
Improving Scalability of OpenMP Applications on Multi-core Systems Using
Large Page Support ∗

Ranjit Noronha and D.K. Panda
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{noronha,panda}@cse.ohio-state.edu

Abstract

Modern multi-core architectures have become popular
because of the limitations of deep pipelines and heating
and power concerns. Some of these multi-core architec-
tures such as the Intel Xeon have the ability to run sev-
eral threads on a single core. The OpenMP standard for
compiler directive based shared memory programming al-
lows the developer an easy path to writing multi-threaded
programs and is a natural fit for multi-core architectures.
The OpenMP standard uses loop parallelism as a basis for
work division among multiple threads. These loops usually
use arrays in their computation with different data distribu-
tions and access patterns. The performance of accesses to
these arrays may be impacted by the underlying page size
depending on the frequency and strides of these accesses. In
this paper, we discuss the issues and potential benefits from
using large pages for OpenMP applications. We design an
OpenMP implementation capable of using large pages and
evaluate the impact of using large page support available in
most modern processors on the performance and scalability
of parallel OpenMP applications. Results show an improve-
ment in performance of up to 25% for some applications. It
also helps improve the scalability of these applications.

1 Introduction

With deeper processor pipelines showing limited gains
and with heating and power concerns, modern micro-
processors are now moving to multi-core architectures to
extract more performance from available chip area. As
a result, multi-threaded applications may potentially ex-
ploit maximum benefit from a multi-core architecture. The

∗This research is supported in part by a grant from Intel, Department
of Energy’s grants #DE-FC02-06ER25755 and #DE-FC02-06ER25749,
National Science Foundation grants #CNS-0403342 and #CNS-0509452;
grants from Mellanox, and Sun Microsystems; and equipment donations
from Intel, Mellanox, and SUN Microsystems.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

OpenMP standard [5] for shared memory parallel programs
was specifically designed to allow programmers to easily
write multi-threaded programs. With the advent of mod-
ern multi-core architectures, the OpenMP programming
paradigm may potentially become an important model for
application writers.

Multi-core architectures can largely be classified into
different categories depending on how they are intercon-
nected, as well as the sharing of the caches and the TLB’s,
etc. The Opteron based multi-core processor for example
implements two separate cores connected by separate hy-
pertransport links and separate L2 caches. On the other
hand, the Intel Xeon implements separate cores on the same
chip, which in turn share a common L2 cache. In addition,
each core is capable of running up to two threads. As a re-
sult, the hardware resources of each core are shared between
the two threads. This may create contention for resources
such as caches and the translation lookaside buffer (TLB).

The OpenMP programming paradigm implements loop
level parallelism, which is one one of the most basic avail-
able units of parallelism for parallel OpenMP programs.
Loop-level parallelism allows an OpenMP implementation
to easily split the work across multiple threads. Scalabil-
ity of loop-level parallelism may depend on the division of
work among different threads. In addition, for loops that
do strided computation on an array of data, the size of the
stride as well as the locality of the data may further limit the
scalability of the threads in an OpenMP program. Larger
stride patterns not only increase L2 cache misses, but also
increase the data TLB misses.

The Translation Lookaside Buffer in modern processors
is implemented to speed the translation of virtual to physical
addresses. The translation is usually implemented through
the multiple levels of page directories and tables stored in
physical memory. Since accessing physical memory can
take several hundred cycles depending on the architecture,
the TLB can provide substantial gains in application perfor-
mance. However, the TLB is a limited resource, and may
not provide adequate benefit in the face of poor application
locality. Traditionally, most pages have been 4KB in size,
modern processor also provide support for large pages, up

to 2MB or bigger. This could help dramatically reduce TLB
misses and have an impact on the performance of a wide va-
riety of applications.

Thus it is natural to ask whether OpenMP applications
which exploit loop-level parallelism and which perform
strided access to several arrays, where the stride size is
greater than a single 4KB page can potentially benefit from
large pages. This benefit would potentially come about
from the reduction in TLB misses and a decrease in pro-
cessor pipeline stalls.

In addition to strided access, the TLB is shared across
multiple threads running on the same core for architectures
which implement SMT (Simultaneous Multi-threading).
An example of such an architecture is the Intel Xeon pro-
cessor which implements hyper-threading. Because of the
shared nature of the TLB, depending on the access patterns
and locality of the application, the number of entries in the
TLB may be potentially halved. Large pages may poten-
tially provide additional benefit in this case and may also
have an impact on the scalability of the multi-threaded ap-
plication.

