
A Selective Profiling Tool: Towards Automatic Performance Tuning

Abhinav Bhatele1, and Guojing Cong2

1University of Illinois at Urbana-Champaign 2IBM Research
Dept. of Computer Science Thomas J. Watson Research Center

Urbana, IL 61801-2302 USA Yorktown Heights, NY 10598 USA
bhatele2@uiuc.edu gcong@us.ibm.com

Abstract

We present some preliminary results of selective profil-
ing in our efforts towards automatic performance tuning for
scientific codes. Performance analysis and tuning are be-
coming very important with the increasing complexity and
speed of high performance systems. Great efforts are neces-
sary to tune applications for optimal performance on such
systems.

In our efforts to automate most, if not all, of the perfor-
mance tuning process, we developed a flexible profiling tool
that can quickly pinpoint the performance bottlenecks and
further refine the problem area. This is an important first
step in our open framework with a rule-based approach for
our ongoing PERCS project.

1. Introduction

High performance computing (HPC) is essential in ad-
vancing science and society. In recent years, HPC systems
such as Blue Gene [1] are becoming increasingly power-
ful and complex. Tremendous human efforts are necessary
in tuning an application for optimal performance on these
systems. It would greatly increase the productivity of per-
formance engineers if, the bulk (if not all) of the tuning pro-
cess could be automated. Currently it still remains more or
less a philosophical question whether without human input,
a performance problem can be identified automatically by a
computer itself. However, from observing the most effec-
tive engineers working on performance optimizations in an
industrial laboratory, we are convinced that in many scenar-
ios the applications can be automatically tuned for the target

1-4244-0910-1/07/$20.00 c©2007 IEEE.

architectures. One such approach is for each scenario to de-
fine and apply the corresponding transformation that elim-
inates the performance bottleneck. The pool of scenarios
and transformations may not be exhaustive, but we expect
to catch most of the everyday recurring problems. Note that
this is a large project and we have barely begun our research
in this area. The current approach may not be the best as it
involves more heuristic than systematic ways for tackling
this problem. We present the development of our flexible
profiling tool under this context.

There are currently plenty of software tools, some of
which are very powerful and if properly used can help pin-
point hard-to-find performance bottlenecks and/or correct-
ness issues. However, for the tuning of scientific codes
on usually dedicated HPC systems, these tools may be too
complex to use, and after much effort the user might still be
left with a huge list of choices, unsure of which transforma-
tion to use to best improve the performance. We have had
the opportunity to observe the process or steps that many
performance engineers take with their applications and plat-
forms, and have noticed that many performance problems
and their solutions are highly repetitive in different applica-
tions. In our efforts to design performance support tools un-
der the PERCS project for the DARPA HPCS program [8],
we strive to determine the transformations that are sure to
help boost performance.

Profiling is invariably the first step that an engineer takes
when he is faced with the task of determining the bottle-
necks and tuning an application. Profiling gives a rough
idea of how much time each program construct (usually on
the statement or function level) takes to execute. After iden-
tifying the most time consuming constructs, the engineer
can then further collect more performance information and
investigate whether there is any mismatch between the pro-
gram and the architecture that causes performance degrada-

tion. In this paper we present our implementation of a pro-
filing tool that is flexible and facilitates these efforts. This is
our first step in automating the performance tuning process.
There are some desirable features of the tool such as it does
not need to access the source code nor does it need recompi-
lation for profiling. However, we believe its value lies more
in its contribution to automatic performance tuning.

The rest of the paper is organized as follows: Section 2
presents a brief review of the profiling technique and cur-
rent profiling tools. Section 3 describes the design and im-
plementation of our new profiling tool. Section 5 compares
our implementation with other profiling tools; Section 6 is
our on-going work and finally Section 7 is our conclusion
and future work.

