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Abstract

Linear Feedback Shift Registers (LFSRs) have always
received considerable attention in computer science espe-
cially in coding theory and in cryptography. The scope
of applications of LFSRs is wide: data scrambling, spread
spectrum, build in self tests (BISTs). . . They have to be im-
plemented either in hardware or in software. Unlike hard-
ware, software applications have not been very popular.
The main reason is that, even if the LFSR synthesis in soft-
ware is very similar to the LFSR synthesis on Xilinx FPGA,
the overall processing is parallel in hardware while it is al-
most sequential in software, leading to low throughput im-
plementations. If the naive LFSR implementation is in fa-
vor of hardware, increasing the number of LFSR steps com-
puted at the same time can considerably improve software
implementation. For instance, we obtain a 103 speedup fac-
tor for a 128-bit LFSR on 64-bit processors. Unfortunately,
this cannot be obtain for all LFSRs. We here describe how
LFSR parameters must be chosen to obtain an efficient im-
plementation.

1. Introduction

A common feature among various algorithms for com-
munication is the computation on bit-level data. How-
ever, current General Purpose Processors (GPPs) and Dig-
ital Signal Processors (DSPs) cannot operate directly on
bit-level data without packing and unpacking the bits in
memory. GPPs and DSPs operate on bit-level data in large
register-wide ALUs. Hence the throughputs of those algo-
rithms are low since many operations are required for pack-
ing/unpacking within a register and since the computation
itself produces only a single bit. A typical class of algo-
rithms working at bit-level is the class of Linear Feedback
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Shift Registers (LFSRs). LFSRs are present in every coding
scheme as scramblers and in many stream ciphers because
they produce sequences with good statistical properties, and
they can be easily analyzed. Moreover they may have a low-
cost realization in hardware.

An attempt to improve the data-path usage consists in
computing several LFSR steps at the same time. This so-
lution is known as leap-forwarding in hardware synthesis.
It was first used to improve the efficiency of the software
stream-cipher SSC2 [10]. Later, Chowdhury and Maitra
partially analyzed software leap-forwarding in [3] and [4].

In this paper, we address the problem of generating effi-
cient implementations of LFSRs for any parameters. Leap-
forward implementations can be very efficient on a 64-bit
processor: we obtain a 103 speedup factor for some LFSR
parameters. Moreover, we investigate the link between the
LFSR definitions and their implementation characteristics
(throughput, code size). We have developed a new tool for
generating optimized LFSR implementation in C. This new
tool is available at [7].

The next section introduces the different representations
of an LFSR. Section 3 compares the synthesis on Xilinx
FPGA and on an r-bit processor. We detail the properties
of leap-forward implementation and we point out why it
is suitable for software and less for Xilinx FPGA. In Sec-
tion 4, we provide an overview of LFSRs performance in
software using the previously discussed leap-forward im-
plementations. Most notably, we exhibit the influence of
the properties of the characteristic polynomial on the LFSR
performance in software.

2 Linear Feedback Shift Register representa-
tions

Let α be a root of a primitive polynomial P :

P (X) = Xm + am−1X
m−1 + · · ·+ a1X + a0 (1)

in Fq[X ]. Then Fqm can be defined as the quotient
Fq[X ]/P (X). As shown in [9], the multiplication of an



element s ∈ Fqm by the root α can be done easily in the
polynomial basis (1, α, α2, · · · , αm−1) or in the dual basis
(β0, β1, · · · , βm−1) defined by:

Tr(βiα
j) = 1 if i = j

T r(βiα
j) = 0 if i 6= j.

(2)

Independently from the basis representation, the device that
implements this multiplication is called a Linear Feedback
Shift Register (LFSR) of length m over Fq . It consists of
m delay cells of dlog2(q)e bits. The LFSRs are split into
two families of devices, the so-called Fibonacci and Galois
representations.

