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Abstract

This paper explores the correlation of instruction
counts and cache misses to runtime performance for a
large family of divide and conquer algorithms to com-
pute the Walsh–Hadamard transform (WHT). Previ-
ous work showed how to compute instruction counts
and cache misses from a high–level description of the
algorithm and proved theoretical results about their
minimum, maximum, mean, and distribution. While
the models themselves do not accurately predict per-
formance, it is shown that they are statistically cor-
related to performance and thus can be used to prune
the search space for fast implementations. When
the size of the transform fits in cache the instruc-
tion count itself is used; however, when the trans-
form no longer fits in cache, a linear combination of
instruction counts and cache misses is used. Thus for
small transforms it is safe to ignore algorithms which
have a high instruction count and for large trans-
forms it is safe to ignore algorithms with a high value
in the combined instruction count/cache miss model.
Since the models can be computed from a high–level
description of the algorithms, they can be obtained
without runtime measurement and the previous the-
oretical results on the models can be applied to limit
empirical search.

1 Introduction

A commonly used technique in the new field of au-
tomated performance tuning is called generate and

test [1, 9]. This technique empirically finds a fast
implementation, on a given computer, by generating
a large number of alternative algorithms and imple-
mentation choices and searches amongst these alter-
natives for the algorithm/implementation with the
smallest runtime. Intelligent search techniques are
employed in order to avoid exhaustively generating
all possibilities, which is usually infeasible. Since ex-
haustive search is not used, this approach does not
guarantee that an optimal solution will be found.
Nonetheless, the approach has been very successfully
employed on a collection of important problems in-
cluding matrix multiplication [3], the Fast Fourier
transform (FFT) [4], and more general signal and
image processing transforms [10].

Empirical runtimes are typically used in the search
process due to the difficulty of accurately predicting
performance on modern architectures. Despite these
difficulties some initial success has been obtained us-
ing a combination of micro benchmarks and perfor-
mance analysis in selecting high-performance matrix
multiplication kernels [13]. Additional success has
been obtained through the use of machine learning
in selecting FFT algorithms and algorithms for the
related Walsh-Hadamard Transform (WHT) [12, 11].

This paper explores the performance models pre-
sented in [5, 8] for the family of WHT algorithms
presented in [7]. The package in [7] uses the generate
and test technique to search for fast implementations
of the WHT. The instruction count and cache miss
models in [5, 8] were introduced to better understand
the search space. The models do not accurately pre-
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dict performance; however, they can be computed
from the high–level description of the WHT algo-
rithms used in the WHT package. Moreover, they
are amenable to mathematical analysis. In particu-
lar, it is possible to theoretically compute the min-
imum and maximum number of instructions along
with the mean and variance. It was also proven that
the distribution in the number of instructions, over
the space of algorithms, approaches a normal distri-
bution. Similar results, subject to the constraint of a
direct mapped cache, were obtained for cache misses,
though the limiting distribution is different.

This paper presents an empirical study of the re-
lationship of these models, and a linear combination
of them, to actual performance. The results of our
study show that even though the models do not accu-
rately predict performance, there is a strong correla-
tion. For small transform sizes, instruction count cor-
relates fairly well with runtime, and best algorithms
can be found, with high probability, by restricting
the search to algorithms with small instruction count.
For larger transform sizes, where cache comes into
play, the correlation with instruction count is not as
strong; however, if cache misses are taken into ac-
count, then a stronger correlation can be obtained.
A performance model using a linear combination of
instruction count and cache misses obtains nearly
as strong a correlation for large sizes as instruction
count alone for small sizes. The coefficients of the
linear combination are chosen to maximize the corre-
lation coefficient.

2 WHT Algorithm Space

The Walsh-Hadamard transform of a signal x, of size
N = 2n, is the matrix-vector product WHTN · x,
where

WHTN =
n⊗

i=1

DFT2 =

n︷ ︸︸ ︷
DFT2 ⊗ · · · ⊗DFT2 .

The matrix

DFT2 =

[
1 1
1 −1

]

is the 2-point DFT matrix, and ⊗ denotes the tensor
or Kronecker product. Algorithms for computing the
WHT can be derived by factoring the WHT matrix
into a product of sparse structured matrices [7]. Let
n = n1 + · · · + nt, then

WHT2n =

t∏
i=1

(I
2

n1+···+ni−1 ⊗WHT2ni⊗I
2

ni+1+···+nt )

(1)
This factorization leads to a triply nested loop. Let
N = N1 · · ·Nt, where Ni = 2ni , and let xM

b,s denote
the vector (x(b), x(b+ s), . . . , x(b+(M −1)s)). Then
evaluation of WHTN · x using Equation 1 is per-
formed using

R = N ; S = 1;

for i = 1, . . . , t

R = R/Ni;

for j = 0, . . . , R − 1

for k = 0, . . . , S − 1

xNi

jNiS+k,S = WHTNi
· xNi

jNiS+k,S ;

S = S ∗ Ni;

