
Library Function Selection in Compiling Octave

Daniel McFarlin∗ Arun Chauhan
{dmcfarli,achauhan}@cs.indiana.edu

Department of Computer Science, Indiana University, Bloomington, IN 47405 USA

Abstract

One way to address the continuing performance problem
of high-level domain-specific languages, such as Octave or
MATLAB, is to compile them to a relatively lower level lan-
guage for which good compilers are available. As a first step
in this direction, specializing the high-level operations in the
source, based on operand types, leads to significant gains.
However, simple translation of the high-level operations to the
underlying libraries can often miss important opportunities to
improve performance. This paper presents a global algorithm
to select functions from a target library, utilizing the seman-
tics of the operations as well as the platform-specific perfor-
mance characteristics of the library. Making use of the li-
brary properties, the simple and easy-to-implement selection
algorithm is able to achieve as much as three times perfor-
mance improvement for certain linear algebra kernels, over
a straight mapping of operations, which are compiled to the
vendor-tuned BLAS.

1. Motivation

The ease of programming offered by High-level Domain-
specific Languages, also called scripting languages, has re-
sulted in their growing popularity in the recent years. Exam-
ples of such languages include MATLAB (and its open-source
version, Octave), Perl, Python, S-Plus (and its open-source
version, R), and PHP.

One way to address the performance problem that contin-
ues to hinder large scale application development in these lan-
guages is to compile these languages to a relatively lower-level
language for which there are known good compilers [7, 11, 3].
Usually, the first step in this translation process is inferring
types of the variables from their definitions and uses so that
the individual high-level operations in the original program

∗The work in this paper was supported in part by the National Science
Foundation under Grant No. EIA-0116050, and a grant by the Lilly Endow-
ment. Daniel McFarlin was partly supported by Hutton Honors College Sum-
mer Research grant and the Indiana University Department of Cognitive Sci-
ence Summer Research grant.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

could be mapped to their more precise equivalent operations.
For example, in a hypothetical high-level language, an oper-
ation such as “+” could refer to string concatenation or arith-
metic addition, depending on the context. Static resolution of
the operation, leading to type-based specialization, can result
in impressive performance gains [3].

However, these gains can be limited by the actual mapping
of the high-level source operations to those available in the
underlying target language. For some contexts the mapping is
obvious—if the operands to a source operation are proved to
be numerical scalar values there may be a simple equivalent
scalar operation in the target language that can perform that
operation. On the other hand, if the source operation has no
equivalent primitive in the target language then the compiler
must either explicitly generate code to implement the high-
level source operation or seek an appropriate library routine
that implements that operation. For example, this is the case
when an operation in Octave, or MATLAB, is found to involve
arrays and the target language, such as C, does not support
array operations primitively.

This paper develops an algorithm to map the high-level op-
erations in Octave to a given library, in a language such as C
or C++, which implements those operations. A large number
of array operations encountered in real Octave programs can
be directly mapped to the BLAS, which is the test-bed used
in this paper. Identifying the platform specific characteris-
tics of the library, and incorporating their knowledge into the
code generator, can result in up to factor of three speed im-
provement, in some cases, over a code generator that ignores
library characteristics and performs a direct mapping of the
high-level operations to the underlying library.

2. Selecting the Library Functions

At first sight, mapping the high-level Octave operations to
an underlying library, or libraries, appears to be an instruction-
selection problem [5]. However, several characteristics set the
problem apart from standard instruction-selection.

• Since each “instruction” is really a library call, its cost
MATLAB is the registered trademark of The MathWorks Inc. Octave is an

open-source language that is syntactically compatible with MATLAB. The pa-
per discusses Octave, but the techniques also apply to MATLAB almost with-
out change, unless noted otherwise.

0 2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Vector size (thousands of double elements)

ti
m

e
(p

a
re

n
th

e
s
iz

e
d

)
/

ti
m

e
(d

is
tr

ib
u

te
d

)
Implementing A Big Expression

AMD Opteron

PowerPC 970 (Apple G5)

Intel Xeon

Intel Itanium 2

(a) Performance ratios.