The Galois representation corresponds to the multiplica-
tion in the primal basis. Let s be expressed in the polyno-
mial basis by:

s = sm−1α
m−1 + · · ·+ s1α + s0. (3)

The product αs is given by:

αs = sm−1α
m + sm−2α

m−1 + · · ·+ s1α
2 + s0α.

Thus, as α is a root of P , we obtain:

αs = (sm−1am−1 + sm−2)α
m−1 + · · ·+ sm−1. (4)

The above equation is the main description of the Galois
device feedback computation. In Figure 1, a Galois device
is represented for the field F24 with P (X) = X4 + X + 1.
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Figure 1. Galois LFSR setup

The multiplication in the dual basis is given by the Fi-
bonacci representation. Let s be expressed in the dual basis
by:

s = s′m−1βm−1 + · · ·+ s′1β1 + s′0β0

with s′j = Tr(sαj) , j = 0, · · · , m− 1
(5)

Then, the components of αs in the dual basis are given
by:

(αs)′j = Tr(sαj+1) (6)

We obtain:

(αs)′j = s′j+1, j = 0, 1, · · · , m− 2 (7)
(αs)′m−1 = Tr(sαm)

= am−1s
′

m−1 + · · ·+ s′0 (8)
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Figure 2. Fibonacci LFSR setup

Equations 7 and 8 are the main description of the feed-
back computation for Fibonacci device. In Figure 2, a Fi-
bonacci device is represented for the field F24 with P (X) =
X4 + X + 1. The polynomial P is called the characteristic
polynomial of the LFSR.

The properties of LFSR have been deeply studied [6, 8,
9]. Both Galois and Fibonacci setups generate the same set
of sequences, even if a given output sequence corresponds
to different initial states in both setups. Throughout this
paper, we will only refer to LFSR over F2 and most of our
techniques will be only described for Fibonacci setup. In
this field, the characteristic polynomial can be written as:

P (X) = 1 + Xd1 + Xd2 + · · ·+ Xdw−2 + Xm

with 0 < d1 < d2 < · · · < dw−2 < m.

The LFSR characteristic polynomial is of degree m with w
monomials and with tail monomial d1. For Galois devices,
we will consider dw−2 instead of d1 as the tail monomial.
The setup studied will be always specified in the following.

3 Synthesis of LFSRs

The software synthesis of LFSRs is very similar to the
hardware synthesis on Xilinx FPGA [1, 5]. For Xilinx
FPGA (Spartan 2, Spartan 3, Virtex II) synthesis, 16-bit
shift registers (SRL16 and SRLC16) are the basic compo-
nents. Larger shift registers are obtained by chaining ba-
sic components. To compute the feedback, a given set of
bits must be accessed. This is particularly difficult with
SRL16 or SRLC16 components. This problem is addressed
in [1, 5]. In software synthesis, the basic component is
the processor register (more precisely a memory block).
Chaining those components can be difficult depending on
the processor instruction set. Moreover, accessing a single
bit within a register is also difficult (1 or 2 instructions). The
main difference between software and hardware synthesis is
the level of parallelism (Table 1).

We have described the implementation of a single step
LFSR. The state register is shifted once per step and one
feedback is computed. An attempt to increase the through-
put of the device without increasing the device frequency
consists in shifting the state register k times and in comput-
ing k feedbacks on the same clock cycle. This can be very
suitable for software and it leads to leap-forward represen-
tation.
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Characteristics Spartan 2 r-bit processor
Basic block SRL16 register

Chaining Easy ISA specific
Bit access replication shift and xor
Processing parallel sequential

Table 1. Software and hardware synthesis of
LFSR

3.1 Leap-forward representations

Leap-forwarding is an appropriate trade-off between the
feedback computation and the shift operation for both Fi-
bonacci and Galois LFSR setups in VLSI design. Leap-
forwarding exploits the representation of a single step of an
LFSR as a vector-matrix multiplication:

s(t) = s(t−1) A, t ≥ 0 (9)

where s(t−1) is the current state of the LFSR, s(t) is the next
state and A is the m ×m companion matrix of the LFSR.
Thus, the state of the LFSR after k steps is given by:

s(t+k) = s(t) Ak , t ≥ 0. (10)

