
Process Reassignment with Reduced Migration Cost in Grid Load Rebalancing∗

Lin Chen Cho-Li Wang Francis. C.M. Lau
Department of Computer Science,

The University of Hong Kong,
Pokfulam Road, Hong Kong

{lchen2, clwang, fcmlau}@cs.hku.hk

Abstract

We study the load rebalancing problem in a heteroge-
neous grid environment that supports process migration.
Given an initial assignment of tasks to machines, the prob-
lem consists of finding a process reassignment that achieves
a desired better level of load balance with minimum re-
assignment (process migration) cost. Most previous algo-
rithms for related problems aim mainly at improving the
balance level (or makespan) with no explicit concern for the
reassignment cost. We propose a heuristic which is based
on local search and several optimizing techniques which in-
clude the guided local search strategy and the multi-level
local search. The searching integrates both the change of
workload and the migration cost introduced by a process
movement into the movement selection, and enables a good
tradeoff between low-cost movements and the improving
balance level. Evaluations show that the proposed heuris-
tic can find a solution with much lower migration cost for
achieving the same balance level than previous greedy or
local search algorithms for a range of problem cases.

1 Introduction

In this paper, we consider the problem of dynamic load
balancing through process migration in a heterogeneous
grid environment. Given an initial assignment, the problem
is to find a process reassignment which achieves a desirable
level of load balance with minimum migration cost. This is
called the load rebalancing problem. The minimum migra-
tion cost requirement suggests that this happens during the
running of an application and not initially at the beginning.

The system conditions of a dynamic grid evolve quickly,
and to obtain optimal load balance is not that feasible. It is
more practical to maintain the load balance level of the ma-
chines within an acceptable range [4]. By achieving some
∗This research is supported by a Hong Kong RGC grant (HKU

7176/06E) and a China 863 grant (2006AA01A111).

reasonable target load balance level, our solution ensures
that a low degree of resource wastage and a high service
rate.

Both the grid resources and the applications can be
highly heterogeneous. Multiple solutions of process reas-
signment can achieve the same balance level, but possibly
with diverse migration costs. We set out to find the solution
that can deliver the desired load balance level and its cost
is acceptable. We aim at avoiding redundant process migra-
tions and high-cost migrations when trying to improve the
load balance level. In the process, the scheduler or job man-
ager is provided with information on the lower bounds on
the migration overhead.

The requirement on minimizing the rebalancing cost de-
viates from from the traditional load balancing approaches.
With the double objectives of achieving a target load bal-
ance level and migration cost minimization, our prob-
lem is generally harder than the traditional Multiprocessor
Scheduling Problem (MSP) which only aims at optimizing
the makespan [7][10][13]. Since the conditions for opti-
mality are more stringent, the number of available optimal
solutions is smaller.

Our problem is a variant of the load rebalancing problem
in [1] which is to find a process reassignment achieving op-
timal load balance with the constraint that at most a given
number of processes are reassigned. That previous prob-
lem assumes that each process migration is of same cost.
We minimize instead the actual migration costs which may
vary from process to process. Existing proposed algorithms
are based on greedy heuristics and can only loosely bound
the number of migrations [25][1].

Our problem is also different from the remapping prob-
lem [26][16] where a data domain is re-partitioned to
achieve a balanced workload. In data migration schemes,
the data (workload) can be divided into arbitrarily small
pieces for distribution among machines (i.e., divisible)
[17][19] [20]. In our problem, the workload associated with
a process must be moved as a whole (i.e., non-divisible).
Process (workload) exchanges are needed in order to reduce

Table 1. Notations
Notation Description

l the total number of processes
qi (1 ≤ i ≤ l) a process
wi (1 ≤ i ≤ l) the workload of process qi

m number of machines
gj (1 ≤ j ≤ m) a machine
cj (1 ≤ j ≤ m) the computational capacity of machine gj (measured

by the amount of workload computed per second.)
EI an initial process assignment

dj (1 ≤ j ≤ m) the total workload in machine gj , dj =∑
qi in gj

wi

dcj (1 ≤ j ≤ m) the load level in gj , measured by the total workload
in gj normalized by its capacity, dcj = dj/cj

DC the maximum load level among all machines, DC =
max(dc1, dc2, . . . , dcm)

DCI the DC of the initial process assignment EI

DCT a target DC value specified in the problem
EN a new process assignment

DCN the DC of the new process assignment EN

mig cost the migration cost caused by the new process assign-
ment EN (measured by the time spent in migration.)

the load differences among machines. Existing algorithms
for divisible load problems generally do not consider work-
load exchange, and so cannot be directly applied here.

We refer to the main heuristic algorithm proposed in this
paper as the Iterative Multi-Level PAIRWISE (IMLP) al-
gorithm. The heuristic is based on local search and some
special strategies for finding a low-cost solution. The al-
gorithm focuses the search in the solution space surround-
ing the initial assignment, which has a strong likelihood
of containing the desired low-cost solution. By a guided
local search technique [18][15][23], the algorithm is able
to generate diverse searching trajectories leading to differ-
ent candidate reassignments, thus increasing the chance to
find a reassignment with lower cost. A multi-level local
search is proposed, where different restrictions on accept-
able migration costs are defined to control the sub-steps of
each local search step. The migration cost is a function of
two practical parameters: process size and communication
bandwidth. With such refined searching, our local search
procedure decides on a practical tradeoff between low-cost
process movements and target balance level. The evalua-
tions show that our heuristic can find a reassignment which
delivers a good level of load balance with a reasonably low
migration cost.

The paper is organized as follows. In Section II, the load
rebalancing problem is defined and discussed. The IMLP
algorithm is presented in Section III. They are evaluated
against other algorithms for various test cases in Section IV.
We briefly discuss related work in Section V and conclude
the paper in Section VI.

2 Problem Definition

The load rebalancing (LRB) problem is to find a process
reassignment achieving a target load balancing level with

minimum migration cost. A formal description of the prob-
lem is presented in the following. The notations used in the
formulation are listed in Table 1.

– Input

– The process set Q with l processes (Q =
{q1, . . . , ql} where qi has workload wi).

– The grid platform G with m machines (G =
{g1, . . . , gm} where gj has computational capac-
ity cj).

– The initial assignment EI with DCI .
– A predefined target DCT (DCT < DCI).

– Output

– A new process assignment EN , satisfying: (1)
DCN ≤ DCT ; (2) mig cost is minimized.

DC is a metric measuring the degree of workload bal-
ance among the machines. The lower the value of DC
the better the load balance of the system. DC can be eas-
ily mapped to other metrics (such as makespan, completion
time, execution time, etc.) used by job managers or resource
schedulers of typical parallel systems. With load rebalanc-
ing, the actual execution time is the execution time under
the assignment with DC plus the migration time. So the
assignment with lowest DC does not necessarily result in
the lowest actual execution time, since it is possible for an
assignment with a low DC to incur a large migration cost.

We can use the following method to decide on an appro-
priate DCT . We first get an ideal value DC o, assuming
the workload can be perfectly balanced among machines.
Then multiple values of DCt between DCo and the current
DCi are selected by say a binary search and tried. An ap-
propriate DCt is the one yielding the best tradeoff between
improvement in the performance (in terms of reduction of
completion time) and additional migration time.

