The profiles 
and traces were collected with TAU [20], and we used 
ParaProf [20] and Vampir to visualize the profile and 
trace data.  
 We designed an MPI application in which the master, 
or rank zero process, reads a file and stores a work value 
based on the file contents.  The time spent by the master 

in this I/O stage is measured using MPI_Wtime.  The 
master assigns work to each of the participating MPI 

processes through MPI_Bcast. As a collective operation, 
all processes call this function:  the master sends the work 
value to all worker processes, and each worker process, 
before returning from the function call, receives a work 
value. In the final phase, the application’s work is 
performed by each of the participating processes.  Each 
process knows how much work to perform based on the 
received work value.  In addition to timing the I/O phase 
of rank zero, the execution time for all processes is 

measured using MPI_Wtime. These simple timing 
constructs were coded into the MPI application, and the 
same executable was used for all executions in both 
environments. LAM/MPI 7.0.6 [21] was the 
implementation of MPI used in this experiment.  
 All experiments were conducted on an eight node 
Linux cluster (See Figure 1). Each node was running 
kernel version 2.6.15-26-686 and was configured with a 
3.2 GHz Intel Pentium 4 hyper-threaded CPU, 1 GB of 
memory, and one network interface card capable of 100 
Mbps transmission.  Each node was directly connected to 
a central switch. We designated one of the machines as an 
NFS server, four machines for the MPI application, and 
the remaining three for unrelated processes in the 
suboptimal environment. The MPI application was always 
executed with four processes on the same four machines, 

and the master process was always launched on the same 
machine.  In the suboptimal environment processes issued 
frequent update requests to the NFS server for the file 
required by the MPI application.  
 We captured a baseline for the normal environment by 
executing 30 trials of the MPI application under three 
settings: without additional instrumentation, with profiling 
instrumentation, and with tracing instrumentation.  In each 
setting, there was very little variation in execution wall-
clock time among the trials, and there was negligible 
variation among the processes in a single trial. 
Additionally, rank zero’s I/O times were consistent across 
the execution set.  We collected similar measurements for 
the application in the suboptimal environment, under the 
three settings described above.  In the suboptimal 
environment there was noticeable variation in total 
execution times, such that the total execution time for some 
executions was much greater than what was observed for 
the well-behaved executions.  There was also variation in 
rank zero’s I/O time.  In Table 1 we summarize this data 
for the master process in the normal and suboptimal 
environments.  The presented measurements are reported 
in seconds and were obtained from the execution sets that 
did not include additional instrumentation.  We see large 
differences between the normal and suboptimal 
environments for the maximum, average, and variance 
values for wall-clock time and I/O time. Although these 
simple timing constructs identify the existence of a 
performance problem in the suboptimal environment, they 
are not sufficient for determining the root cause. 
 We analyzed the TAU profiling data in the two 
environments. Figure 2 contains two ParaProf screenshots 
showing the dominating functions in each environment. In 
the normal environment main is the dominating function 
 
 

    

  

  

    

Figure 1.   General and Experimental Scenarios.  The left figure shows the typical scenario as it 
would be found in practice:  several applications are running and accessing the same NFS server, 
from different machines.  The middle and right figures show the experimental environments used 
to model the key characteristics of the real scenario, with the optimal environment in the middle 
and the suboptimal environment on the right. 



Table 1: Execution and I/O Times for Master 
Process 

Wall-Clock I/O  

Normal Sub-

optimal 

Normal Sub-

optimal 

Min. 11.30 11.27 0.00038 0.00036 

Max. 12.05 41.28 0.00096 30.00 

Avg. 11.48 14.71 0.00051 3.43 

Var. 0.03 73.15 <0.000001 73.14 

 
for all processes, and the MPI functions are negligible.  
This is contrasted against the suboptimal environment in 
which ranks one through three are dominated by time 

spent in MPI_Bcast and the master process is dominated 

by time spent in main.  

 We then analyzed the TAU trace data. The left side of 
Figure 3 shows a screenshot of a Vampir timeline for a 
representative poor performing execution in the 

suboptimal environment. We see that MPI_Bcast is the 
dominating function for three processes and that these 
processes have matching intervals for MPI activities. 
Conversely, the master process is dominated by main and 
its MPI activities do not register at this scale.  The second 
screenshot examines this timeline at a finer granularity.  
In this view, we see that the Master process does not 

begin execution of its call to MPI_Bcast, until 22.329 

seconds into the overall execution. Knowing that the 
master process is responsible for placing data into the 
broadcast buffer, we readily see that the other processes 
are waiting for most of the time that they spend in 

MPI_Bcast. 