Then the above equation can be transposed to a circuit
which is called the k-bit (or element, depending on the field
size) leap-forward LFSR representation. For instance, let
us consider an 8-bit LFSR in Fibonacci setup with charac-
teristic polynomial P (X) = X8 + X6 + X5 + X4 + 1
(Figure 3).
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Figure 3. 8-bit Fibonacci LFSR setup
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Figure 4. 2-bit leap-forward Fibonacci LFSR
setup

The circuit drawn in Figure 3 implements multiplication
by matrix A while the circuit drawn in Figure 4 corresponds

to the multiplication by A2. From a hardware point of view,
leap-forwarding an LFSR of length m by k elements im-
plies splitting the LFSR into k LFSRs and duplicating the
feedback k times. Then the throughput is multiplied by k.
An equivalent implementation can be obtained for Galois
setup.

In a single step implementation (Figure 3), a given set
of state bits is used in the feedback computation. In a 2-
bit leap-forward implementation (Figure 4), the same set is
used but also the successors of all those bits. On Xilinx
FPGAs, it will considerably increase the area cost (more
replications) as it is shown in Figure 5.
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Figure 5. Number of Spartan 2E slices for
128-bit shift registers

In software, the situation is completely different since
computing with windows of bits has the same cost as com-
puting with single bit. A k-bit leap-forward implementa-
tion equivalently works on k-bit windows instead of one
single bit. We have one window per monomial of P . For
the 8-bit leap-forward LFSR with polynomial P (X) =
X8 + X6 + X5 + X4 + 1, we obtain the implementa-
tion given in Code 1 on an 8-bit processor with 4 windows:
t0, t1, t2, t3, t4.

The previous code (Code 1) is obtained by analyzing the
different windows we may have to treat.

3.2 Windows representation

From the LFSR processor register representation, we
need to extract all the windows involved in the feedback
computation. For efficiency purpose, the maximal size of a
window is the processor register width: k ≤ r. The win-
dows are divided into four families: aligned windows, un-
aligned windows, overlapping windows and truncated win-
dows.

The aligned windows correspond to the LFSR register
representation. For those windows there is nothing to do.
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Algorithm 1 8-bit leap-forward LFSR. v0 is the LFSR state
(8-bit variable). The variables t0, t1, t2, t3 and could be
removed and all computations could have take place in t4.
We keep them for clarity.

1: t0 ← v0 {t0 (X8)}
2: t1 ← v0 � 2 {t1 alignment (X6)}
3: t2 ← v0 � 3 {t2 alignment (X5)}
4: t3 ← v0 � 4 {t3 alignment (X4)}
5: t4 ← t0 ⊕ t1 ⊕ t2 ⊕ t3 {partial t4 (1)}
6: t4 ← t4 ⊕ (t4 � 4) {t3 completion}
7: t4 ← t4 ⊕ (t4 � 5) {t2 completion}
8: t4 ← t4 ⊕ (t4 � 6) {t1 completion}

To extract an unaligned window an offset is required. One
shift is done per unaligned window. A window can overlap
two processor registers. Such an overlapping window is
extracted with one xor and two shifts.

The truncated windows are the most difficult to extract.
Some bits in a window may not be ready at the beginning of
the computation. First, all windows are aligned and a partial
computation of the feedback is performed, assuming that all
the missing bits are zero. This provides the first d1 feed-
back bits. Then, the new values resulting from the previous
partial computation are propagated to fill all the truncated
windows. The completion of the truncated windows highly
depends on the tail coefficient d1 of P for Fibonacci setups.
It depends on dw−2 for Galois setups.