5 6 7 8 9 10 11 12 13 14
−600

−400

−200

0

200

400

600

800

1000

1200

1400

ti
m

e
(d

is
tr

ib
u

te
d

)
−

 t
im

e
(p

a
re

n
th

e
s
iz

e
d

)
in

 s
e

c
o

n
d

s

Vector size (thousands of double elements)

Absolute Time Differences on Itanium 2

(b) Absolute gains.

Figure 1. Minimizing the number of multiplications is not always a win.

may be much harder to compute than the simple instruc-
tions for a RISC, or even CISC. The cost of the library
operations is dependent on a number of variables and is
dynamic in nature, specific to the call-site context, and
may depend on the run-time environment in complex
ways.

• Multiple alternatives are likely to be available to perform
a single operation, from multiple libraries, from multi-
ple functions within a library, or even as explicit code
generated by the compiler using lower-level libraries or
primitive operations in the target language. The choices
are usually many more than those offered by machine in-
struction sets.

• The penalty of making a mistake can be much higher
since arrays might be involved. A bad choice can easily
result in unnecessary memory copies leading to highly
inefficient execution.

Consider the following Octave expression:

A + A ∗ B′ + 2 ∗ (A + B)′ ∗ A + (x + y) ∗ x′ (1)

In order to translate this code into C or C++ the first step is
inferring the variable types. The type of a variable is de-
fined as the pair (τ, ψ) where τ is the primitive type (such
as real, boolean, complex, etc.), and ψ is the size for
array variables (including the number of dimensions and the
extent along each dimension). Various other pieces of work
have addressed the issue of inferring types in MATLAB, and
equivalently Octave, and that will not be discussed further in
this paper [7, 2, 11]. The work described here assumes the
availability of the variable types.

The type inference pass might deduce that A and B are
square matrices and x and y are vectors of the same length as
the number of rows and columns in the matrices. Assuming

that the numerical considerations allow arithmetic commuta-
tivity and distributivity, pure algebraic considerations favor
evaluating the expression in its existing form than trying to
distribute the multiplication over addition (i.e., “opening” the
parentheses). If the multiplication is completely distributed
the expression becomes:

A + A ∗ B′ + 2 ∗ A′ ∗ A + 2 ∗ B′ ∗ A + x ∗ x′ + y ∗ x′ (2)

The original expression (1) performs two full matrix products
and one vector outer product, while the distributed expres-
sion (2) performs three full matrix products and two vector
outer products. The number of additions remains unchanged,
although the former adds fewer elements because one of the
additions involves vectors. Most analytical models that oper-
ate with linear algebra will prefer the first version. In fact, this
example is taken from a published study that made exactly
that choice [9].

Figure 1(a) shows the ratio of times taken by version (1) to
version (2) on four different processors with increasing data
sizes. Somewhat counter-intuitively, there is significant per-
formance gain implementing the second version of the expres-
sion beyond a critical matrix-size. The exact size that deter-
mines the transition is platform dependent. The dramatic sav-
ing in time is clearer when the absolute gain is plotted, as the
Figure 1(b) shows for Itanium 2. Since the version (2) per-
forms better for larger sizes the gains it produces are much
more significant than the gains resulting from the version (1)
when it is more efficient. Similar dramatic gains exist on other
platforms as well, especially PowerPC.

In order to understand the reason behind this difference
consider the final sequence of BLAS functions that is used
to implement each version of the expression, shown below
using an abstract notation. The original expression (1) is im-
plemented with the sequence on the left and the expression (2)
maps to the sequence on the right.

copy(A,tmp0);
gemm(1,A,B,1,tmp0);
copy(A,tmp1);
axpy(1,B,1,tmp1);
gemm(2,tmp1,A,1,tmp0);
copy(x,tmp1);
axpy(1,y,1,tmp1);
ger(1,tmp1,x,tmp0);

gemm(1,A,B,1,tmp0);
ger(1,x,x,tmp0);
ger(1,y,x,tmp0);
gemm(2,A,A,1,tmp0);
gemm(2,B,A,1,tmp0);

The second sequence uses more level 3 BLAS calls, but
eliminates three matrix copies. This results in reduced mem-
ory bandwidth requirement, especially for larger data sizes
that do not fit in cache. A compiler cannot realize this trade-
off by restricting itself to the mathematical properties of linear
algebra. In the case of linear algebra operations utilizing the
BLAS the compiler needs to know the tradeoffs of the various
functions on the target platform. The rest of the paper devel-
ops a library function selection algorithm and evaluates it on
the BLAS.