 We conclude that it is difficult to determine the root 
cause of the performance variability in the suboptimal 
environment using only techniques available in application 
based performance tools.  In this experiment, the 
performance problems were caused by processes which 
were not part of the MPI set of processes and were 
executing on machines outside the scope of the executing 
MPI application.  This type of situation presents a 
challenge to application based performance tools, as these 
tools are not designed to simultaneously track application 
events and events in the rest of the runtime environment.  
The types of additional data that would be of use in this 
problem scenario would capture the activities of the shared 
NFS server resource in relation to the MPI application’s 
activities. 

5. A Model for Automated Diagnosis 

 Detecting runtime interference with parallel application 
behavior will require online application monitoring to 
collect a combination of system and application level 
metrics. Due to hardware limitations and perturbation 
caused by unbounded software instrumentation, it is 
impossible to collect all possible performance data at all 
times. In this section we describe our model for 
determining a correct diagnosis. 
 Our model for automated diagnosis incorporates 
metrics, expectations, diagnoses, and triggers. Each high 
level condition or behavior is a diagnosis.  Each diagnosis 
is either a comparison of a metric and an expectation or it 

  

 

 

Figure 2.   ParaProf Screenshots of TAU Profile Data for the NFS Server Test.  
The screenshots show the exclusive time for the dominating functions for 
each MPI process, for the normal  environment (top) and the suboptimal 
environment (bottom). 



 

  

Figure 3.  Vampir Timeline Screenshots of TAU Trace Data for the NFS Server Test for an 
Execution in the Suboptimal Environment. In the left screenshot, it is evident that the processes 
on nodes 1, 2, and 3 spend more than half of their execution time in MPI_Bcast, while the MPI 
activities of the process on node 0 (the master) barely register at this scale.  On the right, a 
zoomed in view of the timeline displays a granularity in which the MPI_Bcast execution time for the 
master process can be visualized, showing that the master process does not execute its MPI_Bcast 
function until 22.329 seconds into the overall execution. 

 
 
is a logical combination of diagnoses.  A metric is any 
measurable value.  An expectation is a particular value for 
a metric, used as a threshold in evaluating possible 
diagnoses.  Note that each diagnosis may have more than 
one definition; a diagnosis is correct if any one of its valid 
definitions is true.  Each diagnosis may be assigned a 
priority.  A trigger is a unidirectional link from a base 
diagnosis to a target diagnosis. When a base diagnosis is 
true the trigger is active, and when the base diagnosis is 
false or has not been tested the trigger is inactive.  When a 
trigger becomes active, its target diagnosis is placed on an 
evaluation queue. 
 Given the search space formed by all possible 
diagnoses, exhaustive search is not practical for reasons 
of scalability and perturbation. A key challenge to 
automated performance diagnosis is to develop an 
algorithm for ordering traversal of the search space, on 
the assumption that most of the measurements in the fully 
expanded space will never be made. Our approach is to 
navigate the search space in priority order, where 
priorities are assigned to diagnoses. 
 In the remainder of this section we present an 
illustrative example which corresponds to the NFS Server 
Test scenario. The definitions for the diagnoses used in 
this scenario are shown in Table 2. NFSs_Bottleneck 
represents the file server contention present in the 
suboptimal environment in the NFS Server Test.  This 
diagnosis is assessed as true based on the values of three 

other diagnoses, each of which is defined as a combination 
of diagnoses or as a combination of metrics and 
expectations (see Table 3).  The diagnosis of 
App_LowReadRate exists when the time required for 
accomplishing an application read operation exceeds an 
expectation for how long it should take.  By evaluating the 
number of bytes read in relation to the length of time 
required to accomplish the reading task, an application 
read rate can be established.  If this rate is less than the 
expectation for minReadRate, then the application is 
diagnosed as having a low read rate. 
NFSc_HighReadReqCount, the second diagnosis in the 
top level composition, indicates that the number of NFS 
client read requests is high compared to the actual number 
of bytes read by the application.  This diagnosis is a 
combination of two diagnoses: NFSc_LowReadRate and 
NFSc_ReadCount.    NFSc_LowReadRate is evaluated by 
comparing the number of bytes read per client read request 
to a specified expectation for the minimum number of 
bytes read per NFS client read request.  The assessment for 
NFSc_ReadCount tests if the number of read requests, 
issued by an NFS client over an interval of time, is greater 
than one. The NFS client has a high read request count if 
both NFSc_LowReadRate and NFSc_ReadCount evaluate 
to true. NFSs_HighServerReqToClientReqs is the third 
diagnosis contained in the top level definition, and it 
indicates that the ratio of the number of requests served by 
an NFS server to the number of requests made by a 