2. Brief Review of Profiling

Profiling is the standard technique for studying the be-
havior of large, complex programs. As current applica-
tions are routinely composed of millions of lines of codes,
the ability to quickly pinpoint regions that take up most of
the executionvtime is critical to performance tuning. The
classical approach involves compiler-generated monitoring
routines for the collection of control flow information and
sampling for an estimate of the time distribution over the
program address space. The first and possibly the most
commonly used profiler is gprof [9]. It is able to present
counts of routine invocations and timing information for
statements. There are two parts to profiling a program with
gprof : 1. augment the code at “strategic” points for mea-
suring routine calls and statement executions, 2. sample the
value of the program counter at some intervals, and infer ex-
ecution time from the distribution of the samples within the
program. The profiler gprof is not to be confused with the
post processing command gprof provided for post process-
ing on most UNIX systems. There are a variety of similar
tools that differ in minor implementation details, for exam-
ple, tprof [10] and jprof [4].

gprof is probably the most frequently used tool by per-
formance engineers that we have observed. While very use-
ful, gprof has some restricting limitations, especially in the
context of automatic performance tuning. For instance, ac-
cess to the source code and recompilation are necessary for
inserting profiling routines. The source codes are often pro-
prietary to a vendor and recompiling complex programs can
take a painstakingly long time especially when a high opti-
mization level is used. Also gprof does not differentiate
code regions. As a result, performance metrics at the same
level of detail are collected across the whole program and
most of them do not bring insights into detecting the perfor-
mance problem. A profiling tool that is flexible and leads
towards automatic performance tuning is thus highly desir-
able.

3. Our Profiling Tool

We have developed a new profiling tool that is capable of
selectively profiling an arbitrary set of routines. The tool on
one hand implements the functionality provided by gprof
and on the other hand, provides means to further narrow
down to the bottlenecks. The implementation is based on
binary rewriting. Binary rewriting has been used in study-
ing the behavior of the application for optimization pur-
poses [3]. We observe that augmenting an application for
profiling is a perfect case of application of binary rewrit-
ing. Binary rewriting obviates the need of access to source
codes, and avoids recompiling the code with the profiling
option. We found that similar ideas to tamper with either
the binary or the process were explored independently by
other researchers (for example, see [6]). In [6], however,
the profiling only works for very simple applications and
gives wrong results for commonplace programs like gzip. It
does not work for MPI applications either. In addition to an
efficient, correct implementation and extensive comparison
with gprof , our contribution lies more in the selective ap-
proach for program analyis. We present selective profiling
in Section ??.

As a first step, we have designed our tool to be compati-
ble with gprof . Our tool is to be as efficient as gprof , and the
profiling data produced by our tool can also be processed by
gprof . The data format adopted by gprof does not always
accommodate the information we would like to store. Our
tool also produces data in a different format that is more
conducive to automatic tuning. Here we give a detailed de-
scription of our implementation based on binary rewriting
to simulate gprof .

4. Sampling and Call Graph Generation

For statistical approximation of the execution time for
each statement, gprof samples the program counter (PC)
value regularly. Sampling does not necessarily require spe-
cial support from the operating system. On most versions
of Unix and alike systems, sampling can be naturally sup-
ported by time slicing. On dedicated systems, like the op-
erating system for Blue Gene where time sharing and mul-
tiprogramming are not supported, user managed timer in-
terrupts can be used. The interface to the sampling utility
is in general the profil(buffer, bufsize, lowpc, scale) routine
that registers a buffer to record the clock ticks that occurs
inside a range of addresses. Calling the profil routine tog-
gles the sampling utility on and off. Choosing appropriate
parameter values, we can achieve the effects such as higher
precision for a shorter range of addresses.