Let us consider the truncated window associated to dj .
Then, in order to fill the window, the result of the partial
computation must be propagated d k

dj
e − 1 = bk−1

dj
c times.

Each propagation corresponds to one mask (bitwise and),
one bitwise xor and one shift.

s7000000
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Figure 6. Completion of a truncated window
with d1 = 2

Therefore, if dj ≥ k/2, we need only one shift and one
xor: the situation is similar to the case of overlapping win-
dows. This is the case in Code 1. Then, it costs roughly
k

∑
dj<k/2 1/dj steps to fill all truncated windows.

For d1 = 1, the results of the partial computation are
propagated as one bit. We can use the window propaga-
tion method but an alternative method without shift can be
more efficient. It uses properties of the two’s complement

of power of a 2. To propagate a bit, we first isolate it with a
bitwise and (we get a power of two). We compute its two’s
complement to expand it. And then we made an additional
mask before the bitwise xor. An example is given in Table 2.

Instruction Result
y = x ∧ 0x01 0, 0, 0, 0, 0, 0, 0, x1

y = 0− y x1, x1, x1, x1, x1, x1, x1, x1

y = y ∧ 0x82 x1, 0, 0, 0, 0, 0, x1, 0
x = x⊕ y x8 ⊕ x1, x7, x6, x5, x4, x3, x1 ⊕ x2, x1

Table 2. Bit propagation d1 = 1

The cost of bit propagation (Table 3) is the same for one
truncated than for k truncated windows. The different situ-
ations are summed up in Table 3.

Cost per truncated windows
Case Shifts Xors And Subtractions

dj ≥ k/2 2 1 0 0
2 ≤ dj < k/2 bk−1

dj
c bk−1

dj
c bk−1

dj
c 0

d1 = 1 0 k − 1 2(k − 1) k − 1

Table 3. Computation of truncated windows

It clearly appears that characteristic polynomials with
d1 = 1 must be avoided since this corresponds to the high-
est implementation cost.

4 Performance analysis

We have developed a new tool which generates the k-bit
leap-forward implementation of an LFSR with a given poly-
nomial. Using this tool, we have explored Fibonacci LFSR
implementations on an Opteron M250 (1Ghz) using GCC
4.0 (with -O3) and with different levels of leap-forwarding
k. The generic trends on the effect of d1, w and m are given
in Figures (a), (b), (c) and (d) for 32-bit programming. The
parameters with the most important effect on the throughput
are d1 and w.

In Figure (a), we studied the effect of d1 on 128-bit LF-
SRs with w = 10. When d1 = 1 we achieved only a 4.5
speedup factor on the naive implementation with a 32-bit
leap-forward implementation. For higher values of d1, the
windows propagation algorithm considerably increases the
throughput. For d1 = 12 we already obtain a 24 speedup
factor compared to the naive implementation for k = 32.
We obtain nearly the same performance for higher values of
d1. In practice, we need to avoid to choose a characteristic
polynomial with d1 = 1.

(r, d1, w, m)
Then, we have studied the performance of 128-bit LF-
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SRs implementations with a fixed-d1 (d1=20) and an arbi-
trary number of monomials w (Figure (c)). For trinomi-
als (w = 3), we achieve impressive performance: a 92.75
speedup factor compared to the naive implementation and
we manage to get more than one bit per cycle (for instance
3.75 bits/cycle for k = 128). However, the throughput de-
creases quickly as w is increased. A threshold is observed
after w = 30. The throughput is not affected by w anymore.
This is explained by shift factorization and by an increasing
number of common sub-expressions. If we need to com-
pute x = (x1 � 3) ⊕ (x2 � 3) it can be simplified by
x = (x1 ⊕ x2) � 3. We can bound the number of shift
operations for unaligned windows to max(right shift) =
r − 1. The same result holds for overlapping windows:
max(right shift) = r−1 and max(left shift) = r−1. This
is explicitly done by our generator. The search for common-
subexpressions is left to the compiler since we do not make
any assumptions on the number of processor registers. It
can reduce the number of xors to compute the feedback.