The computation of WHTNi
is computed recursively

in a similar fashion until a base case of the recursion is
encountered. Small WHT transforms are computed
using the same approach; however, the code is un-
rolled in order to avoid the overhead of loops or recur-
sion. This scheme assumes that the algorithm works
in–place and is able to accept stride parameters. Al-
ternative algorithms are obtained through different
sequences of the application of Equation 1. In [5] it is
shown that there are approximately O(7n) different
algorithms (see the paper for more precise results).
When n1 = · · · = nt = 1 the algorithm is called iter-

ative since there are no recursive calls. When t = 2
and n1 = 1 and n2 = n− 1 the resulting algorithm is
called right recursive, and when n1 = n−1 and n2 = 1
the algorithm is called left recursive. The right re-
cursive and iterative algorithms are the two standard
approaches to computing the WHT and they corre-
spond the standard recursive and radix 2 iterative
FFT algorithms.
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Figure 1: Ratio of Performance for canonical algorithms
to Performance for best algorithms.

3 Performance Data and Mod-

els

Using performance counter measurements, it was
shown in [6] that the two most important perfor-
mance metrics were instruction count and data cache
misses. Neither metric by itself can distinguish per-
formance as, for example, the iterative algorithm ex-
ecutes fewer instructions than the right recursive al-
gorithm for all sizes, yet the performance of the re-
cursive algorithm, while initially worse, becomes bet-
ter than the iterative algorithm as the size crosses
cache boundaries. Such behavior is consistent with
the observation that the recursive algorithm has fewer
cache misses. This suggests a model which is a linear
combination of instruction counts and cache misses.
While such a model does correlate to actual perfor-
mance, there is variance due to other factors such as
the number of register spills, pipeline performance,
functional unit utilization and other factors – it is
simply not possible to accurately predict performance
using this model. Nonetheless, the model does corre-
late with performance and can be used to prune the
search space.

In this section, we measure cycle counts, instruc-
tion counts, and cache misses for a random sample

of WHT algorithms of sizes 29 and 218. Experi-
ments were performed on an Opteron (Model 224)–
a single core 64 bit processor running at 1.8 GHz
with a 64 Kb 2–way set associative L1 cache and a
1Mb 16–way set associative L2 cache. All perfor-
mance measurements were taken with PAPI 1.3.2 [2].
All code was compiled with gcc version 3.4.4, using
the optimization flags -march=opteron -m64 -O2

-fomit-frame-pointer -fstrict-aliasing. The
sizes of WHT transforms were chosen so that one
sample fit in L1 cache, while the other did not fit in
L1 cache but did fit in L2 cache. Histograms showing
the distribution of runtimes, instruction counts, and
cache misses (for the larger size) are shown.

Additional measurements were made of the canon-
ical algorithms (iterative, left recursive, and right re-
cursive) discussed in the previous section and the best
algorithm determined by the dynamic programming
search performed by the WHT package in [7] (note
that dynamic programming serves only as a heuris-
tic since the optimal algorithm depends on the call-
ing context). The best algorithm utilizes larger base
cases (unrolled code) than used by the canonical al-
gorithms. These measurements confirm the observa-
tions from [6] and show how much improvement can
be obtained over the canonical algorithms.

Figure 1 shows the ratio of cycle counts of the
canonical algorithms to the best algorithm for sizes
2n with n = 1, . . . , 20. As indicated, we expect that
the iterative algorithm will outperform the recursive
algorithms until a critical point, at which recursive
algorithms will outperform the iterative algorithm.
Furthermore, the analysis of the instruction count
model in [5] suggests that the right recursive algo-
rithm will outperform the left recursive algorithm as
is the case. On the Opteron, the cross over occurs at
the L2 cache boundary (n = 18).

Figures 2 and 3 show the ratio of instruction counts
and cache misses of the canonical algorithms to the
best algorithms. These figures show the relationship
between instruction count, cache misses, and perfor-
mance in transforms of large size. The iterative algo-
rithm is closest to the best algorithm. Additionally
it has the lowest instruction count for all sizes, and
the fewest cache misses until the L1 cache boundary
at n = 214. Despite more cache misses, the iterative

3



2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4

4.5

5

Size

In
st

ru
ct

io
n 

C
ou

nt
 R

at
io

↓ in Ratio is better

Iterative / Best
Left / Best
Right / Best

Figure 2: Ratio of Instruction Counts for canonical al-
gorithms to Instruction Counts for best algorithms.
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Figure 3: Ratio of Cache Miss Counts for canonical al-
gorithms to Cache Miss Counts for best algorithms.

algorithm has performance closest to the best until
n = 220.

Figure 4 shows histograms of cycle counts and in-
struction counts collected into 50 equally sized bins
for 10,000 random samples of size 29. The random
sample was obtained using a recursive split uniform
distribution. That is, each time Equation 1 is ap-
plied we assume every composition n = n1+· · ·+nt is
equally likely to occur (see [5]). The samples were fil-
tered for extreme outliers beyond the “outer fences”,
i.e. we expect that valid data will lie within a range
based on the interquartile range (IQR), specifically:

3.0 × IQR(X)− Q1 < X < Q3 + 3.0 × IQR(X).

Where Q1 is the first quartile, and Q3 is the third
quartile.