In this paper we assume that DCT is an empirical pa-
rameter specified by the system administrator. We will only
focus on the algorithm that finds assignment solutions with
one arbitrary DCT value.

The cost of a process migration act is the time spent in
the migration, which depends on several factors. The con-
tent to be moved during process migration includes the ex-
ecution state (the information of Java frames) and data (ob-
jects, classes and local variables) in the process. According
to our evaluation in a practical environment, “G-JavaMPI”
[6], data transferring dominates the migration time; and
so the migration time is very sensitive to data size. The
time also depends on the CPU capacity and availability in
the source and destination machines and the network band-
width between these two machines. The source and desti-
nation machines are usually defined inherently in the pro-
cedure of load rebalancing, whereby over-loaded machines

would serve be as sources of load transferring, and under-
loaded machines as destinations. Therefore, it is important
to identify suitable processes with appropriate workloads
and small data sizes, as well as to choose network links with
higher bandwidths. The formula for a process migration
cost is cost = c·size

bandwidth (c is a constant). For evaluation
purposes, the total migration cost of a reassignment is the
summation of all the individual process migration costs.

3 IMLP Algorithm

The IMLP heuristic considers the actual migration cost
and aims to find a reassignment with reduced migration
cost. It can also be used to find a reassignment with a small
number of process migrations, for the problem assuming
uniform cost for all process migrations.

3.1 Algorithm Skeleton

The IMLP heuristic adopts the guided local search
(GLS) which is a meta-heuristic strategy based local search.
The general working principle of GLS is to dynamically
change the objective function used in local search, so that
multiple local minima can be reached in the solution space
[15][23]. The heuristic includes multiple iterations of local
search. Each local search starts from the initial assignment
and reaches a different new assignment (a local minimum).
Among all the assignments found, the one achieving the tar-
get load balance level with the minimum migration cost is
selected as the final solution.

Algorithm 1 Iterative Multi-Level PAIRWISE (IMLP)
1: EI ← initial assignment, DCI ←DC in initial assignment, DCT ← target
2: EN ← EI , mig costN ←∞
3: if DCT ≥ DCI then return EI endif
4: for i = 1 to num iter do
5: E

′ ←Multi-level LOCAL SEARCH(EI , DCI , DCT) (The maximum
load level among machines in E

′
is DC

′
. The migration cost of trans-

forming to E
′

is mig cost
′
.)

6: if DC
′ ≤ DCT && mig cost

′
< mig costN then

7: EN ← E
′
, mig costN ← mig cost

′

8: end if
9: PENALIZATION (update penalization status based on E

′
)

10: end for
11: return EN

Algorithm 1 shows the basic structure of the
IMLP algorithm. The algorithm executes two
procedures—the multi-level local search procedure
(Multi-level LOCAL SEARCH) and the penalization pro-
cedure (PENALIZATION) for a number of iterations (“for”
loop in lines 4–10). In each iteration, the multi-level local
search starts from the initial assignment EI , and searches
for a new assignment E

′
through successive steps of

process movements (line 5). As an essential part of guided
local search strategy, the penalization procedure executed

afterwards is used to modify the objective function used
in the local search of the next iteration, so that a different
new assignment can be reached (line 9). The objective
function is modified to incorporate the factor of how many
times each process movement is selected in the previously
found solutions. The iterations of local search use different
modified objective functions, so that they can find different
new assignments.

The multi-level local search and penalization are exe-
cuted for num iter iterations. num iter can be used to
terminate the algorithm. The appropriate num iter varies
from problem case to problem case, and also depends on the
time limit set on executing the algorithm. There is no clear
theoretical analysis yet for the exact formula of num iter.
Instead, in our evaluation (see Section IV), we terminate the
searching when no new and feasible solution (with DC sat-
isfying DC <= DCT) can be found after many iterations.
The actual number of iterations varies from case to case.

In summary, three strategies adopted in the algorithm
help achieve a target assignment with low migration cost.
First, multiple candidate assignments are produced from the
iterations, of which one assignment with the lowest cost will
be selected. Second, the local search in each iteration starts
from the initial assignment; that is, the algorithm searches
more intensively in the solution space surrounding the ini-
tial assignment. Third, the refined local search step gives
priority to process movements with lower costs. In the rest
of paper, we use “step” to mean one iteration inside the lo-
cal search procedure, and “iteration” to mean one iteration
of the whole algorithm (which includes a local search pro-
cedure and a penalization procedure).

3.2 Multi-level Local Search Procedure

Local search starts with an initial assignment, and
searches for a better assignment through a sequence of small
steps. A small step refers to one or two process move-
ments between a pair of machines. We use 1-move to de-
note moving a process from one machine to another; 1-swap
to denote the exchange of two processes between two ma-
chines. Instead of considering movements between all ma-
chine pairs, we permit only movements between the ma-
chine with the maximum load level and another machine.

The core of multi-level local search is the local search
procedure (Algorithm 2). In each step of the local search
(the “while” loop in lines 2–17), L1 always represents the
machine with the maximum load level. Other machines
(from Lm to L2) are selected one after another for find-
ing an appropriate 1-move or 1-swap between them and
L1 in the procedure F (lines 6–12). Suppose L1 and
Lj (m ≤ j ≤ 2) are considered, and (dc1,dcj) and
(dc

′
1,dc

′
j) are their workloads respectively before and after

selected movements are performed. F is successful only

Algorithm 2 Multi-level LOCAL SEARCH(EI , DCI , DCT)
1: E ← EI , DC ← DCI

2: while 1 do
3: Sort machines in descending order of their load levels, in a list

L ← {L1, L2, . . . , Lm}.
4: updated ← 0
5: for i = 1 to num level do
6: for j = m to 2 do
7: if F (L1, Lj) with the level-i threshold succeeds then
8: perform selected movements, update E, dc1, dcj , DC
9: updated ← 1

10: BREAK
11: end if
12: end for
13: if updated = 1 then BREAK endif
14: end for
15: if updated = 0 then BREAK endif
16: if DC ≤ DCT then return E endif
17: end while
18: return E

if max(dc
′
1,dc

′
j) < max(dc1, dcj) is true. If F succeeds,

DC and E are updated (line 7) and a new step starts. If F
fails for all machine pairs (update = 0 in line 15), the pro-
cedure terminates. When DCT is achieved, the procedure
also terminates immediately (line 16).

The preferred 1-move or 1-swap in F is the one which
can reduce the maximum of the load levels of two ma-
chines to the largest extent. Suppose machine L1 has
dc1 = d1

c1
and Lj has dcj = dj

cj
. The cost function is

CF = max(dc1, dcj). Suppose after a 1-move or 1-swap,
the workload of L1 is reduced by w and the workload of
Lj is increased by w. We then have dc

′
1 = (d1 − wx)/c1

and dc
′
j = (dj + wx)/cj for two machines. To mini-

mize CF
′

= max(dc
′
1, dc

′
j), we need to find w satisfying

CF
′

< CF and minimizing |(dc
′
1 − dc

′
j)|. The most pre-

ferred value of w is d1cj−c1dj

c1+cj
, because it makes L1 and

Lj perfectly balanced, i.e., |dc
′
1 − dc

′
j | = 0. Otherwise, w

should be less than d1cj−c1dj

c1
and be as close to d1cj−c1dj

c1+cj
as

possible. For 1-move, we select a process with such a work-
load w. For 1-swap, we select two processes (one process
with larger workload from L1, and another with smaller
workload from Lj) whose workload difference obeys the
above rules regarding w.