3. Mapping Operations

A simple approach to translating Octave code would be to
map each individual operation to an equivalent library call.
For instance, the Octave statement

A = B*C;

could be translated to a call to DGEMM assuming that the com-
piler has been able to determine that B and C are matrices
of real values. Additionally, the compiler must also insert
memory management code for allocating the array A and deal-
locating arrays B and C if these will not be used subsequently.

If the matrices B and C were column and row vectors,
respectively, the call to DGEMM would still be valid but is
no longer the most efficient implementation for the Octave
statement. Figure 2 shows the comparative times of vector
outer-product using two different BLAS functions, DGER and
DGEMM. It is clear that it is better to use DGER on all plat-
forms for all vector sizes that were tested. Interestingly, on
Intel Xeon, DGEMM is as fast as DGER and, therefore, the sec-
ond level of specialization yields little additional benefit.

In general, there may be multiple libraries, or even multi-
ple functions within a single library, available to perform an
operation. In traditional instruction selection, especially for
CISC where similarly multiple instructions may be available
to implement an operation, such cases have been handled us-
ing simple analytical cost models for the instructions. When
the individual “instructions” are library calls building analyti-
cal cost models and ensuring the accuracy of those models is
a challenge. The problem is exacerbated by the rapidly evolv-
ing and complex hardware technology that results in complex
tradeoffs that can be difficult to predict. Moreover, while
detailed analytical models might be available for the well-
studied BLAS, the same may not hold for other libraries.

Our approach is to drive the instruction selection using em-
pirical data whenever there is a choice. We have found that
in most cases, empirical evaluation tends to consistently fa-
vor one over the other. In general, the relative costs of multi-
ple equivalent implementations of a high-level operation may

2 3 4 5 6 7 8 9 10 11 12
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Vector size (thousands of double elements)

ti
m

e
(D

G
E

M
M

)
/

ti
m

e
(D

G
E

R
)

Implementing Vector Outer Product (x’*y + A)

AMD Opteron

PowerPC 970 (Apple G5)

Intel Xeon

Intel Itanium 2

Figure 2. DGEMM and DGER can both perform
vector outer-product.

depend on the context, including operand sizes, cache con-
flicts, available memory bandwidth, etc. In such situations,
more will need to done to pick the best choice based on the
compile-time knowledge. Our current implementation han-
dles contexts based on array sizes, but disregards the effects of
cache conflicts and memory bandwidth. Extending the imple-
mentation to handle more such contextual parameters is part
of the planned future work.

To summarize, the first step in effective function selection
for a target library is to evaluate the available implementations
for an operation:

Step 1: Build a table of relative costs (currently done by em-
pirical measurements) for different contexts (currently,
array sizes) for all the available implementations of an
operator, to be used by function-selector.

Even though the table can help select an appropriate func-
tion for a single operation, when considering a slightly larger
context than one single operation the optimal choice may be
dictated by other factors, as the motivating example showed
in Section 1 and which is also the topic of discussion of the
next section.

4. Statements in Basic Block

As in most other languages, all complex expressions in Oc-
tave must be broken down into binary operations and com-
puted one operation at a time. In order to infer the types of all
the intermediate values and disambiguating the heavily over-
loaded operations the compiler first flattens all the expressions
into the most basic operations that can be directly mapped to
either primitives or available library functions in the target
language. This creates explicit names for all the intermedi-
ate values. For example the Octave code R = a + b*C will
get flattened to t1 = b*c; R = a + t1;, where t1 is

0 2 4 6 8 10 12 14 16 18 20
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Vector size (millions of double elements)

ti
m

e
(D

A
X

P
Y

+
D

S
C

A
L

)
/

ti
m

e
(D

G
E

M
M

)
Implementing Scaled Vector Addition (alpha*x + beta*y)

AMD Opteron

PowerPC 970 (Apple G5)

Intel Xeon

Intel Itanium 2

Figure 3. DGEMM is better than scaling+addition.

a compiler-generated uniquely named temporary. Further, the
program is converted into the Static Single Assignment (SSA)
form to aid analysis [6]. We use a novel algorithm that oper-
ates directly on the Octave Abstract Syntax Tree (AST) with-
out having to build a control-flow graph [4].