In this paper, we discuss the issues and potential benefits
from using large page support for parallel OpenMP appli-
cations. We design an OpenMP implementation which can
take advantage of large pages. We evaluate this implemen-
tation across a range of applications and multi-core archi-
tectures. These evaluations show that there is an improve-
ment in parallel performance of 25% for CG. In addition,
the applications scale better. We also use instrumentation
tools to better understand how large page support impacts
the TLB cache misses. These results show a substantial re-
duction in TLB misses.

The rest of this paper is organized as follows. In section 2
we look at background material. Section 3 discusses poten-
tial issues and design challenges. In section 4, we evaluate
the impact of large pages on a variety of different applica-
tions. Section 5 looks at related work. Section 6 presents
conclusions and future work.

2 Background
In this section we discuss multi-core architectures and

the OpenMP programming model.

2.1 Multi-core Architectures

Multi-core architectures have been evolving as a means
to increase processing power, while reducing the impact
of heating and power consumption, in addition to address-
ing some of the limitations of a super-scalar architecture.
Multi-core processors implement chip level multi-threading
(CMT). The CMT mechanism allows multiple different
threads of execution on the same processor. The CMT can
potentially improve performance of multi-threaded work-
loads. Multi-core architectures in general consist of sev-
eral processor core on the same chip die. These cores usu-
ally share buses and caches. Several different variations

of multi-core architecture have been proposed and imple-
mented. We briefly describe some of these architectures be-
low.

Chip Level MultiProcessing (CMP): This technique im-
plements separate processing cores for each thread on the
die. Each core has an individual copy of the processor hard-
ware. The processing cores are usually connected through
a hardware bus for communication and may also share a
cache. Examples of implementations of CMP’s are the
AMD dual-core Opteron processors. The cores on the
Opteron are connected by hyper-transport links and have
separate 1MB L2 caches which are kept coherent through
snooping by the individual processors. Each processor
in turn has a two-level data Translation Lookaside Buffer
(TLB) cache. The L1 DTLB has 128 entries, while the L2
DTLB has 1024 entries.

Simultaneous Multi-threading (SMT): Simultaneous
multi-threading (SMT) enables a single core to run one
or more threads simultaneously. SMT is usually achieved
through the use of multiple thread contexts on the same pro-
cessor. The threads share different execution units and the
processor is responsible for hazard detection and manage-
ment between the different threads. Different implementa-
tions of SMT are possible. One potential implementation
is to flush the pipeline on a thread stall and switch in the
other thread. Hyper-threading on the Intel Xeons is an ex-
ample of an implementation of SMT. The other possibility
is to implement different thread contexts and allow different
stages of the pipeline to run different thread contexts. This
potentially maximizes throughput, especially in the face of
load stalls. The Sun Niagra is an example of this type of
implementation.

CMT+SMT: The combination of CMT and SMT allows in-
dividual processor cores to run multiple threads. The Intel
Xeon and Sun Niagra processors [17] are examples of this
type of processor.
2.2 The OpenMP Programming Model

The OpenMP specification [5] for multi-processing is an
API which may be used to direct multi-threaded, shared
memory programs on shared memory systems. This is
through the use of explicit compiler directives. It is based
on the Fork - Join model of parallel execution as shown
in Figure 1. OpenMP programs usually begin execution
as a single process which contains a master thread. The
master thread may execute sequentially till a parallel region
is encountered, at which point multiple worker threads are
spawned to process the parallel region. On completion of
the parallel region, the threads exit and the master thread
completes execution.

3 Challenges, Design and Implementation Is-
sues

In this section, we look at the potential issues in using
large page support for parallel OpenMP application. Sec-

0 master thread

fork for parallel section

0 1 2 n

n n n0 1 2

join implicit barrier
0

farm of
threads

nested parallelism

Fig. 1. OpenMP fork-join model

tion 3.1 discusses the potential impact of large page sup-
port on loop parallelism in OpenMP applications. Sec-
tion 3.2 looks at the potential impact of the page tables and
TLB sizes on parallel application performance. Finally, sec-
tion 3.3 looks at some design and implementation issues.