The multi-level local search considers both process
workloads and process migration costs. Each local search
step (the “while” loop in lines 2–17) is refined into mul-
tiple sub-steps (the “for” loop in lines 5–14). The different
restrictions on acceptable migration cost of a process move-
ment (thresholds on acceptable migration cost) are defined
in the sub-steps. Only process movements with costs lower
than the threshold will be considered. The sub-step with
the lowest level (level-1) threshold is first performed. If an
appropriate movement can be found, the movement is per-
formed, other sub-steps are skipped, and a new step starts

(the BREAK in line 13). Otherwise, the sub-step with a
higher level (more relaxed) threshold is performed. Thus
the restriction level on migration cost is relaxed gradually
from sub-step to sub-step. The sub-step with the highest
level threshold is the last sub-step, where the threshold is
high enough so that no movements will be prohibited. If
no appropriate movement can be found in all the sub-steps
(updated = 0), the local search terminates (line 15 and line
18).

The selection of the thresholds is crucial for the effec-
tiveness of the multi-level local search in finding a low-cost
solution. The thresholds should reflect the range and magni-
tude of the costs of all possible movements globally, so that
they will not be too restrictive nor too loose. In the exper-
iments, we evaluate three alternative ways of determining
the thresholds.

Figure 1 illustrates the steps of the 3-level local search
for an example problem. For demonstration’s sake, the
machine capacities are homogeneous, so the machine load
level is represented by its workload. Intra-cluster commu-
nication bandwidth is 100MB/s and inter-cluster bandwidth
is 10MB/s. The processes have various workloads and sizes
(in MB). The cost of a single migration is the ratio of pro-
cess size to bandwidth. Based on three thresholds, 0.1, 1.0
and 10, three levels of sub-steps are considered. The ma-
chine with a dotted rectangle is with the maximum load
level. In this machine, processes with dotted circle is only
allowed to migrate to machines within the cluster. Processes
with shadowed circles are prohibited to migrate to all other
machines. Processes with solid circles are allowed to mi-
grate to any machine. In machines with solid rectangles,
processes with shadowed circles are prohibited to migrate
to the machine with the maximum load level, since their
migration costs exceed the threshold. All processes with
solid circles can be considered for migration.

In step 1, processes q9 and q14 are exchanged, so that
the load level of g7 is decreased from 95 to 72. In step
2, only process q8 is allowed to migrate to g3, and process
q11 is allowed to migrate to g4. However, both migrations
cannot decrease the load level of g4. Therefore the higher-
level subspace with threshold 1 is considered in step 3. The
same situation happens in steps 4 and 5. In step 3-2, g3 with
lowest DC is not considered for movement, because both
processes q and q will cause migration cost larger than the
threshold and thus are prohibited for migration. Regardless
of the thresholds, any process is allowed to migrate back to
its initial location, so that the cost caused by its previous
movement is deleted from the total migration cost. Such
a movement is encouraged in the algorithm as long as it
can also bring good improvement in reducing the maximum
load level DC. For instance, in step 6, process q4 in a black
circle is allowed to migrate to g2 (its initial location). The
maximum load level in the final result is 72 and the migra-

g1

68

g2

58

g3

60

g4

80

g5

51

g6

70

g7

95

q1

q2

q3

q4

q5

q6

q7

q8

q10

q9

q12

q11

q13

q14

Initial Assignment

g1

68

g2

58

g3

60

g4

80

g5

51

g6

70

g7

95

q1

q2

q3

q4

q5

q6

q7

q8

q10

q9

q12

q11

q13

q14

Step 1 (threshold=0.1)

g1

68

g2

58

g3

60

g4

80

g5

74

g6

70

g7

72

q1

q2

q3

q4

q5

q6

q7

q8

q10 q12

q11 q13

Step 2-1 (threshold=0.1)

q9

q14

g1

68

g2

58

g3

60

g4

80

g5

74

g6

70

g7

72

q1

q2

q3

q4

q5

q6

q7

q8

q10 q12

q11 q13

Step 2-2 (threshold=1)

q9

q14

g1

68

g2

73

g3

60

g4

65

g5

74

g6

70

g7

72

q1

q2

q3 q5

q6

q7 q10 q12

q11 q13

Step 3-1 (threshold=0.1)

q9

q14q4q8

g1

68

g2

73

g3

60

g4

65

g5

74

g6

70

g7

72

q1

q2

q3 q5

q6

q7 q10 q12

q11 q13

Step 3-2 (threshold=1)

q9

q14q4q8

g1

70

g2

73

g3

60

g4

65

g5

72

g6

70

g7

72

q2

q3 q5

q6

q7 q12

q11 q13

Step 4 (threshold=0.1)

q9

q14q4q8

q1q10

g1

71

g2

72

g3

60

g4

65

g5

72

g6

70

g7

72

q2

q5

q6

q7 q12

q11 q13

New Assignment

q9

q14q4q8

q1q3 q10

(Maximum load level=72 migration cost=3.15s)

processworkload
size

(MB)

22 9

46 5

25 8

33 9
27 44

33 31

43

48 5

27 8

39 1

31 25

45 50

50 9

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

24 6

q14

gi

x

gj

y Machine Load Level

Machine ID

Machine with maximum load level

Process allowed to migrate to all other machines

Process prohibited to migrate to all other machines

Process only allowed to migrate to
machines within the clusterA cluster of machines

Process prohibited to migrate to the
machine with maximum load level

Process allowed to migrate to the
machine with maximum load level

Machine, its load level is
not maximum

Migrated ProcessProcess selected to migrate

32

processworkload
size

(MB)
processworkload

size
(MB)

Figure 1. Illustration of Multi-level Local
Search (Intra-cluster bandwidth 100MB/s,
inter-cluster bandwidth 10MB/s, low level
threshold=0.1, middle level threshold=1)

tion cost is 3.15 (seconds).