The completely flattened SSA form of the program is
amenable to simple operation mapping outlined in Section 3.
However, such a simple approach misses several optimization
opportunities. Consider the following sequence of statements
on the right and a commonly occurring Octave statement on
the left that might flatten into such a sequence:

A = a*V + b*W; t1 = a*V;
⇒ t2 = b*W;

A = t1 + t2;

Assuming that a and b are real scalars and V and W are
real arrays, the above code performs scaled element-wise
addition of two arrays. A simple translation of the code se-
quence on the right to use the BLAS will translate to two calls
to DSCAL (scaling a vector) and one call to DAXPY (addition
of two vectors) . A call to DSCAL can be saved by folding one
of the scaling operations into DAXPY as it is capable of scal-
ing one of its input vectors. Interestingly, however, DGEMM
is also a candidate for performing the operation—it computes
α ∗ A ∗ B + β ∗ C. Setting one of the matrices A or B to
identity results in scaled matrix addition. Figure 3 shows the
performance comparison of implementing the above code se-
quence using a single call to DGEMM with that using DSCAL
and DAXPY. The figure shows that it is better to use DGEMM,
except on Itanium 2, emphasizing the need for the compiler to
be aware of platform-specific properties of the target library.

The above example also brings up another important as-
pect of library function selection: it is possible to fold mul-
tiple simple operations into a single library call. One way to

think about this is forward substitution. In this case the ex-
pressions computing t1 and t2 could be forward substituted
into the third statement to obtain the statement on the left.
Even though this process appears to argue against flattening,
there are multiple reasons why complete expression flattening
is still desirable:

1. The original program may never have an expression in
the form that maps directly to the target library. Flat-
tening followed by forward substitution can build such
expressions where none existed in the source.

2. Flattening makes all the temporaries needed in the pro-
gram explicit, greatly facilitating the process of type in-
ference.

3. Since complex expressions must eventually be evaluated
one operation at a time, flattening simplifies code gener-
ation.

This is similar to the three- or four-address intermediate
representations commonly found in traditional compilers. In
our case, however, an operation may have arbitrary number of
operands and results.

Not every operation may be implemented using a library
call that is capable of “absorbing” other operations. For ex-
ample no other operation can be combined into array scal-
ing, using the BLAS call DSCAL. We call the library function
that can perform multiple Octave operations in a single call
a multi-op function. For example, both DGEMM and DAXPY
are multi-op functions. An operation that maps to a multi-op
function is called a candidate operation.

This leads to the second step in the function-selection pro-
cess:

Step 2: Map the flattened statements to the target library, us-
ing the function-selector algorithm.

Figure 4(a) shows the algorithm function-selector
based on the above ideas. It works on a basic block. At the end
of applying the algorithm there may be dead code left corre-
sponding to statements that compute values that have already
been subsumed by multi-op functions.

Step 3: Perform dead-code elimination to remove subsumed
operations.

One possible source of non-optimality in the above al-
gorithm comes from ignoring the issue of library function
scheduling (similar to instruction scheduling) that might af-
fect the choice of the function calls. A second source is from
selecting an “optimal” library function for a single operation
and then folding multiple operations into it—the choice might
change if the two steps were combined.

5. Global Algorithm

The algorithm in Figure 4(a) works on basic blocks, but is
easily extended beyond by observing that if an operand was

defined in a φ-function then its value could be defined in mul-
tiple ways depending on the control-flow. If any operand of
a candidate operation comes from a φ-function, the control-
flow structure causing the φ-function is replicated around the
statement involving the candidate operation and the algorithm
recursively invoked on the new construct. Figure 4(b) outlines
the changes that must be made to the text that appears on grey
background in Figure 4(a) to get the final algorithm and Fig-
ure 5 illustrates it with an example.

algorithm basic-block-function-selector
inputs: P = Octave source code (as AST)