3.1 Loop Level Parallelism in OpenMP

The OpenMP model offers a number of different direc-
tives for loop-level parallelism. It is possible to extract
substantial gains by dividing the work available in a loop
among the different threads or processes in an application.
Algorithm 3.1 shows a simple example of an OpenMP loop
which sums the values of an array. If the array is very large,
it might occupy several 4KB pages in physical memory. As
a result, all the threads in the parallelization phase may ex-
perience several TLB misses to access the array data. Using
a larger page size has the potential to substantially reduce
the number of TLB misses for all threads, and help improve
performance. In addition, more complicated array accesses
may occur in programs, such as strided accesses. These typ-
ically occur in codes for some algorithms of the Fast Fourier
Transform [8]. Depending on the stride size, TLB misses
might be a substantial performance penalty. We now dis-
cuss the issues and challenges involved in using large pages
with parallel applications.

Algorithm 3.1: SUM(S)

#pragma omp parallel

for private(i)
for(i = 0; i < S; i + +)
sum+ = array[i];

3.2 Page Tables and the Instruction and
Data TLB’s

Modern architectures support up to 64-bit memory ad-
dress spaces. This allows for a total virtual memory area
much larger than the physical memory of most modern

computers. Since most applications in reality are likely to
use only a fraction of their actual physical memory, most
modern processors support the translation of virtual ad-
dresses to physical addresses. These translations are sup-
ported through segmentation and paging. The virtual ad-
dress space of the operating system and applications is
mapped through a series of tables to the actual physical ad-
dress. These tables are usually managed by the operating
system. An example of a page table architecture is shown
in Figure 2. Figure 2 shows a three level page table archi-
tecture. Each process on a modern Linux system contains
a Page Global Directory (PGD). The PGD is the first level
page table. It contains pointers to the middle level page ta-
ble called the Page Middle Directory (PMD). The entries
in each PMD point to individual page frame which contain
page table entries (PTE). The Linux kernel does not imple-
ment PMD for the x86 64 architecture, and only supports
PGD’s. On Linux, PGD’s point to page frames contain-
ing PTE’s. The virtual address is divided into three com-
ponents. The leftmost bits are used to index into the PGD,
the middle set of bits are used to index into the page frames
containing the PTE’s and the rightmost set of bits are used
as an offset to the location in the physical page. The pro-
cess of translating a virtual address to a physical address
by traversing the PGD and page frames containing PTE’s is
called the page walk. The PGD and page frames containing
the PTE’s are stored in main memory. As a result, trans-
lating a virtual address to an actual physical address is an
expensive operation, requiring a minimum of two memory
accesses. To speed this process, most modern processors
implement a Translation Lookaside Buffer Cache (TLB).
The TLB is usually split into an instruction TLB (ITLB)
and a Data TLB (DTLB). Depending on the architecture,
the TLB may be a two-level architecture, as in the case of
the Opteron processor (L1DTLB and L2DTLB).

Other
unrelated
PMD Page
Frames

pgd_offset pgd_t

mm_struct−>pgd Only 1
pgd_t
Page
Frame

pmd_offset

pte_offset

pte_t

Frame
Page

pte_t

Other
unrelated

Frames
PTE Page

unrelated

Frames

Other

Data

Page Frame
With User Data

pgd_index
pmd_t Page
Frame

Process PGD PMD Page Frame
Offset within

PTE Page Frame
Offset within

Offset within data frame

Linear (virtual) address

pmd_t

Offset within

Fig. 2. Page table architecture, courtesy Gor-
man [14]

TLB Sizes and Memory Coverage: Both the Intel and
Opteron processors have separate cache for data and in-
struction page and directory translations. Table 1 shows
some of the TLB Sizes and memory coverage for the In-
tel Xeon and Opteron processors. These sizes were mea-
sured through the CPUID instruction [9, 6]. Most modern
processors also support large 2MB pages in addition to the
traditional 4KB pages. The ITLB and DTLB usually also
have specific entries to support large pages. Since the en-
tries for large pages may be different, the TLB’s usually
support a smaller number of entries for large pages. This
is illustrated in Table 1. The Intel Xeon processor has 128
entries for 4KB pages and 32 entries for 2MB pages. Sim-
ilarly, the Opteron processor has 32 entries for 4KB pages
in L1DTLB and 8 entries for 2MB pages in D1TLB. The
D2TLB in the Opteron does not have any entries for large
pages. While the relative sizes of the pages and their cov-
erages are different, the large difference in TLB size can
have an important impact on application performance, par-
ticularly for applications with poor locality.