For the purpose of comparison, we present the steps of
the basic local search for the same example problem in Fig-
ure 2. The basic local search selects the processes for mi-
gration based on their workloads only. Thus the 3-level
local search finds more migrations but with lower migra-
tion costs than the basic local search, since processes with
smaller process sizes are considered with higher priorities.

g1

140

g2

189

g3

123

g4

169

g5

111

g6

51

g7

59

g8

139

13

32

46

49

30

35

36

43

35

40

48

30

44

47

48

32

34

45

13

38

47

13

46

13

18

30

31

45

g1

140

g2

144

g3

123

g4

169

g5

111

g6

96

g7

59

g8

139

13

32

46

49

30

35

36

43

35

40

48

30

44

47

48

32

34

45

13

38

47

13

46

13

18

30

31
45

g1

140

g2

144

g3

123

g4

121

g5

111

g6

96

g7

107

g8

139

13

32

46

49

30

35

36

43

35

40

48

30

44

47 48

32

34

45

13

38

47

13

46

13

18

30

31
45

g1

140

g2

114

g3

123

g4

121

g5

111

g6

126

g7

107

g8

139

13

32

46

49

30

35

36

43

35

40

48

30

44

47 48

32

34

45

13

38

47

13

46

13

18

30

3145

g1

127

g2

114

g3

123

g4

121

g5

111

g6

126

g7

120

g8

139

13

32

46

49

30

35

36

43

35

40

48

30

44

47

48

32

34

45

13

38

47

13

46

13

18

30

3145

g1

127

g2

114

g3

123

g4

121

g5

124

g6

126

g7

120

g8

126

13

32

46

49

30

35

36

43

35

40

48

30

44

47

48

32

34

45

13

38

47

13

46

13 18

30

31

45

g1

121

g2

120

g3

123

g4

121

g5

124

g6

126

g7

120

g8

126

13

32

43

49

30

35

36

46

35

40

48

30

44

47

48

32

34

45

13

38

47

13

46

13 18

30

31

45

g1

121

g2

123

g3

123

g4

121

g5

124

g6

123

g7

120

g8

126

13

32

43

49

30

36

38

46

35

40

48

30

44

47

48

32

34

45

13

35

47

13

46

13 18

30

31

45

g1

121

g2

123

g3

123

g4

121

g5

124

g6

123

g7

125

g8

121

1332

43

49

30

36

38

46

35

40

48

30

44

47

48

32

34

45

13

35

47

13

46

13

18 30

31

45

g1

123

g2

123

g3

123

g4

121

g5

124

g6

123

g7

123

g8

121

1332

43

49

30

36

38

46

35

40

48

30

44

47

47

32

34

45

13

3548

13

46

13

18 30

31

45

Step 1 (initial assignment) Step 2

Step 3 Step 4

Step 5 Step 6

Step 7 Step 8

Step 9 Step 10

g1

123

g2

123

g3

123

g4

121

g5

123

g6

123

g7

123

g8

122

1332

43

49

30

36

38

46

35

40

48

30

44

47

47

3234

45

13

3548

13

46

13

18 3031

45

(new assignment)

Number of migrations = 14

Machine load
level

Machine ID Machine with
maximum load

Migrated process
in the final
assignment

1-swap movement

1-mov movement

Figure 2. Illustration of Basic Local Search

3.3 Penalization Procedure

Penalization is a kind of memorization strategy. The
technique records the count (or “frequency”) that a com-
ponent of the solution has been visited in the previous iter-
ations. The higher frequency the component has, the more
penalty it will receive, and the greater its likelihood to be
unselected in the following iterations. This leads to a di-
versification guiding the search towards components that
are not incorporated frequently enough in the past solu-
tions. Such diversification enables more distinct solutions

scattered in the solution space to be visited, and increases
the chance of coming across a better solution. Some sim-
ilar memorization strategies have been used in existing lo-
cal search-based heuristics, such as the long-term memory
strategies for diversification in Tabu search [12].

The basic component in an assignment solution is the
status that a process is assigned to a machine. The imple-
mentation of the penalization scheme is as follows. A fre-
quency matrix B with l rows and m columns is defined,
where B(x, j) and B(y, i) represent the frequencies of pro-
cess qx being assigned to machine gj and process qy be-
ing assigned to gi in all the solutions found so far. The
cost function CF in the local search procedure is aug-
mented to include the factors of frequencies. Suppose qx

is selected to migrate from gi to gj , and qy is selected to
migrate from gj to gi. The augmented cost function is
CF

′′
= max(dc

′
i, dc

′
j)+γ ·(B(x, j)+B(y, i)). γ is a con-

stant called the penalty coefficient. γ ·(B(x, j)+B(y, i)) is
the augmentation to the original cost function and is called
the “penalty” on the corresponding movements.

The processes which minimize max(dc
′
i, dc

′
j) might not

deliver the minimum CF
′′

, if γ ·(B(x, j)+B(y, i)) is large.
Therefore the 1-move or 1-swap with higher frequencies are
more penalized and discouraged. If the movement(s) can
achieve a small enough value of max(dc

′
i, dc

′
j), it might still

be selected in spite of its non-zero penalty. However, in the
forthcoming iterations when its frequency (so is the penalty)
is increased to a certain value, it will not be selected. As a
result, chances are given to other movements that are less
selected before.

Figure 3 demonstrates the second iteration of local
search based on the penalization status.

In the above example, all process movements are penal-
ized. Other than the full penalization scope, alternatively
we may only penalize part of the process movements. γ is
another adjustable parameter. We evaluate the algorithms
with different choices of penalization scope and γ values in
the experiment section.

3.4 Algorithm Complexity

The algorithm’s complexity mainly depends on the num-
ber of machine pairs considered (i.e., the number of steps in
Algorithm 2) and the time spent in each execution of the
procedure F . The number of levels (i.e., the number of
sub-steps) in the multi-level local search is a small constant
number. Therefore the complexity of IMLP is O(l2) (l is
the number of process).

4 Performance Evaluation

The algorithms are tested for four groups of instances as
in Table 2. The number of processes is from 40 to 640, and

g1

68

g2

58

g3

60

g4

80

g5

51

g6

70

g7

95

q1

q2

q3

q4

q5

q6

q7

q8

q10

q9

q12

q11

q13

q14

Initial Assignment

g1

68

g2

58

g3

60

g4

80

g5

51

g6

70

g7

95

q1

q2

q3

q4

q5

q6

q7

q8

q10

q9

q12

q11

q13

q14

Step 1-1 (threshold=0.1)

g1

68

g2

58

g3

60

g4

80

g5

74

g6

70

g7

72

q1

q2

q3

q4

q5

q6

q7

q8

q10 q12

q11 q13

Step 2-1 (threshold=0.1)

q9

q14

g1

68

g2

58

g3

60

g4

80

g5

74

g6

70

g7

72

q1

q2

q3

q4

q5

q6

q7

q8

q10 q12

q11 q13

Step 2-2 (threshold=1)

q9

q14

g1

68

g2

73

g3

60

g4

65

g5

74

g6

70

g7

72

q1

q2

q3 q5

q6

q7 q10 q12

q11 q13

Step 3-1 (threshold=0.1)

q9

q14q4q8

g1

68

g2

73

g3

60

g4

65

g5

74

g6

70

g7

72

q1

q2

q3 q5

q6

q7 q10 q12

q11 q13

Step 3-2 (threshold=1)

q9

q14q4q8

g1

72

g2

73

g3

60

g4

65

g5

70

g6

70

g7

72

q2

q3 q5

q6

q7 q12

q11 q13

Step 4 (threshold=0.1)

q9

q4q8

q10

New Assignment

(Maximum load level=72 migration cost=2.43s)

processworkload
size

(MB)

22 9

46 5

25 8

33 9

27 44

33 31

43

48 5
27 8

39 1

31 25

45 50

50 9

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

24 6

q14

32

processworkload
size

(MB)
processworkload

size
(MB)

q9q14q4q8 q1q3 q10g1 g2 g4 g5 g7

Penalization Status (Process movements with frequency=1)