S = SSA graph of P
L = target library

outputs: R = Modified version of P with operations
mapped to the function calls in L
whenever possible

set R to an empty AST
for each simple statement, s, in P, do
if (s does not have an operation implemented by L)

add s unchanged to R
else

let ⊗ be the operation in s
let ω be the optimal choice of function in L

implementing ⊗ based on the current context
if (ω is a multi-op function and

⊗ is a candidate operation)
for each operand u

let d be the statement defining u, obtained from S

if (d can be subsumed in ω)

add the operands of d to ω

endif
endfor

endif
add the call to ω to R

endif
endfor

(a) Function selector for basic blocks.

let d be the statement defining u, obtained from S
if (d is defined by a φ-function and

the φ-function has no incoming back-edges)
replicate s into the control structure for φ (see Figure 5)
rename the left hand sides of s uniquely
insert a φ-function at the end of the new construct
call function-selector on the new construct

else if (d can be subsumed in ω)
add the operands of d to ω

endif

(b) Changes to the basic-block version to obtain the global function
selector.

Figure 4. The function-selector algorithm.

The global algorithm follows the SSA graph and is linear in
the size of the SSA graph and the source program. However,

each candidate operation can lead to replication. The number
of times a statement is replicated is bounded by the arity of the
multi-op library function being considered. In the worst case
each operand, a, for a candidate operation could potentially
come from a φ-function, φa, causing replication of the state-
ment s by a factor of |φa|, the number of arguments to φa.
Therefore, the total time to process a statement with candi-
date operation is bounded by

∏
a∈operands(s) |φa|. These steps

are repeated for each simple statement, s, in the program (in-
cluding those enclosed within compound statements), result-
ing in the total algorithmic complexity given by the following
expression: ∑

s∈simple-stmt(P)

∏
a∈operands(s)

|φa| (3)

There is one final factor, which is the result of consider-
ing all permutations of the operands for forward substitution
(assuming the operation is commutative, as is the case with
many linear algebra operations). Fortunately, this only results
in a small constant factor in most cases. The BLAS routine
gemm, which has the highest arity, has six operands, resulting
in an upper limit of 128 on the factor. However, only a small
fraction of those 128 permutations are viable.

Notice that cascaded code replication, caused by nested re-
cursive calls, is avoided as long as a multi-op function is it-
self not a candidate for absorption into another multi-op func-
tion. The above expression for time complexity looks large,
but is really almost always linear in the size of the program
for two reasons: The in-degree of φ-functions is bounded by
a small constant for structured flow graphs such as those en-
countered in Octave programs, and the SSA graphs are usu-
ally quite sparse [6]. In all our experiments the running time
of the algorithm was insignificant, and often immeasurably
small, relative to the running times of the applications.

6. Experimental Evaluation

We evaluated the algorithm on five different linear alge-
bra application kernels written in Octave, on three different
platforms. Wherever applicable, the programs were compiled
to 64-bit binaries. Vendor-optimized compilers and BLAS li-
braries were used on all platforms. All compilers were in-
voked with the -O3 optimization flag. All test programs were
written in C. Timing was captured by surrounding the BLAS
routines with gettimeofday calls. Code outside the main
loop was not included in the timing measurement, because it
contributed insignificantly to the total running time. Timing
results were obtained from 100 runs using arithmetic mean,
which was not significantly different from the median. Fig-
ure 6 compares the performance with straightforward transla-
tion that performs no forward substitution, but does minimize
array allocation and deallocation across loop iterations by re-
using space whenever possible. The graphs are plotted for the
entire range of data sizes that could fit in memory, but the data
sizes have been normalized to bring out the trends clearly.

alpha0 = ...;
B0 = ...;
A0 = ...;
if (c)
A1 = alpha0*A0;

elseif (d)
A2 = A0*B0;

else
...

end
A3 = φ(A0,A1,A2);
C0 = ...;
D1 = A3+C0;

(a) Example code in SSA
form. The last statement
contains a candidate oper-
ation.

alpha0 = ...;
B0 = ...;
A0 = ...;
if (c)
A1 = alpha0*A0;

elseif (d)
A2 = A0*B0;

else
...

end
A3 = φ(A0,A1,A2);
C0 = ...;
if (c)
D1 = A1+C0;

elseif (d)
D1 = A2+C0;

else
D1 = A0+C0;

end

(b) After replicating the
control flow.