In order to simulate gprof , we start profiling once the
program control first enters user code and stop it just before
we write out the collected data to the output file. The output

2

file is called “gmon.out” as in gprof , and shares the same
format. We thus need to detect the entry and exit of user
code, and patch in the profil routine. Detecting the entry is
quite simple with most of the binary formats like ELF [2]
and XCOFF [7]. To ensure the stopping of sampling, we
register an request to the execution of profil(NULL, 0, 0, 0)
at the exit of a program using the atexit utility.

gprof counts the number of times each routine is invoked
as well as the arc (parent/children relationship) in the call
graph that activated the profiled routine. The compiler gen-
erated monitoring routine (usually mcount) is immediately
called by each profiled routine, and its own return address
is recorded. Obviously this address falls inside the profiled
routine that is the destination of an arc in the call graph.
The monitoring routine also identifies the call site, or the
source of the arc. Our implementation of the monitoring
routine is slightly different from mcount as the patching in-
volves “jumps” using trampolines that do not constitute full
function calls, hence the stack walking should be treated
differently.

There can be millions, even up to billions of dynamic
function calls during an execution. gprof maintains a hash
table of all arcs discovered using the call site address as the
primary key and the callee address as the secondary key. A
linked list is used to resolve the conflicts into the hash table
entry. We employ similar data structures and algorithms as
in gprof .

Eventually the profiling data is output for post-analysis
when the program terminates. We have customized an in-
house post processing tool Xprofiler for presenting the pro-
filing data. Xprofiler visualizes the call graph using a graph-
ical interface. The routines are represented as boxes while
the arcs represent the caller-callee relationship. Xprofiler is
also capable of automatically laying out the graph on the
screen. We use Xprofiler as it is intuitive and helps the nav-
igation among numerous function calls and arcs.

4.1. Patching the Binary

We instrument the binary and patch in the monitoring
routine graphgen for each function (we use the terms func-
tion and routine interchangeably in this paper). That is, we
modify the binary so that at the entry of each function a
call to graphgen is issued. The graphgen routine walks the
stack, and registers the call site and callee in the hash ta-
ble. The entry of the first user function (for example, main)
is intercepted for initialization and setting up the profiling
environment. The initialize function is patched in for this
purpose. We use the SIGMA [5] tool for binary rewriting
on AIX.

Blindly intercepting each function call with graphgen
can cause unexpected behavior. Infinite recursive invoca-
tion to a function occurs if it is also called by graphgen.

For example, if function f1 is intercepted with graphgen
and f1 is in turn called from within graphgen, there will be
an infinite sequence of graphgen → f1 → graphgen →
f1i → For most functions this generally would not
occur as they are not called by graphgen. For those func-
tion calls inside graphgen which are to the system libraries,
for example, memset, our solution is to provide our own
version of implementation that is guaranteed not to appear
elsewhere. Binary instrumentation can also cause problems
with another patched-in routine initialize. We use malloc
to allocate memory for the hash table and other data struc-
tures. The call to malloc will be intercepted by graphgen
to record the caller/callee arc if it is also used by the user
program. Consider the execution of a binary augmented for
profiling. We will observe the following sequence of func-
tion calls supposing the binary is compiled from a C pro-
gram that calls malloc: main → initialize → malloc →
graphgen → Notice that at the time graphgen is
called, the memory for the hash table is not yet allocated
because we are intercepting the call to malloc for allocating
the memory for profiling. Our solution is to have a piece of
static array for the initial table. Anyway as this table grows
dynamically during the lifespan of the execution, realloca-
tion is to be performed.

5. Tests and Results

We have done extensive testing of the tool with the
SPEC2000 benchmark for correctness and performance.
SPEC2000 consists of 12 integer and 14 floating point
benchmarks, among which 18 are written in C, 6 in FOR-
TRAN and one each in FORTRAN90 and C++. They range
from swim and applu to gzip, gcc and equake, and are good
test cases for our implementation. We compare our tool
with gprof on AIX.

We observed negligible difference for most benchmarks
between the execution time of binaries augmented by gprof
and our tool. However, it is hard to make a strict compari-
son between the two as they do not always profile the same
set of functions. Current gprof on AIX links against a spe-
cial profiled libc library where the monitoring routine was
precompiled. Some of the functions being called from this
library are not visible to our instrumentation. For exam-
ple, for gzip, about 20 extra function calls from libc are-
profiled in the compiler generated code for the total of 63
functions. Our implementation instruments in total around
40 functions that we can detect from the symbol table. For
most applications, the execution inside libc is very seldom
of concern. The relative ranking of the user functions is
usually more informative.