Table 1. Processor TLB Sizes and Coverage

Xeon Opteron
ITLB (4KB) Size 128 32
L1DTLB (4KB) Size 128 32
L1DTLB (2MB) Size 32 8
L2DTLB (4KB) Size – 512
L2DTLB (2MB) Size – –
L2DTLB (4KB) Coverage 512KB 128KB
L2DTLB (2MB) Coverage 64MB 16MB

Application Locality and Large Pages: Though, the
memory footprint is much higher in the case of 2MB pages,
the smaller size of the DTLB for large pages might be a
limitation in the case where the application makes multiple
non-contiguous stride accesses with a stride access of larger
than 2MB. With applications written in this way with lower
spatial locality, the higher capacity of the DTLB for 4KB
pages might yield improved performance. This issue also
occurs on the Opteron processor which has an L2DTLB size
of 1024 for 4KB pages and none for 2MB pages. Applica-
tions with stride access larger than 2MB on the Opterons
might in fact benefit more because of the larger L2DTLB.
SMT and the shared DTLB: In an SMT based proces-
sor system, the hardware resources are shared. This in-
cludes the DTLB. Parallel shared memory OpenMP pro-
grams may potentially exploit the multiple potential pro-
cessor contexts available for improved performance. This
sharing may potentially result in two or more thread being
scheduled on the same processor core. As the threads share
the DTLB, depending on the access patterns of the appli-
cation, the effective number of TLB entries could poten-
tially be halved. For applications with good data locality
and accessing more than 2MB sequentially, the impact of

L2DTLB misses might be more severe. Using large 2MB
pages may help reduce the frequency and impact of these
misses.
SMT DTLB Context Switching Time: Large pages may
potentially improve the performance of a multi-threaded ap-
plication on an SMT system. However, the limited number
of DTLB entries for large pages in the processor cache may
potentially become a bottleneck and reduce performance.
In addition, memory load stalls typically evict the thread
context. Depending on the design of the processor archi-
tecture, this context switch might dominate the application
execution time. As a result, the potential performance im-
provement from reduced DTLB misses might not translate
into improved performance at the application level.

3.3 Design and Implementation Issues of
OpenMP implementation for large
pages

To measure the impact of using large pages on the per-
formance of parallel applications, we use a modified ver-
sion of the Omni/SCASH Cluster OpenMP implementa-
tion [1, 2, 15]. The Omni compiler transforms a C or FOR-
TRAN program into multithreaded code. To enable it to
work with the underlying SCASH DSM system, all global
variable declarations are made into global pointers which
are mapped to shared regions in the process memory space.
For processes within a node (intra-node), the shared region
is maintained via a memory mapped file. For processes
on physically separate nodes, the underlying SCASH DSM
system is responsible for maintaining data coherency. This
is largely through the use of page memory protections on
the shared regions which trigger a page handler, which is re-
sponsible for fetching the page from a remote manager. Our
interest in using this system lies mainly in the global trans-
formation of global data to a common memory mapped re-
gion. Many parallel OpenMP applications use static global
arrays (stack allocation) for computation. Omni translates
these global arrays to pointers. These pointers are then al-
located memory from an internal memory allocator. This
memory allocator in turn allocates memory from the mem-
ory mapped file for processes on the same node. This al-
lows all processes to in turn share the same memory image.
We do not use any of cluster OpenMP features of Omni
and instead only use it on a single node with multiple pro-
cesses running. The underlying SCASH software DSM co-
herency protocol is also disabled and the native hardware
virtual memory run-time system is used to manage page co-
herency. We briefly discuss some of the design challenges
and tradeoffs in designing an OpenMP implementation for
large pages.

Large Page Allocation: There are several studies for allo-
cating large pages for applications on-demand and based on
the allocation size [16, 20, 22, 19]. These strategies maxi-
mize the benefit of large page support when there are sev-
eral different applications running on the system, and com-
peting for memory. When running an OpenMP parallel ap-

plication on a node, it is likely to be the only application
running at the time. As a result preallocation of large pages
is likely to reduce the complexity of the allocation algo-
rithm and also the latency of the allocation. This will prob-
ably yield higher performance for the application. In ad-
dition, the Omni/SCASH cluster OpenMP implementation
allocates both global shared and dynamic memory at pro-
cess startup. This matches well with the preallocation of
large pages. In our implementation, we preallocate a set of
large pages which may be used by the processes through the
hugetlbs filesystem [12]. We have modified Omni/SCASH
to use the map file from the hugetlbfs file system. All mem-
ory allocated in the hugetlbfs will use 2MB pages.