alpha0 = ...;
B0 = ...;
A0 = ...;
if (c)
A1 = alpha0*A0;

elseif (d)
A2 = A0*B0;

else
...

end
A3 = φ(A0,A1,A2);
C0 = ...;
if (c)
D1 = A1+C0;

elseif (d)
D2 = A2+C0;

else
D3 = A0+C0;

end
D4 = φ(D1,D2,D3);

(c) After renaming
and inserting a new
φ-function for D.

alpha0 = ...;
B0 = ...;
A0 = ...;
C0 = ...;
if (c)
D1 = alpha0*A0+C0;

elseif (d)
D2 = A0*B0+C0;

else
D3 = A0+C0;

end
D4 = φ(D1,D2,D3);

(d) After the recursive call
and eliminating the dead
code.

Figure 5. Example illustrating the global function selection algorithm.

The benefits of the algorithms vary across applications,
but stay relatively consistent across platforms. The kernel
GS-Arnoldi benefits the most. It is a small piece of code
with one tight vector scaling loop. The function selection
algorithm is able to map the scaling particularly well onto
the BLAS DAXPY call, while the direct mapping of individ-
ual operations introduces copies inside the tight loop, caus-
ing high overheads. There are significant gains on almost all
other kernels as well, although those are less dramatic than
GS-Arnoldi. Some of the kernels, especially, Arnoldi
and Lanczone, show a reduction in gains with larger data
sizes. A possible reason is that the improvements in the code
generated by the function-selector come mainly from
reduced memory operations. As the data sizes increase, the
computational cost increases more rapidly than the size, amor-
tizing the data copying costs.

Finally, the bar graph shows a comparison of running times
on MATLAB, with the C code generated by a simple operation
mapping and the code generated by function-selector,
for two of the kernels for representative data sizes. For
GS-Arnoldi MATLAB does better than directly calling the
BLAS, because the computation is simple enough (repeated
vector scaling and accumulation) that writing a tight loop,
even in MATLAB, can eventually outperform any heavy-
weight BLAS function. Interpretation through byte-codes
and a Just-In-Time compiler enable MATLAB to overcome
the parsing overheads in the loop. This clearly shows that
the compiler must consider the alternative of directly gen-
erating loops. Previous studies have also encountered simi-
lar cases [12]. Finally, even though function-selector
does little better than a simple operation mapping on
Lanczos, directly calling the BLAS greatly improves the
performance over MATLAB. In both cases Octave is an order
of magnitude or more slower than MATLAB.

7. Related Work

APL was, perhaps, the earliest array processing language
and the pioneering work done on compiling APL is still highly
relevant to modern high-level languages [1]. Several impor-
tant transformations identified in the early studies on APL,
such as beating and dragging-along, are still being explored
in newer contexts [14]. The idea behind beating and dragging-
along is to perform operations in terms of the original copy of
an array as much as possible, instead of creating intermediate
temporaries—for example, when operating on a subsection
or the transpose of the array. The function-selector
algorithm implicitly performs a limited form of beating and
dragging-along whenever that can be absorbed within the
multi-op functions. This is the case with transposition, for
example. On the other hand, beating and dragging-along ar-
ray subsections is not an obvious win on modern processors
with hierarchical memories.

Other recent attempts at compiling MATLAB have largely
focused on type inference and specialization, rather than effi-
cient generation of calls to the underlying libraries [7, 11, 3].
However, it is worth comparing our approach with the tech-
niques that were explored in an extension of the FALCON
system at the University of Illinois [7, 12]. We do not have
access to a working copy of FALCON to make direct compar-
isons to our work, but published documents indicate that the
FALCON compiler attempted to match the BLAS calls to lin-
ear algebra operations in MATLAB. However, their algorithms
stopped at basic block levels, whereas the algorithm presented
here operates globally. Moreover, our strategy is targeted at a
class of libraries, rather than being BLAS-specific. FALCON
made use of a special rewriting mini-language and was limited
by its power. Our use of a much more powerful tree manip-
ulation toolkit allows us to perform much more sophisticated
transformations [15]. Finally, FALCON used no empirical or

0 10 20 30 40 50 60 70 80 90 100
0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75
3