Penalization coefficient = 1

B(q3, g1)=1 B(q10, g2)=1 B(q8, g2)=1 B(q4, g4)=1 B(q1, g5)=1 B(q14, g5)=1B(q9, g7)=1

q1

q14

g1

72

g2

71

g3

60

g4

65

g5

72

g6

70

g7

72

q8

q3 q5

q6

q7 q12

q11 q13

q9

q4q2

q10q1

q14

A process being
penalized

for migrating to
some machine

Figure 3. Illustration of the Second Iteration
of Multi-level Local Search

the system size from 16 to 256. All performance results are
the average over 100 instances. In addition to the attributes
in Table 1, several more attributes are used here. k denotes
the number of processes in one machine in the initial assign-
ment. c describes the heterogeneity of machine capacities
(the range of the ratio of machine capacity to the average
capacity). DCO refers to the lower bound of the maxi-
mum load level (the ideal optimal DC, calculated as the
ratio of total workload to total capacity). w = 20%/80%
means that 20% processes have workloads in (20, (200 −
20) · 80%), and 80% processes have workloads in ((200 −
20) · 20%, 200). c = .2/.3/.5 means that 20% machines
have capacity 0.5·total cap

0.2·p1
, 30% machines have capacity

0.3·total cap
0.3·p1

and 50% machines have capacity 0.2·total cap
0.5·p1

.
c = (0.6, 1.4) means that the machine capacities are dis-

Table 2. Test Cases
Case
Group

m k w c DCI DCO l

I1,1 16 (2,3) (20,200) 1.0 124 74 40
I1,2 16 (8,12) (20,200) 1.0 101 74 160
I1,3 64 (2,3) (20,200) 1.0 136 74 160
I1,4 64 (8,12) (20,200) 1.0 109 74 640
I1,5 256 (2,3) (20,200) 1.0 144 74 640

I2,1 16 (2,3) (20,200) (0.6,1.4) 151 74 40
I2,2 16 (8,12) (20,200) (0.6,1.4) 130 74 160
I2,3 64 (2,3) (20,200) (0.6,1.4) 182 74 160
I2,4 64 (8,12) (20,200) (0.6,1.4) 149 74 640
I2,5 256 (2,3) (20,200) (0.6,1.4) 204 74 640

I3,1 16 (2,3) (20,200) .2/.3/.5 328 74 40
I3,2 16 (8,12) (20,200) .2/.3/.5 273 74 160
I3,3 64 (2,3) (20,200) .2/.3/.5 333 74 160
I3,4 64 (8,12) (20,200) .2/.3/.5 270 74 640
I3,5 256 (2,3) (20,200) .2/.3/.5 356 74 640

I4,1 16 (2,3) .2/.8 (0.6,1.4) 153 74 40
I4,2 16 (8,12) .2/.8 (0.6,1.4) 140 74 160
I4,3 64 (2,3) .2/.8 (0.6,1.4) 173 74 160
I4,4 64 (8,12) .2/.8 (0.6,1.4) 162 74 640
I4,5 256 (2,3) .2/.8 (0.6,1.4) 181 74 640

tributed uniformly in (0.6 · avg cap, 1.4 · avg cap). All
the above ranges and distribution properties of parameters
are selected by following the traditional settings used in
many previous process scheduling papers such as [3][2][9].
The case groups I1/I2 are derived from the test prob-
lems called UNIFORM in [3]. The case groups I3/I4/I5

are derived from the test problems called TRIPLETS in
[3]. All these case settings are based on the classi-
cal bin-packing instances available at the OR-Library of
J.E. Beasley (available at http://people.brunel.ac.uk/ mas-
tjjb/jeb/orlib/binpackinfo.html).

4.1 Effects of Algorithm Parameters

We compare several variations of the IMLP algorithm,
which use different values for the algorithm’s parameters.
The algorithm parameters and their alternative values are
listed below.

- The number of levels (nolevels). Two alternative val-
ues we use are 3 and 6.

- The cost thresholds in the multi-level local search.
(1) IMLP-count selects the thresholds which divides
the sorted list of all single process migration costs
into nolevels equal-length sublists. (2) IMLP-AS se-
lects the thresholds which constitute an arithmetic se-
quence. (3) IMLP-CRS selects the thresholds which
constitute a common ratio sequence. The selection of
the common ratio depends on the range of single mi-
gration costs. For example, IMLP-CRS2 means that
the common ratio of threshold sequence is 2. In all the
above methods, the maximum threshold is selected as
the largest single migration cost.

- The scope of penalization. (1) IMLP-full penalizes
all process movements in the solution found in each
iteration. (2) IMLP-limit penalizes only the process
movements in the max-loaded machine(s) of the solu-
tion found in each iteration.

- The value of penalization coefficient (γ). The alterna-
tive values for γ are 0.25, 1, 4 and 8.

In this set of evaluations, each process is assigned a dis-
tinct process size in addition to the attributes in Table 2.
Process sizes are randomly generated in the range of 1MB
to 100MB. Processes with sizes smaller than 10MB occupy
2/3 of the whole process population. We simulate an aggre-
gation of three clusters of equal sizes in a grid environment.
The inter-cluster communication bandwidth is 10MB/s, and
the intra-cluster bandwidth is 100MB/s. The distribution
of the single migration costs is that 2/9 migration costs are
lower than 0.1 second, 5/9 costs are between 0.1–1 second,
and 2/9 costs are between 1–10 seconds.

Figure 4 compares the various IMLP algorithms with
different nolevels and threshold selection methods. The
x-axis indicates different DCT values specified for the al-
gorithms, and the y-axis indicates the migration costs for
achieving those DCT ’s. The IMLP-AS algorithm finds
solutions with higher costs than IMLP-count and IMLP-
CRS. The algorithms with nolevels = 6 can usually find
lower-cost solutions than the algorithm with nolevels = 3.
Comparing the algorithms with nolevels = 6 and those
with nolevels = 9, we find that the improvements by
nolevels = 9 are not so significant. The six thresholds
(average values) defined in IMLP-CRS2-level6 are 0.312,
0.625, 1.25, 2.5, 5 and 10. The six thresholds in IMLP-
count-level6 are 0.082, 0.292, 0.555, 0.814, 3.873 and 10.
The six thresholds in IMLP-AS-level6 are 1.666, 3.333,
5, 6.666, 8.333 and 10. In most cases, IMLP-CRS2-
level6 achieves the lowest costs and IMLP-count-level6 also
achieves migration costs close to the lowest ones. In the
following sections, we focus on the experiments for the al-
gorithm IMLP-CRS2-level6.

Figure 5 compares the IMLP algorithms with different γ
values and penalization scopes. The IMLP-full algorithm
can find solutions with lower costs than the IMLP-limit al-
gorithm. The most suitable γ for IMLP-full is 1 and the
most suitable γ for IMLP-limit is 4. Values that are higher
or lower than the suitable one might deteriorate the perfor-
mance. In the following sections, we look at the experi-
ments for the algorithm IMLP-CRS2-level6-full-1.