Intra-node Communication: Omni/SCASH requires
communication for the implementation of certain OpenMP
primitives such as barriers, reductions, etc. The original im-
plementation of Omni/SCASH use the SCore communica-
tion library [4]. SCore typically uses Myrinetas the under-
lying communication substrate. We only use the intra-node
SMP features of the Cluster OpenMP implementation and
do not need a network for inter-node communication. To
avoid having to use a Myrinet network interface, we im-
plement a simple shared memory message passing interface
through a file memory mapped into each processes space.
The memory mapped file uses traditional small pages (4KB)
and not large pages. This implementation only uses a sin-
gle memory copy (from the source process to the shared
memory buffer). On the receiving process, the buffer may
be directly accessed without the need for an additional copy.
Through a set of flag, the processes may signal the availabil-
ity of a message for the remote process as well as allowing
a buffer to be freed up. Multiple outstanding messages may
be in flight between a set of processes (upto 32 in the cur-
rent implementation). Since the intra-node communication
are all small messages (less than 1KB), this implementation
is feasible.

Memory Protection: The Omni/SCASH cluster OpenMP
implementation memory protects pages as a mechanism
to trapping accesses to pages. This allows for coherency
mechanisms of the eager release consistency (ERC) proto-
col to to take effect. We only use the cluster OpenMP im-
plementation in intra-node mode. In this mode, the memory
is shared between the different processes on the node. The
underlying hardware is responsible for maintaining mem-
ory coherency. As a result, the memory protection mech-
anism is not needed. We disable this in our version of the
Omni/SCASH OpenMP implementation.

In the next section, we discuss the performance evalua-
tion of the large page support with OpenMP applications.

4 Performance Evaluation
In this section, we discuss the performance evaluation of

parallel OpenMP applications with large page support. Sec-
tion 4.1 discusses the hardware setup used to evaluate the
applications. Section 4.2 discusses some of the characteris-
tics of the applications we are using. Section 4.3 discusses

the impact of instruction TLB misses on the performance
of the application. Section 4.4 discusses the impact of large
pages on application data TLB misses.
4.1 Experimental Setup

To evaluate our design, we use two hardware platforms.
The first hardware platform consists of an dual, dual-core
Opteron 270 processors (4-cores), with 4GB main memory
and running SuSE Enterprise Linux. The other platform is a
dual, dual-core Intel Xeon processor (4-cores) with hyper-
threading enabled (enabling each core to run up to 2 threads
for a total of 8 threads). The Intel Xeon system has 12GB
of main memory and runs Redhat AS4. Both systems have
a 2.6.19 kernel.org kernel which is multi-core- and hyper-
threading-aware.

4.2 Application Characteristics

In this section, we discuss some of the characteristics
of the OpenMP version of the NAS Parallel Benchmarks
(class B) BT, CG, FT, SP and MG [8] used in our evalu-
ation which might benefit from large pages. BT sequen-
tially accesses 5x5 blocks of 8-byte arrays. Several of these
might fit in a single large page and provide benefit. CG ac-
cesses randomly generated matrix entries. The stride size
might be larger than a 4KB pages and might benefit from
large page support. FT divides the DFT of any compos-
ite size N=N1XN2 into many smaller DFT’s of size N1
and N2. Several smaller DFT’s might fit in a single 2MB
pages, which might reduce TLB misses. We would expect
SP to perform similarly to BT because of similar data ac-
cess patterns and footprints. MG works continuously on a
set of grids that are changed between coarse and fine. It
tests both short and long distance data movement. When
the data movements tested are larger than 4KB, 2MB pages
are likely to provide benefit.