Similar histograms, including cache miss counts,
are provided in Figure 5 for 10,000 random samples
of size 218.

Our expectation was that for the smaller trans-
form sizes the correlation between performance and
instruction count would be significantly higher then
for the larger transform size. Also we expected that
there would be significant correlation between perfor-
mance and the number of cache misses in the larger
size. This can be seen intuitively by observing the
similarity in counts for cycles and instructions in the
smaller transform sizes (Fig. 4). For the larger trans-
forms, there appears to be a slight left skew in the
performance histogram where there is none in the
instruction histogram. Intuitively, this skew can be
accounted for in the left skew of the L1 cache miss
histogram (Fig. 5). These correlations are quantita-
tively determined in the next section.

4 Correlation of Performance

Data and Models

To gain a more quantitative understanding of the re-
lationship between instruction count, cache misses
and performance, we computed the correlation be-
tween our observations using the Pearson correlation
coefficient. In every situation we expect the quanti-
ties to be positively correlated, for instance a higher
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Figure 4: Cycle and Instruction counts collected into 50 bins for WHT9.
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Figure 5: Cycle, Instruction, and Cache Miss counts collected into 50 bins for WHT18.

instruction count should generally imply a higher cy-
cle count. For small transform sizes whose input fits
in the L1 cache, the correlation between instruction
count and cycle count is very high, however, for the
larger size, which does not fit in L1 cache, the cor-
relation drops. Figure 6 shows scatter plots, with
computed correlation coefficients, illustrating the de-
pendency between performance and instruction count
for the sample of WHT algorithms of size n = 9. Fig-
ures 7 and 8 show scatter plots and their respective
correlation coefficients, illustrating the dependency
between performance, instruction count, and cache
misses for the sample of WHT algorithms with size
n = 18. Included in the scatter plots are points

indicating the canonical and best algorithms. The
banding that occurs in Figure 6 results from similar
banding in the number of load instructions.

For the larger transform size a model including
both instruction count and cache misses is needed
in order to obtain stronger correlation. The model is
of the form αI+βM , where I is the instruction count
and M is the number of misses. The coefficients α
and β were chosen in order to maximize the correla-
tion. Figure 9 shows the correlation coefficient as a
function of α and β where 0 ≤ α, β ≤ 1 are sampled
uniformly in increments of 0.05. The optimal value,
over this grid, occurs when α = 1.00 and β = 0.05.
Using this linear combination, the correlation coef-
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Figure 6: Instructions vs. Cycles for WHT9 (correlation
coefficient ρ = 0.96).
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Figure 7: Instructions vs. Cycles for WHT18 (correla-
tion coefficient ρ = 0.77, left recursive algorithm outside
range).
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Figure 8: Cache Misses vs. Cycles for WHT18 (correla-
tion coefficient ρ = 0.66, left recursive algorithm outside
range).

ficient was increased from 0.77 for instruction count
alone and 0.66 for cache misses alone to 0.92, a value
close to the instruction count model for the sample
that fits in L1 cache.

The correlation between instruction count and per-
formance for small transforms and the correlation
between the combined instruction count and cache
misses can be used to prune the search for the algo-
rithm with the best performance. While there is not
a perfect correlation, the correlation that is shown al-
lows us to prune algorithms which have a large num-
ber of instructions or a large combination of instruc-
tions and cache misses for large sizes. Figures 10 and
11 show the cumulative distribution functions for the
samples of small and large transforms. Each curve
in the figures show the cumulative probability of ob-
taining an algorithm outside of the pth percentile as
a function of instruction count or combined instruc-
tion count and cache misses. For a given instruction
count, or combined count, the value of the curve gives
the probability that an algorithm with fewer than or
equal to the specified number has performance worse
than the top p percent. In the limit as the instruc-
tion count or combined counts, approach the max-
imum value, the cumulative probability should ap-
proach 1− p. Whenever the curve gets close to 1− p
we do not need to consider algorithms with greater
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counts. Thus for size n = 9, to find an algorithm
whose performance is within 5% of the best we may
discard all algorithms with more than 7×104 instruc-
tions (see Figure 10).

5 Conclusion

This paper explored the empirical performance of a
large family of algorithms for computing the WHT.
The correlation between the actual performance and
two performance models (instruction count and cache
misses) was investigated on an Opteron processor.
While these models do not accurately predict perfor-
mance, there is a strong correlation (correlation coef-
ficient = 0.96 for instruction counts for small trans-
forms, and 0.92 for a linear combination of instruc-
tion counts and cache misses for large transforms) be-
tween the models and cycle counts. The correlation
depends on the architecture on which the algorithms
are executed and this dependence is currently being
investigated for a variety of architectures. This corre-
lation allows us to prune a large number of algorithms
when searching for the optimal performance. Be-
cause the performance models can be computed from
a high–level description of the algorithms it is possi-
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ble to calculate instruction counts and cache misses
without running the programs. It is possible to sys-
tematically generate algorithms with small numbers
of instructions and cache misses and consequently re-
strict a random or exhaustive search to this subspace
of algorithms.
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