4.2 Evaluation on Nonuniform Migration
Cost Problems

IMLP is evaluated against several related algorithms,
including ISLP, MLP and TABU. ISLP (Iterative Single-

 27

 37

 47

 57

 74 75 76 77 78 79 80 81

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I3,2)

IMLP-count-nolevels3
IMLP-AS-nolevels3

IMLP-CRS10-nolevels3
IMLP-count-nolevels6

IMLP-AS-nolevels6
IMLP-CRS2-nolevels6

 70

 80

 90

 100

 77 78 79 80 81 82 83 84 85

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I3,3)

IMLP-count-nolevels3
IMLP-AS-nolevels3

IMLP-CRS10-nolevels3
IMLP-count-nolevels6

IMLP-AS-nolevels6
IMLP-CRS2-nolevels6

 5

 15

 25

 74 75 76 77 78 79 80 81

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I4,2)

IMLP-count-nolevels3
IMLP-AS-nolevels3

IMLP-CRS10-nolevels3
IMLP-count-nolevels6

IMLP-AS-nolevels6
IMLP-CRS2-nolevels6

 5

 10

 15

 20

 25

 30

 35

 83 84 85 86 87 88 89 90

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I4,3)

IMLP-count-nolevels3
IMLP-AS-nolevels3

IMLP-CRS10-nolevels3
IMLP-count-nolevels6

IMLP-AS-nolevels6
IMLP-CRS2-nolevels6

Figure 4. Performance of IMLP Algorithms
with Diverse Multi-Level Parameters

 25

 35

 45

 74 75 76 77 78 79 80 81

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I3,2)

IMLP-full-0.25
IMLP-full-1
IMLP-full-4

IMLP-limit-1
IMLP-limit-4
IMLP-limit-8

 65

 70

 75

 80

 77 78 79 80 81 82 83 84 85
M

ig
ra

tio
n

C
os

t (
se

co
nd

)

Maximum Load Level (I3,3)

IMLP-full-0.25
IMLP-full-1
IMLP-full-4

IMLP-limit-1
IMLP-limit-4
IMLP-limit-8

 5

 8

 11

 14

 74 75 76 77 78 79 80 81

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I4,2)

IMLP-full-0.25
IMLP-full-1
IMLP-full-4

IMLP-limit-1
IMLP-limit-4
IMLP-limit-8

 7

 10

 13

 16

 84 85 86 87 88 89 90

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I4,3)

IMLP-full-0.25
IMLP-full-1
IMLP-full-4

IMLP-limit-1
IMLP-limit-4
IMLP-limit-8

Figure 5. Performance of IMLP Algorithms
with Diverse Penalization Parameters

 22

 27

 32

 37

 42

 47

 78 79 80 81 82 83 84

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I3,1)

IMLP
ISLP
MLP

TABU

 25

 45

 65

 85

 105

 125

 74 75 76 77 78 79 80 81

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I3,2)

IMLP
ISLP
MLP

TABU

 65

 85

 105

 125

 145

 165

 77 78 79 80 81 82 83 84 85

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I3,3)

IMLP
ISLP
MLP

TABU

 5

 55

 105

 155

 205

 255

 305

 355

 405

 74 79 84 89

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I3,4)

IMLP
ISLP
MLP

TABU

 200

 300

 400

 500

 600

 700

 76 81 86 91 96

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I3,5)

IMLP
ISLP
MLP

TABU

Figure 6. Performance of IMLP on Instances
I3,1-I3,5

 2

 7

 12

 17

 22

 27

 81 83 85 87 89 91

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I4,1)

IMLP
ISLP
MLP

TABU

 5

 15

 25

 35

 45

 55

 65

 75

 85

 95

 73 75 77 79 81

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I4,2)

IMLP
ISLP
MLP

TABU

 7

 27

 47

 67

 87

 107

 127

 83 84 85 86 87 88 89 90

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I4,3)

IMLP
ISLP
MLP

TABU

 16

 66

 116

 166

 216

 266

 316

 366

 74 75 76 77 78 79 80 81

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I4,4)

IMLP
ISLP
MLP

TABU

 15

 65

 115

 165

 215

 265

 315

 365

 415

 465

 84 85 86 87 88 89 90 91

M
ig

ra
tio

n
C

os
t (

se
co

nd
)

Maximum Load Level (I4,5)

IMLP
ISLP
MLP

TABU

Figure 7. Performance of IMLP on Instances
I4,1-I4,5

Level PAIRWISE) is the IMLP algorithm with nolevels =
1. MLP (Multi-Level PAIRWISE) is the first iteration of
IMLP. TABU is the classical search method [5] [11] [22] for
the independent task scheduling problem. For fairness of
comparison, we implement the same basic local search pro-
cedure in TABU as that in IMLP. TABU never goes back to
the initial solution to restart the searching, but always jumps
from the current solution to a new solution according to the
selected movement. The introduction of the tabu list avoids
the search trapping in a local minimum. The best solution is
selected among all solutions found during the searching. All
algorithms are executed for the same total searching time.

Because of limited space, we only present the results for
the third and fourth case groups in Figure 6 and Figure 7.
These cases are harder since they have a higher degree of
heterogeneity in their attributes. IMLP achieves the lowest
migration cost than all other algorithms in all these cases.
MLP still achieves much lower migration cost than ISLP
which performs multiple iterations of the basic local search.
This indicates that multi-level local search is essential in the
search for a solution with low cost, and it contributes much
to the winning algorithm IMLP. A serious drawback in us-
ing solely the multi-level local search is that low DC val-
ues cannot be achieved (the points on the leftmost in the
curves indicate the best DC achieved). In such scenar-
ios, guided local search strategy helps to find solutions with
lower DC by intensifying the searching. Therefore IMLP is
usually the best choice with consideration of both metrics,
i.e., achievable DC and migration cost. ISLP still gets the
chance to reduce the cost to a great extent. Without restart-
ing the search from the initial assignment, TABU searching
tends mostly to walk in the solution space far away from
the initial assignment. This is why ISLP can achieve lower
migration cost than TABU.

From the figures, we obtain a sense on the increasing rate
of migration cost as the load balance level gets better. In the
x-axis, from the right points to left points, the load balance
level is getting better (i.e., the maximum load level is drop-
ping). The migration cost increases in a mild rate in most of
the range. After some point, the cost increases very rapidly,
especially when the load balance level is getting close to the
best level. The migration cost might go to too high a level
which offsets the benefit. Therefore it is desirable to choose
a modestly satisfactory load balance level but not an opti-
mal or near-optimal level as the target. We have also found
that instances I3,2, I3,4, I4,2 and I4,4 are much easier than
I3,3, I3,5, I4,3 and I4,5. The average number of processes
in each machine is higher in these instances, so the gran-
ularity of process workloads for the machine capacities is
finer, which enables a more even distribution of the work-
loads. As a result, our algorithms tend to find much lower
DC (very close to the optimal) for these cases.

Table 3 lists the times spent in finding the best solu-

Table 3. Execution Times of IMLP and Other
Algorithms

Case
Group

Total
time (s)

IMLP ISLP MLP TABU

I3,1 0.037 0.009 0.01 0.0024 0.0083
I3,2 0.63 0.14 0.017 0.046 0.02
I3,3 1.26 0.43 0.22 0.075 0.037
I3,4 11.37 4.24 0.35 0.74 0.32
I3,5 66.9 29.4 12.2 4.06 3.36
I4,1 0.023 0.0045 0.003 0.0014 0.008
I4,2 0.34 0.05 0.014 0.019 0.018
I4,3 0.646 0.157 0.091 0.04 0.123
I4,4 11.36 4.236 0.353 0.739 0.316
I4,5 28.1 10.32 3.54 1.43 0.24

tions in all the algorithms. All the algorithms are given
the same total execution time, as listed in the second col-
umn. IMLP spends more time in finding the best solutions
than MLP and TABU. This is because it needs to perform
multiple iterations of searching before their best solutions
are found. IMLP needs more time than ISLP in larger-size
problems because of additional overhead in the multi-level
local search.