Table 2. Application Memory Footprint
Instruction Data

BT (B) 1.6MB 371MB
CG (B) 1.4MB 725MB
FT (B) 1.4MB 2.4GB
SP (B) 1.6MB 387MB
MG (B) 1.4MB 884MB

4.3 Impact of large pages on Instruction
Misses of Parallel Application

Table 2 shows the sizes of the binary of the different NAS
applications. As may be seen from the table, the binary size
is slightly less than 2MB. As a result, the binary may po-
tentially fit in a single large page of 2MB. This may po-
tentially eliminate ITLB misses. By comparison the larger
size of the ITLB in the Intel and Opteron processors us-
ing 4KB pages may cover close to 1/4 th of this memory
area. Since most of the time in OpenMP applications could

be spent in large parallel loops, we would expect that the
instruction temporal and spatial locality to be fairly high
and the cost of instruction misses to be amortized across
many accesses. Figure 3 shows the aggregate rate of in-
struction TLB misses for the applications BT, CG, FT, SP
and MG running 4 threads on a dual dual-core Opteron plat-
form, measured using the OProfile [3] tool. MG shows the
highest rate of 0.45 instruction misses/second. With mod-
ern processors running at 2.0 GHz, assuming an ITLB miss
of 200 cycles, this corresponds to a miss penalty of approx-
imately 90 cycles/second. Thus, the ITLB miss rate is not
likely to be a significant source of overhead, and may po-
tentially not benefit from large pages. A similar conclusion
was reached by Cox et.al. [16] for sequential applications.
Correspondingly, we do not pursue this direction further.

4.4 Impact of large pages on Application
Data Misses

In this section, we discuss the impact of large pages on
application data in the parallel OpenMP applications. We
first discuss the impact on system scalability, followed by
the impact on data TLB misses.

System Scalability: Figure 4 shows the impact of small
4KB pages and large 2MB pages on the applications BT,
CG, FT, SP and MG. We evaluate these applications on a
dual-core dual-processor Opteron 270 system and on a dual-
core dual processor Intel Xeon system with hyper-threading
(SMT) enabled, allowing us to evaluate the system up to 8
SMT’s. As can be seen from the Figure 4, the Intel and
Opteron systems perform similarly on all five applications
up to 4 threads. At 8 threads, the Xeon platform does
not scale well. A similar observation was made by Chap-
man, et.al [11]. We attribute this to the implementation
of SMT on the Intel Xeons which flush the entire pipeline
on a thread context switch. This has considerable impact
on the performance of the applications. We can make the
following observations from Figure 4. Large page support
has an impact on the performance of the applications CG,
SP and MG. For CG, on the Opteron 270 based system, at
4 threads, there is an improvement of approximately 25%.
On Opteron 270, SP shows a performance improvement of
20% at 4 threads with 2MB pages over 4KB pages. On
the Intel Xeon’s, SP shows a performance improvement of
13% at eight threads with 2MB pages. In addition, while
the SMT implementation on the Xeon’s prevents SP from
scaling from 4 to 8 threads, 2MB pages help improve scal-
ability from 2 to 4 threads. For MG, on Opteron 270, there
is a performance improvement of approximately 17% at 4
threads with 2MB pages. Large pages enable CG, MG and
SP to scale better on both the Opteron and Xeon platforms.
For applications BT and FT there is no significant improve-
ment in performance when using 2MB pages instead of
4KB pages. We will now examine the impact of Data TLB
misses on the performance of the applications.

Data TLB Misses: The OProfile tool allows use to measure
a number of different processor statistics. Using OProfile,

we measured the number of DTLB misses on the Opteron
platform for the different applications. Figure 5 shows the
DTLB misses with 4KB and 2MB pages at four threads.
The 4KB and 2MB misses were normalized with respect to
the 4KB misses for each of the applications. From Figure 5
we can see that for applications CG, SP and MG, the num-
ber of DTLB misses is reduced by approximately a factor
of 10 or more when using 2MB pages over 4KB pages. CG,
SP and MG in turn show the most benefit when using 2MB
pages as discussed in Section 4.4. Since the performance
of an application depends on many factors such as locality
and caching, the reduction in DTLB misses does not cor-
respond exactly with the improvement in performance. For
the applications BT and FT the reduction in DTLB misses
is lower, corresponding to a factor of 2-3. Correspondingly,
the improvement in performance is lower.

BT CG FT SP MG
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

IT
LB

 M
iss

es
/s

ec
on

d
Application

Fig. 3. Aggregate Instruction TLB misses per
second of application run time with the appli-
cation binary placed in 4KB pages.

5 Related Work
The work in this area can largely be categorized into in-

vestigations into the design of large page support for appli-
cations and evaluation of OpenMP primitives and applica-
tions on multi-core architectures. We discuss each of these
in detail.