Data size (normalized)

ti
m

e
(s

im
p

le
 m

a
p

p
in

g
)

/
ti
m

e
(f

u
n

c
ti
o

n
−

s
e

le
c
to

r)
1.5 GHz dual Intel Itanium 2, 4GB RAM, Linux 2.6

GS Arnoldi

Gauss−Siedel

Lanczos

Arnoldi

QR

(a) Itanium 2

0 10 20 30 40 50 60 70 80 90 100
0.25

0.5

0.75

1

1.25

1.5

1.75

2
2.25

2.5
2.75

3

Data size (normalized)

ti
m

e
(s

im
p

le
 m

a
p

p
in

g
)

/
ti
m

e
(f

u
n

c
ti
o

n
−

s
e

le
c
to

r)

2.2 GHz dual PPC 970 (Apple G5), 4 GB RAM, AIX 5.3

GS Arnoldi

Gauss−Siedel

Lanczos

Arnoldi

QR

(b) PowerPC

0 10 20 30 40 50 60 70 80 90 100
0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Data size (normalized)

ti
m

e
(s

im
p
le

 m
a
p
p
in

g
)

/
ti
m

e
(f

u
n
c
ti
o
n
−

s
e
le

c
to

r)

3.2 GHz dual Xeon, 1 GB RAM, Linux 2.6

GS Arnoldi

Gauss−Siedel

Lanczos

Arnoldi

QR

(c) Xeon

GS−Arnoldi Lanczos

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ti
m

e
 (

s
e
c
o
n
d
s
)

MATLAB vs directly calling the BLAS on PowerPC

MATLAB 6.5

Direct mapping to BLAS

Mapping by function−selector

(d) Comparison with MATLAB

Figure 6. Evaluation of function-selector. Data sizes (horizontal axis) have been normalized so that
100 represents the maximum data sizes that fit in memory.

analytical models for function selection, greatly limiting its
applicability to general libraries. While there is an ongoing
debate about the relative benefits of analytical and empirical
models we have found experimentally determined data to be
highly useful in our selection algorithm [16].

Traditional techniques for instruction selection, including
those based on peep-hole optimization and tree matching, usu-
ally operate on basic blocks. In Octave, basic blocks tend to
be very short and restricting library function-selection to ba-
sic blocks could seriously limit the optimization potential of
function-selection. By operating beyond basic blocks, the al-
gorithm presented here is able to overcome some of those lim-
itations. Even when extended beyond basic blocks, the stan-
dard techniques are limited by the analysis available at the
relatively low level of the intermediate code on which those

techniques operate. In generating library function calls, the
Octave compiler operates at a much higher level, invariably
with much smaller amount of code, and is able to make use of
results from deeper analyses, such as the SSA graph.

SPIRAL is a sophisticated system to generate code for DSP
algorithms from formulas written in the Signal Processing
Language (SPL) [13]. The code generator presented here is
a much simpler system, but shares with SPIRAL the use of
a declarative framework to encapsulate domain knowledge.
This makes it possible to enhance the system using the lessons
learned from SPIRAL. DSP compilers have to generally deal
with complex instruction sets. Most solutions proposed for
DSP code generation, including instruction selection, attempt
to map the problem to an optimization problem and then solve
that optimization problem [10, 8]. This invariably makes the

worst-case complexity exponential. Our function selection al-
gorithm offers a simple, highly efficient, solution that has been
shown to work well for the BLAS in practice.

8. Concluding Remarks

This paper developed an algorithm for function-selection
for mapping high-level Octave operations to a target library.
In order to get a good mapping of the original program the
compiler must examine larger contexts and map sequences of
high-level operations to suitable library functions.

Most of the past work in this direction has been restricted
to basic-block optimization. The global algorithm presented
here is driven by context-sensitive empirical data for a target
library on the target hardware and works on the SSA graph of
the program.

The contributions of this paper include:

1. A global efficient algorithm for function call selection to
implement high-level operations of Octave that is shown
to be effective for practical linear algebra code. The sim-
plicity of the algorithm makes it easy to implement in a
practical compiler.

2. Empirical evidence in support of the merit of unconven-
tional mappings of linear algebra operations to the BLAS
(Figure 3).