4.3 Evaluation on Uniform Migration
Cost Problems

In this section, we test the algorithms on the cases where
all process migrations have the same uniform cost. The mi-
gration cost is reduced to the number of migrations. IMLP
algorithm is simply reduced to ISLP with nolevels = 1. We
compare the performance of ISLP with the greedy heuristic
and the TABU heuristic.

M-PARTITIONV (MPARV for short, Algorithm 3) is a
variant from M-PARTITION heuristic proposed in [1] for
migration-constraint makespan minimization. It includes
multiple iterations of PARTITION procedure (refer to the
pseudo-code presented in [1]). Each PARTITION is given
with an estimated OPT value on DC. Based on the OPT ,
it identifies the processes with large and small workloads.
Smallest number of additional large and small processes are
removed so that DC of all machines are lower than OPT . It
then reassigns the removed processes with larger processes
considered first. OPT in the first iteration is set as DCT

and then gradually decreased in the following iterations.
We use different DCT values to test the ISLP, MPARV

and TABU algorithms. Table 4 presents the success rate, the
number of migrations and searching time of these three al-
gorithms for two different DCT values. MPARV, which is a
greedy heuristic, cannot find very low DCT values. There-
fore its success rates for some cases with low DCT are not
100%. The number of migrations found by MPARV is also
much higher than those in ISLP and TABU. ISLP can find
smaller number of migrations than TABU in all cases, al-

Algorithm 3 M-PARTITIONV (MPARV)
1: Use DCT as the starting value for OPT .
2: PARTITION(OPT), DCN ← achieved DC in new assignment, mc ← the

migration cost
3: while OPT ≥ theminimumprocessworkload do
4: Decrease the value of OPT to the next lower threshold value
5: PARTITION(OPT), DCN ← achieved DC in new assignment, mc ←

the migration cost
6: end while
7: return the new assignment satisfying DCN ≤ DCT and achieving the mini-

mum mc among all new assignments.

though it is slightly weaker in achieving lower DCT than
TABU.

5 Related Work

The classical Multiprocessor Scheduling Problem (MSP)
denoted as R||Cmax [7][10][13] focuses on finding opti-
mal makespan. Most local search-based heuristics in the
literature use 1-move or 1-swap or their variations or com-
binations as the neighborhood structure [11][21][8][9]. But
they use local search solely without any meta-heuristic strat-
egy (such as the guided local search in our algorithm). A so-
lution with target DC can be found, but the solution might
not have a small migration cost.

There was traditional research on dynamic remapping
for data-parallel applications (such as those in molecular
dynamics (MD) and computational fluid dynamics (CFD)),
where the computational requirements associated with dif-
ferent parts of the data domain may change as the compu-
tation proceeds. The nearest-neighbor algorithms used by
Xu and Lau [26] reduce the domain remapping operation
to adjustment of sub-domain borders, so that data redistri-
bution cost can be kept low. In addition, the cost can be
reduced through limiting the number of redistribution oper-
ations across remote machines [16].

In other dynamic data remapping works, the data and
the associated workload can be divided into arbitrary
small pieces and distributed among machines [17][19]
[20][24][14]. Since workload can be arbitrarily divided, it is
easy to know how much workload should be migrated out/in
the over-loaded/under-loaded machines. This information
is used as constraint conditions in the problem formulation.
While in our problem, the whole workload associated with
a process will be moved when the process is migrated. So
existing algorithms for divisible load problems cannot be
applied to our problem.

A few existing projects consider the number of migra-
tions caused in task reassignment. Westbrook [25] consid-
ers an online load balancing problem, and proposes a 5.83-
competitive algorithm with bounded number of migrations
for identical machines, and another 8-competitive algorithm
with bounded number of migrations for related machines.
Aggarwal, Motwani and Zhu [1] consider the LRB problem

Table 4. Comparison of ISLP, MPARV and
TABU

Case Alg success
(%)

mig
num

time
(ms)

success
(%)

mig
num

time

DCT =76 DCT =79.3
I1,1 ISLP 93 18.5 1.2 100 11.8 0.66

MPARV 8 26.8 2.2 79 21.9 2.26
TABU 100 21.4 0.45 100 13.6 0.11

DCT =74.4 DCT =76.9
I1,2 ISLP 100 18.6 1.27 100 19.8 0.17

MPARV 60 111.9 35 100 45.9 34.7
TABU 100 21.2 0.23 100 9.9 0.09

DCT =76.4 DCT =80
I1,3 ISLP 100 70.8 11.3 100 45.9 4.6

MPARV 10 102 137 90 85.3 59
TABU 100 74.7 1.9 100 48 0.94

DCT =74.4 DCT =77.5
I1,4 ISLP 100 78.6 13.8 100 36.8 0.92

MPARV 50 572.6 636.9 100 325.7 636.7
TABU 100 82.6 2.14 100 36.8 0.86

DCT =78 DCT =82.9
I1,5 ISLP 100 235.9 44.2 100 143.6 28.4

MPARV 60 389.5 1307 100 323 1351
TABU 100 240 17.6 100 145.3 9.4

DCT =76 DCT =79.3
I4,1 ISLP 96 18.2 1.36 100 11.1 0.83

MPARV 0 - 2.07 10 29.6 2.07
TABU 100 20.1 0.56 100 13.2 0.14

DCT =74.7 DCT =78
I4,2 ISLP 100 43.3 3.9 100 26 1.3

MPARV 10 131.6 14.1 80 88.6 14
TABU 100 47.4 0.68 100 27.5 0.26

DCT =83.5 DCT =94.4
I4,3 ISLP 92 75.3 27.8 100 29 3.9

MPARV 0 - 34.9 4 125 34.8
TABU 100 79.5 10.34 100 31.4 0.5

DCT =74.6 DCT =79.7
I4,4 ISLP 100 216.4 89.1 100 97.5 11.4

MPARV 0 - 195.9 76.7 468.6 195.2
TABU 100 232 12 100 98.6 2.25

DCT =84 DCT =101
I4,5 ISLP 87 295 635.5 100 86 18.4

MPARV 0 - 570 16.7 582 567
TABU 100 298 149 100 87 5.3

in placing websites onto a set of web servers. They aims
to maximize the makespan with a predefined constraint on
the number of migrations. A heuristic with a 1.5 approxi-
mation ratio on the makespan is proposed. These heuristics
are variants of the greedy heuristic. Although providing a
guarantee on the worst case performance by bounds, they
do not explicitly minimize the migration cost.