Large Page Support for Applications: Cox et.al. pro-
posed transparent operating system support for application
memory using large page support [16]. They considered a
number of different design trade-offs while using a reser-
vation based approach for allocating superpages of differ-
ent sizes. Evaluation was in terms of a number of differ-
ent sequential applications (including SP). Their reservation
based approach showed that large pages can significantly
reduce or even eliminate data TLB misses, and improve se-
quential application performance [16]. Our approach dif-
fers from theirs in that we allocate all the application data
in large 2MB pages at startup. Since parallel OpenMP ap-
plications on a multi-core system are likely to have exclu-
sive access to the system for the period of the run, this
approach is practical and likely to yield a better improve-
ment in performance. In addition, we evaluate the impact

 200

 300

 400

 500

 600

 700

 800

 8 HT4 Cores2 Cores1Core

Ti
m

e
(s

ec
)

Number of threads

BT

Opteron-4KB
Opteron-2MB

Xeon-4KB
Xeon-2MB

 50
 100
 150
 200
 250
 300
 350
 400
 450

 8 HT4 Cores2 Cores1Core

Ti
m

e
(s

ec
)

Number of threads

CG

Opteron-4KB
Opteron-2MB

Xeon-4KB
Xeon-2MB

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 8 HT4 Cores2 Cores1Core

Ti
m

e
(s

ec
)

Number of threads

FT

Opteron-4KB
Opteron-2MB

Xeon-4KB
Xeon-2MB

 200

 250

 300

 350

 400

 450

 500

 550

 8 HT4 Cores2 Cores1Core

Ti
m

e
(s

ec
)

Number of threads

SP

Opteron-4KB
Opteron-2MB

Xeon-4KB
Xeon-2MB

 10

 15

 20

 25

 30

 35

 40

 45

 8 HT4 Cores2 Cores1Core

Ti
m

e
(s

ec
)

Number of threads

MG

Opteron-4KB
Opteron-2MB

Xeon-4KB
Xeon-2MB

Fig. 4. Scalability of different applications
on an Opteron and Intel Xeon platform with
4KB and 2MB pages. Single thread per core
is used upto 4 threads. Two threads per
core are used at eight threads (using hyper-
threading on the Intel Xeon platform).

BT CG FT SP MG
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Application

4KB
2MB

Fig. 5. Normalized Data TLB misses at 4
threads on an Opteron platform

of large page support on the scalability of OpenMP par-
allel applications on modern multi-core architectures with
SMT. Other research directions [20, 22, 19] focused on the
integration and design of huge pages. Performance evalua-
tion focused on sequential applications. Additional research
did not consider applications in their performance evalua-
tion [7, 10, 18]. Different TLB architectures for large pages
were simulated and their impact on sequential application
performance was evaluated in [21].

OpenMP and Multi-core Architectures: There have been
some recent investigations into evaluating the performance
of OpenMP primitives and applications parallelized with
OpenMP on multi-core architectures [11, 13]. Chapman
et.al. evaluated the EPCC, SPEC OMPN2001 and NAS Par-
allel (NPB) 3.0 on CMP and SMT architectures. We found
similar conclusions regarding the scalability of parallel ap-
plications on the Xeon SMTs. Our work differs from their
work in that we have evaluated the impact of large pages on
the performance and scalability of NAS Parallel (NPB) 3.0
on CMP and SMT systems. Nikolopoulos et.al. [13] also
evaluated the performance of NAS Parallel Benchmarks on
SMT and CMP architectures. Their findings are similar to
those of Chapman et.al. in that these benchmarks do not
scale well on SMT architectures. In addition, they attempt
to look at the results of TLB misses from the applications.
Our work differs in that we evaluate the TLB misses and in
addition, we also propose and evaluate the use of large or
superpages to enhance the scalability of parallel OpenMP
applications.

6 Conclusions and Future Work
In this paper, we have studied the impact of large

page support available in modern processors on the perfor-
mance of the OpenMP Parallel applications on a multi-core
Opteron and Intel Xeon platforms (with hyper-threading).
We discuss the potential issues, design and evaluate an
OpenMP system which uses large pages. Our evaluations

show that the applications CG, MG and SP show an im-
provement of up to 25% at four threads on the Opteron
platform using 2MB pages instead of 4KB pages. In ad-
dition, profiling tools show that the number of data TLB
misses is dramatically reduced for these applications. In
addition, the scalability of these applications is improved.
2MB pages also help improve the performance on the Intel
Xeon platform. Scalability on the Intel Xeon platform is
also improved. However, because of the pipeline flush im-
plementation of SMT on the Intel Xeons, the applications
scale poorly when going from four threads to eight threads.