We are able to profile function calls to precompiled li-
braries that gprof fails to capture the caller-callee relation-
ship for. If the identity of the caller of a function cannot be

3

Figure 1. Call graph constructed from the profiling data by gprof .

determined, the caller is labeled as “spontaneous”. This can
happen for signal handlers. Function calls to precompiled
libraries that were not augmented by the compiler for pro-
filing will result in many “spontaneous” callers. Although
the execution time for each individual function is still cap-
tured, the call graph is broken into many distinct compo-
nents. This can be a problem if a significant amount of
time is spent inside the precompiled library, for example,
the communication library, I/O library, and other highly op-
timized math libraries.

We test our implementation with SKaMPI. The
SKaMPI-Benchmark is a suite of tests designed to measure
the performance of Message Passing Interface (MPI) imple-
mentations. SKaMPI maintains a database to illustrate the
performance of machine-dependent MPI implementations.
The majority of the code is on MPI communications. On
AIX, the profiling library of the POE environment is not
provided.

Figure 1 is the graphical presentation of a profiled run
with collective communication primitives. On the left we
present a clustered view of the call graph as there are too
many functions calls to show individually. The nodes are
clustered by the libraries. The arcs between two clusters
indicate function invocations. Note the bottom right-most
cluster that does not have any ancestor. All the MPI collec-
tive communication functions are inside this cluster. gprof
does not capture the caller-callee relationship for them. On
the right is a partial zoomed in view of the cluster.

Figure 2 is the graphical presentation of the profiling data
collected by our tool. On the left we show the part of the
call tree that contains all the callers of the MPI functions.
On the right is a zoomed in view of the part of the tree in-
side the box on the left diagram. We can see that the MPI
function calls are no longer dangled in the call tree. They

are correctly plugged into the call graph.

6. Selective Profiling

Quite naturally, our profiling tool has the flexibility of
profiling an arbitrary set of functions since our implemen-
tation is based on binary rewriting. We can then selectively
profile the functions that we are interested in for better ef-
ficiency. This capability can be very helpful with long-
running applications on massively parallel systems.

The profiling actions taken at function entries and exits
may also extend beyond call chain chasing. Various other
performance metrics such as timing and hardware event
counts can be collected.

7. Conclusion and Future Work

We have developed a profiling tool that works on the
binary and has the capability of profiling precompiled li-
braries. This capability is crucial in analyzing the per-
formance of applications that rely heavily on standard li-
braries such as math or communication library. Our tool
also has the flexibility of selectively profiling an arbitrary
set of functions with arbitrary actions. In the future, we will
further improve the tool for the foundation towards auto-
matic performance analysis and tuning.

References

[1] F. Allen and G. ALmasi. A vision for protein science using a
petaflop supercomputer. IBM Systems Journal, 21(40):310–
327, 2001.

[2] T. I. S. ELF:executable and linkable format.
ftp://ftp.intel.com/pub/tis, 1998.

4

Figure 2. Call graph constructed from the profiling data by our tool

5

[3] A. Eustace and A. Srivastava. Atom: A flexible interface for
building high performance program analysis tools. 1994.

[4] jprof: java glossary. http://mindprod.com/jgloss/jprof.html,
1999.

[5] J. H. L. DeRose, K. Ekanadham and S. Sbaraglia. Sigma:
a simulator infrastructure to guide memory analysis. pages
1–13, 2002.

[6] K. Lee and H. Lin. Gprof via binary instrumentation using
dyninst. 2005.

[7] I. X. object file format.
http://publib16.boulder.ibm.com/peries/en us/files/aixfiles/xcoff.htm.

[8] H. productivity computer systems.
http://highproductivity.org, 2005.

[9] P. K. S.L. Graham and M. McKusick. gprof: a call graph
execution profiler. ACM SIGPLAN notices, pages 49–57,
1982.

[10] TPROF. http://perfinsp.sourceforge.net/tpof.html.

6