specific NFS client is high.  In the simple case, where 
only one client interacts with an NFS server, we expect 
this ratio to be close to one; and this would indicate that 
the server is responding to the client’s requests.  In the 
general case, where the server interacts with multiple 
clients, this ratio will be greater than one; and if it exceeds 
some expectation we know that the ratio of server 
requests to client requests is high. 
 Continuing this example, we now illustrate the use of 
triggers and a priority scheme.  The priorites used in this 
example are shown in Table 2. We represent priorities as 
numeric values, where lower numbers have higher 

priority. In Table 4 we list the triggers, and in this 
example we have two triggers.  We have assigned a 
priority of one to App_LowReadRate, and we have 
assigned all the other diagnoses a priority of two.  We 
assume App_LowReadRate is the first diagnosis 

considered, If eminReadRat<teApp_readRa , the target 

diagnosis NFSc_HighReadReqCount would be placed on 
the evaluation queue. By definition, it is evaluated by  
NFSc_LowReadRate and NFSc_ReadCount. If both are 
true, the diagnosis NFSc_HighReadReqCount would 
change to true and the trigger pointing to 

NFSs_HighServerReqsToClientReqs would become 
active, causing this diagnosis to be placed on the 
evaluation queue. If this diagnosis evaluates to true, then 
the diagnosis for NFSs_Bottleneck would evaluate to true.    
In this example, we start with App_LowReadRate, so that 
the limited resources available for monitoring and 
conducting online diagnosis are allocated efficiently, 
delaying tests for diagnoses related to NFS server 
performance problems if an application is not exhibiting a 
related symptom. 

6. Conclusions 

 A large number of published and anecdotal examples 
describe instances of communications libraries, the 
Operating System, and hardware preventing well-
developed parallel applications from achieving good 
performance in practice. This problem is exacerbated by 
the inability of most parallel performance tools to detect 
and report these root causes.  Analysts tuning applications 
must try a number of different tools and approaches to 
determine the true cause for performance that does not 
meet expectations. Traditional performance analysis tools 

 
Table 2: Diagnosis Definitions and Priorities for the NFS Server Test Example 

Diagnosis Definition Priority 

NFSs_Bottleneck 

soClientReqerverReqsTNFSs_HighS

teadReqCounNFSc_HighRdRateApp_LowRea ∧∧
 

2 

App_LowReadRate eminReadRat<teApp_readRa  1 

NFSc_HighReadReqCount ountNFSc_ReadCadRateNFSc_LowRe ∧  2 

NFSc_LowReadRate eqadPerReadRminBytesRe<ReadReqtesReadPerAppNFSc_by  2 

NFSc_ReadCount 1>tountNFSc_readC  2 

NFSs_HighServerReqsToClientReqs RatemaxNFSsReq>teNFSs_reqRa  2 

 
Table 3: Metrics and Expectations for the NFS Server Test Example 

Metric Definition 

App_readRate The number of bytes read per second by an application 

App_bytesReadt The total number of bytes read by an application over an interval of time, t 

NFSc_readCountt Total number of client read requests issued over an interval of time, t 

AppNFSc_bytesReadPerReadReq 

t

t

ountNFSc_readC

eadApp_bytesR
 

NFSs_reqRate The number of requests received by an NFS server per second 

Expectation Definition 

minReadRate A minimum value for the number of bytes that should be read per second 

minBytesReadPerReadReq A minimum number of bytes that should be read per client read request 

maxNFSsReqRate A maximum number of requests a NFS server can handle per second 

 
Table 4. Triggers for the NFS Server Test Example 

Base Diagnosis Target Diagnosis 

App_LowReadRate NFSc_HighReadReqCount 

NFSs_HighReadReqCount NFSs_HighServerReqsToClientReqs 



are unable to provide adequate guidance to analysts in 
determining the causes of performance problems rooted in 
the runtime environment.   
 We are developing a new approach for performance 
analysis called Environment Aware Performance 
Analysis.  This approach seeks to identify root causes of 
observed performance in a selected set of common 
scenarios. Environment Aware Performance Analysis 
combines analysis of an application’s execution behavior 
with analysis of the  runtime environment, resulting in a 
more accurate  performance diagnosis. 
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