While 2MB pages can improve performance of applica-
tions, transparent native kernel support for large pages is
still not present in the Linux kernel. Ideally, the kernel and
memory allocation library should be able to allocate a mix
of large pages for the bigger allocation and the typical 4KB
pages for the smaller allocations. This will allow traditional
applications to take advantage of large pages transparently.
Finally, we would also like to evaluate the benefit of large
pages on the performance of other programming paradigms
such as MPI.

References

[1] Omni OpenMP Compiler Project.
http://phase.hpcc.jp/Omni/.

[2] Omni/SCASH: Cluster-enabled Omni OpenMP
on a software distributed shared memory system
SCASH . http://phase.hpcc.jp/Omni/Omni-doc/omni-
scash.html.

[3] OProfile-A System Profiler for Linux.
http://oprofile.sourceforge.net/.

[4] The score system software. http://www.pccluster.org/.

[5] The OpenMP Specification. http://www.openmp.org/.

[6] Advanced Micro Devices, Inc. CPUID Speci-
fication. www.amd.com/us-en/assets/content type/
white papers and tech docs/25481.pdf, 2006.

[7] N. Ganapathy and C. Schimmel. General purpose op-
erating system support for multiple page sizes. In
USENIX Annual Technical Conference, 1998.

[8] H. Jin, M. Frumkin and J. Yan. The OpenMP Imple-
mentation of NAS Parallel Benchmarks and Its Perfor-
mance. In Technical Report NAS-99-011, 1999.

[9] Intel Inc. Intel 64 and IA-32 Archi-
tectures Software Developer’s Manual.
http://www.intel.com/design/processor/manuals/2536
66.pdf, 2006.

[10] Y. A. Khalidi, M. Talluri, M. N. Nelson, and
D. Williams. Virtual memory support for multiple
page sizes. In Workshop on Workstation Operating
Systems, pages 104–109, 1993.

[11] Lei Huang, Chunhua Liao, Zhenying Liu and Bar-
bara Chapman. An Evaluation of OpenMP on Current
and Emerging Multithreaded/Multicore Processors. In
IWOMP, 2005.

[12] Mark G. Sobell. HugeTLBFS: Translation Look-
Aside Buffer Filesystem. In A Practical Guide to
Red Hat Linux: Fedora. Core and Red Hat Enterprise
Linux, Second Edition, 2004.

[13] Matthew Curtis-Maury, Xiaoning Ding, Christos
Antonopoulos, Dimitrios Nikolopoulos. An Evalu-
ation of OpenMP on Current and Emerging Multi-
threaded/Multicore Processors. In IWOMP, 2005.

[14] Mel Gorman. Understanding the Linux Virtual Mem-
ory Manager. Prentice Hall, 2004.

[15] Mitsuhisa Sato, Hiroshi Harada and Yutaka Ishikawa.
OpenMP compiler for Software Distributed Shared
Memory System SCASH. In Workshop on Workshop
on OpenMP Applications and Tool (WOMPAT), 2000.

[16] J. Navarro, S. Iyer, P. Druschel, and A. Cox. Practical,
transparent operating system support for superpages.
SIGOPS Oper. Syst. Rev., 36(SI):89–104, 2002.

[17] Richard McDougall and James Laudon. Multi-Core
Microprocessors Are Here. In ;login: The USENIX
Magazine, volume 31, October 2006.

[18] T. H. Romer, W. H. Ohlrich, A. R. Karlin, and B. N.
Bershad. Reducing TLB and memory overhead using
online superpage promotion. In ISCA, pages 176–187,
1995.

[19] I. Subramanian, C. Mather, K. Peterson, and
B. Raghunath. Implementation of multiple pagesize
support in HP-UX. In USENIX, 1998.

[20] M. Talluri and M. D. Hill. Surpassing the tlb perfor-
mance of superpages with less operating system sup-
port. In ASPLOS-VI: Proceedings of the sixth inter-
national conference on Architectural support for pro-
gramming languages and operating systems, pages
171–182, New York, NY, USA, 1994. ACM Press.

[21] M. Talluri, S. I. Kong, M. D. Hill, and D. A. Patterson.
Tradeoffs in supporting two page sizes. In ISCA, pages
415–424, 1992.

[22] Zhen Fang and Lixin Zhang. A Comparison of Online
Superpage Promotion Mechanisms. Technical Report
UUCS-99-021, 1999.