3. Empirical evidence for the BLAS that indicates that op-
timizations based on purely abstract properties of library
functions are insufficient, sometimes even counterpro-
ductive (Figure 1).

Going back to the motivating example of Section 1, there
is a choice between distributing multiplication across addi-
tion at the cost of higher number of multiplications and keep-
ing the expression parenthesized at the cost of more mem-
ory copies. That transformation is beyond the scope of the
library function-selection work presented here. However, the
function-selector algorithm achieves minimal mem-
ory copies if an earlier optimization phase does decide on dis-
tributing the multiplication.

References

[1] P. S. Abrams. An APL Machine. PhD thesis, Stanford Linear
Accelerator Center, Stanford University, 1970.

[2] A. Chauhan and K. Kennedy. Slice-hoisting for array-size in-
ference in MATLAB. In 16th International Workshop on Lan-
guages and Compilers for Parallel Computing, Lecture Notes
in Computer Science. Springer-Verlag, 2003.

[3] A. Chauhan, C. McCosh, K. Kennedy, and R. Hanson. Auto-
matic type-driven library generation for telescoping languages.
In Proceedings of the ACM / IEEE SC Conference on High Per-
formance Networking and Computing, Nov. 2003.

[4] A. Chauhan, D. McFarlin, and P. Malpani. Directly translating
MATLAB abstract syntax tree to the static single assignment
form. Technical Report TR642, Indiana University, Blooming-
ton, Indiana, Dec. 2006.

[5] K. D. Cooper and L. Torczon. Engineering A Compiler. Mor-
gan Kaufmann, Dec. 2003.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Pro-
gramming Languages and Systems, 13(4):451–490, Oct. 1991.

[7] L. DeRose and D. Padua. Techniques for the translation of
MATLAB programs into Fortran 90. ACM Transactions on
Programming Languages and Systems, 21(2):286–323, Mar.
1999.

[8] E. Eckstein, O. König, and B. Scholz. Code instruction se-
lection based on SSA-graphs. In 7th International Workshop
on Software and Compilers for Embedded Systems (SCOPES),
volume 2826/2003 of Lecture Notes in Computer Science,
pages 49–65. Springer Berlin / Heidelberg, 2003.

[9] C. Gomez and T. Scott. Maple programs for generating ef-
ficient FORTRAN code for serial and vectorised machines.
Computer Physics Communications, 115(2–3):548–562, Dec.
1998.

[10] V. Jain, S. Rele, S. Pande, and J. Ramanujam. Code restructur-
ing for improving real time response through code speed, size
trade-offs on limited memory embedded dsps. In International
Workshop on Languages and Compilers for Parallel Comput-
ing, volume 1863/2000, pages 459–463. Springer Berlin / Hei-
delberg, 1999.

[11] P. G. Joisha and P. Banerjee. An algebraic array shape infer-
ence system for MATLAB. ACM Transactions on Program-
ming Languages and Systems, 28(5):848–907, Sept. 2006.

[12] B. A. Marsolf. Techniques For The Interactive Development Of
Numerical Linear Algebra Libraries For Scientific Computa-
tion. PhD thesis, University Of Illinois At Urbana-Champaign,
1997.

[13] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code
generation for DSP transforms. Proceedings of the IEEE,
93(2):232–275, Feb. 2005. special issue on Program Gener-
ation, Optimization, and Platform Adaptation.

[14] D. J. Rosenkrantz, L. R. Mullin, and H. B. H. III. On minimiz-
ing materializations of array-valued temporaries. ACM Trans-
actions on Programming Languages and Systems, 26(6):1145–
1177, Nov. 2006.

[15] E. Visser. Program transformation with Stratego/XT:
Rules, strategies, tools, and systems in StrategoXT-0.9. In
C. Lengauer, D. Batory, C. Consel, and M. Papers, editors,
Domain-Specific Program Generation, volume 3016 of Lec-
ture Notes in Computer Science, pages 216–238. Springer,
Berlin / Heidelberg, Germany, 2004.

[16] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali,
and paul Stodghill. Is search really necessary to generate high-
performance BLAS? Proceedings of the IEEE, 93(2):358–386,
Feb. 2005. special issue on Program Generation, Optimization,
and Platform Adaptation.