6 Conclusion

In this paper we study the important problem of load re-
balancing. The problem has an emphasis on the concern of
the reassignment cost since a good tradeoff between system
load balance level and its associated cost should be achieved
in practice. With the functionality to find an reassignment
with lower cost, system administrators could compare the
costs for achieving various load balanced levels. This infor-
mation is helpful for the administrators to decide the most
appropriate reassignment and load balance level for maxi-

mizing their ultimate performance objectives. Our proposed
algorithm, IMLP, incorporates some special strategies to
reduce the reassignment cost. These strategies (including
concentration of the searching effort in the solution space
surrounding the initial assignment, guided local search, and
multi-level local search) are proved to be able to achieve
lower migration costs when compared to existing heuris-
tics. Our proposed strategy can be easily incorporated in
many existing LB algorithms for cost minimization.

References

[1] G. Aggarwal, R. Motwani, and A. Zhu. The Load Re-
balancing Problem. Journal of Algorithms, 60(1):42–
59, 2006.

[2] A.C.F. Alvim and C.C. Ribeiro. A Hybrid Bin-
Packing Heuristic to Multiprocessor Scheduling. In
Proceedings of the Third International Workshop on
Efficient and Experimental Algorithms (WEA’2004),
2004.

[3] A.C.F. Alvim, C.C. Ribeiro, F. Glover, and D.J.
Aloise. A Hybrid Improvement Heuristic for the One-
Dimensional Bin Packing Problem. Journal of Heuris-
tics, 10(2):205–229, 2004.

[4] M. Balazinska, H. Balakrishnan, and M. Stonebraker.
Contract-Based Load Management in Federated Dis-
tributed Systems. In Proceedings of the 1st Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI2004), 2004.

[5] T.C. Braun, H.J. Siegel, and N. Beck. A Compari-
son of Eleven Static Heuristics for Mapping a Class
of Independent Tasks onto Heterogeneous Distributed
Computing Systems. Journal of Parallel and Dis-
tributed Computing, 61:810–837, 2001.

[6] L. Chen, T. Ma, C.L. Wang, F.C.M. Lau, and S. Li. G-
JavaMPI: A Grid Middleware for transparent MPI task
migration. In B.D. Martino, J. Dongarra, A. Hoisie,
L.T. Yang, and H. Zima, editors, Engineering the
Grid: Status and Perspective. Nova Science Publisher,
2006.

[7] T. Cheng and C. Sin. A State-of-the-Art Review of
Parallel-machine Scheduling Research. Eropean Jour-
nal of Operational Research, 47(2):271–292, 1990.

[8] P.M. Franca, M. Gendreau, G. Laporte, and F.M.
Muller. A Composite Heuristic For The Identical
Parallel Machine Scheduling Problem With Minimum
Makespan Objective . Computers Operations Re-
search, 21(2):205–210, 1994.

[9] A. Frangioni, E. Necciari, and M.G. Scutella. A Multi-
Exchange Neighborhood for Minimum Makespan
Machine Scheduling Problems. Journal of Combina-
torial Optimization, 8:195–220, 2004.

[10] M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

[11] C.A. Glass, C.N. Potts, and P. Shade. Unrelated
Parallel Machine Scheduling Using Local Search.
Mathematical Computing and Modelling, 20(2):41–
52, 1994.

[12] F. Glover. Tabu Search. Kluwer Academic Publishers,
1997.

[13] R.L. Graham, E.L. Lawler, J.K. Lenstra, and
A.J.G. Rinnooy Kan. Optimization and Approxima-
tion in Deterministic Sequencing and Scheduling: A
Survey. Annals of Discrete Mathematics, 5:287–326,
1979.

[14] E. Jeannot and F. Vernier. A Practical Approach of
Diffusion Load Balancing Algorithm. In Europar,
pages 211–221, 2006.

[15] P. Kilby, P. Prosser, and P. Shaw. Guided Local Search
for the Vehicle Routing Problem with Time Windows.
In S. Vob, S. Martello, I. Osman, and C. Roucairol, ed-
itors, Meta-heuristics: Advances and trends in local
search paradigms for optimization, pages 473–486.
Kluwer Academic, 1999.

[16] Z. Lan, V.E. Taylor, and Y. Li. DistDLB: Improving
Cosmology SAMR Simulations on Distributed Com-
puting Systems Through Hierarchical Load Balanc-
ing. Journal of Parallel and Distributed Computing,
66(5):716–731, 2006.

[17] Y. Li and Z. Lan. A Novel Workload Migration
Scheme for Heterogeneous Distributed Computing.
In Proceedings of the 5nd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CC-
GRID2005), 2005.

[18] P. Mills and E. Tsang. Guided Local Search for
Solving SAT and weighted MAX-SAT Problems. In
Proceedings of the Fifth International Symposium on
the Theory and Applications of Satisfiability Testing
(SAT2000), pages 89–106, 2000.

[19] L. Oliker, R. Biswas, and H.N. Gabow. Performance
Analysis and Portability of the PLUM Load Balanc-
ing System. In Proceedings of Euro-Par’98 Parallel
Processing, pages 307–317, 1998.

[20] I. Pardines and F.F. Rivera. Minimizing the Load Re-
distribution Cost in Cluster Architectures. In Proceed-
ings of Euromicro Conference on Parallel, Distributed
and Network-based Processing, 2004.

[21] N. Piersma and W. Van Dijk. A Local Search Heuristic
for Unrelated Parallel Machine Scheduling with Effi-
cient Neighborhood Search. Mathematics and Com-
puter Modeling, 24(9):11–19, 1996.

[22] B. Srivastava. An Effective Heuristic for Minimis-
ing Makespan on Unrelated Parallel Machines. The
STOR Journal of the Operational Research Society,
49(8):886–894, 1998.

[23] C. Voudouris and E. Tsang. Guided Local Search and
Its Applications to the Travelling Saleman Problem.
European Journal of Operational Research, 113:469–
499, 1999.

[24] J. Watts and S. Taylor. A Practical Approach to Dy-
namic Load Balancing. IEEE Transactions on Parallel
and Distributed Systems, 9(3):235–248, 1998.

[25] J. Westbrook. Load Balancing for Response Time.
Journal of Algorithms, 35(1):1–16, 2000.

[26] C.-Z. Xu, F.C.M. Lau, and R. Diekmann. Decen-
tralized Remapping of Data Parallel Applications in
Distributed Memory Multiprocessors. Concurrency:
Practice and Experience, 9(12):1351–1376, 1997.

Biographies

Lin Chen received her PhD degree in Computer Engineer-
ing from The University of Hong Kong (HKU) in Jan. 2007.
Since Jun. 2006, she worked as an assistant researcher in the
University of Hong Kong and the Shenzhen Institute of Ad-
vanced Technology, Chinese Academy of Science for one
year and half a year respectively. Her research interests in-
clude load balancing, grid scheduling and grid-based appli-
cations.
Cho-Li Wang is an associate professor in the Department
of Computer Science in the University of Hong Kong. His
research interests include middleware design for Cluster
and Grid Computing. He received his Ph.D. degree in Com-
puter Engineering from University of Southern California in
1995.
Francis C.M. Lau is a professor in computer science in the
University of Hong Kong. His research interests include op-
erating systems, parallel and distributed systems, pervasive
and mobile computing, and wireless sensor networks. He
received a PhD in computer science from the University of
Waterloo in 1986.