The degree m of P , i.e. the LFSR length, only affects the
shift computation. Figure (b) shows that peak performance
is always reached when k is a multiple of 32 for 32-bit code.
In Figure (b), it seems that when m = 32×n, we get better
performance. This impression is confirmed on Figure (c):
the peak performance of a polynomial with m = 32 × n
is clearly higher than for other values of m. The impact
of n on the throughput is limited. For instance, the best
implementation (k = 128) for m = 32 is only 1.5 times
faster than the best implementation (k = 96) for m = 256.

To produce k-bit leap-forward implementations for k >
r, our code generator iterates bk/rc an r-bit leap-forward
feedback. Then, it generates the remaining steps with a
(k mod r)-bit leap-forward feedback. The generated code
is always fully unrolled. Thus the study of Figure (c) pro-
vides the best unrolling factor. For instance, the best perfor-
mance for m = 160 is reached for k = 96, i.e. unrolling
the feedback loop 3 times.

Figures (e), (f) show two typical pentanomial profiles for
throughput and code size with 64-bit programming. The
polynomial with d1 = 1 introduces an important code size
overhead (Figure (e)). The best performance is achieved by
P (X) = 1 + X64 + X78 + X123 + X128 (Figure (f)). We
already obtain a 100 speedup factor on the naive implemen-
tation for k = 256. Then the code size is multiply by 5.

Figure (g) shows the effect of the monomials repartition,
i.e. the choice of d2 and dw−2 on the throughput/code size
trade-off. When the monomials are all gather in a small
area, we manage to get between 5% and 10% improvement
over other repartitions. Figure (h) shows the effect of the
number of truncated windows (d2 = 2 and dw−2 = 31) on
the throughput.

5 Conclusions

During our test, we have only considered random char-
acteristic polynomials. For many purposes, mostly cryptog-
raphy, we need to generate Maximum Length sequences.
Then, the characteristic polynomial must be primitive.
Thus, we have computed a list of the best primitive tri-
nomials, which can be accessed on [7]. It is worth men-
tioning that primitive trinomails exist for m 6= 2n only
[2]. For instance, we achieve 9.9 bits/cycle for P (X) =
1 + X64 + X127 with k = 576.

For a given set of parameters, a multiple of the charac-
teristic polynomial can also be used to produce the same
sequence. Using a multiple of the characteristic polynomial
instead of the original polynomial can reduce the number
of monomials and can increase the tail coefficient. Let con-
sider the polynomial P defined by:

P (X) = X128 + X32 + X4 + X3 + X2 + X + 1.

In Table 4, we compare the parameters of the original
polynomial P with some multiple polynomials. The perfor-
mance of P are low since d1 = 1 (Table 5). The through-
put is multiplied by 7 if we use (1 + X) × P (X) and
(X6 + X5 + X + 1)× P (X).

Polynomial d1 w m
P (X) 1 7 128

(1 + X)× P (X) 5 6 129
(X6 + X5 + X + 1)× P (X) 10 10 134

Table 4. Multiple of the polynomial P

Polynomial best k Throughput
P (X) 64 0.21

(1 + X)× P (X) 512 1.54
(X6 + X5 + X + 1)× P (X) 256 1.52

Table 5. Throughput of multiple of P

We have also considered ANSI C implementation only.
An interesting perspective could be to evaluate the influence
of all LFSRs parameters for SIMD implementations. SIMD
instructions can not speedup the treatment of truncated win-
dows: it sequential by nature. However when d1 > k,
SIMD programming is expected to be very efficient. For
instance, the overlapping windows can be treated with only
one vperm instruction (Altivec instruction set). The effect
of the monomials repartition is also expected to be different.
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