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Abstract 
 

Steroid hormones are necessary for vital functions 

of most of vertebrates. Hormone molecules act within 

cells via interaction with their receptor proteins which 

are transcription factors. Identification of Hormone 

Response Elements (HREs) in DNA is essential for 

understanding the mechanism of hormone-mediated 

gene expression regulation. We present a systematic 

approach for recognition of HREs within promoters of 

vertebrate genes. The proposed approach is based on 

an experimentally validated dataset and a specifically 

reconstructed cascade Markov model for HRE 

recognition with reference to its complex composition. 

The approach provides a reliable accuracy for HRE 

prediction, and may be extended to other sequence 

motifs with repeated or multi-component structure. The 

developed FPGA implementation of the Markov model 

is tested using a Virtex-4 board. The model is trained 

for prediction of HREs in promoters of hormone-

responsive genes, and for further study on direct 

targets for androgen, progesterone and glucocorticoid 

hormones.  

 

 

1. Introduction 
 

Hormone response elements are binding sites for 

transcription factors belonging to the family of steroid 

hormone receptors. In general, recognition of 

transcription factor binding sites (TFBSs) through 

experimental research is a slow and tedious task. 

Through the advent of computational biology, many 

statistical models and algorithms have been developed 

to examine regions of the DNA that might harbor 

TFBSs in a quick and efficient manner, but current 

computational methods for prediction of TFBSs in 

DNA are still not as reliable as experimental 

approaches. 

The major challenge for in silico recognition of 

TFBSs is their weak conservation which results in low 

selectivity of statistical models. In particular, the 

diverse patterns of the TFBSs make it difficult for 

naïve statistical approaches to specifically distinguish 

functional binding sites and neutral DNA. As it has 

been shown in many experiments [1-3], the true 

predictions are often accompanied by large numbers of 

false positives, thus making the results of 

computational prediction nearly meaningless. An 

essential way to improve TFBS prediction accuracy for 

a particular transcription factor (or a family of those) is 

to enhance the model selectivity by employing 

additional features that are specifically innate to the 

pattern of interest, though at a cost of losing generality 

of modeling.  

The general idea of HRE acting as a DNA dimer 

has been known for years, but only thorough mutational 

analysis might help to explore the tiny composition of a 

functional response element. In literature, an 

exhaustive mutation analysis of HRE was reported by 

Nelson et al. [4]. The authors performed selection 

assays for detection of response elements to three 

steroid hormones with both high binding affinity and 

specificity, but in their work, no flexibility of the right 

half-site of the HRE dimer was allowed. Although this 

assumption had a base, as the right half-site had 

previously been reported to be well conserved [5], this 

half-site still admitted some single nucleotide 

substitutions in non-contact points [6]. In fact, the 

functional HRE sequences display both conservation 

and diversity, and the latter makes it a challenging task 



to establish a computational model for reliable HRE 

prediction.  

We have previously reported our findings 

concerning preferences of hormone receptors towards 

their target DNA sequences [7], mainly based on 

Position Weight Matrix (PWM) prediction method. 

Statistic characteristics at each nucleotide position of 

the HRE sequence were studied similar to those from 

mutational analysis experiments. While the position 

frequency distributions are undoubtedly important for 

prediction of HREs and allow constructing an easily 

interpretable HRE motif profile, we believe that 

statistic features between the nucleotides, or nucleotide 

transition patterns, may provide a new dimension in 

modeling of DNA sequence motifs. 

Hence, in this paper, we study a method for 

predicting HRE using the profile Markov model which 

is specifically designed according to the dimeric 

structure of the HRE consensus. We propose a cascade 

Markov model with specific state transition matrix for 

each constituent of the complex HRE structure, 

namely, the two half-sites and flanking regions around 

them, and implement the model on FPGA as a parallel 

architecture  

 

2. Construction of HRE Training Database 
 

Accuracy of a statistic model largely depends on 

construction of the training datasets. One can easily 

achieve very high sensitivity and specificity of motif 

prediction with just a few sequences used for training 

and testing, but this result tends to be meaningless 

because the relative variance will also be very high.  

There are a few public databases of TFBSs or cis-

regulatory modules, among them are TRANSFAC [1], 

JASPAR [2], PReMod [3]. However, much of the 

time there is no collaboration between these databases, 

resulting in duplicated data that needs to be sifted 

through in order to avoid errors. By scanning through 

these public databases, we have found only 

approximately 50 HREs. In particular, publicly 

available version of TRANSFAC contains GRE matrix 

calculated for 38 binding sites; JASPAR has ARE 

weight matrix with 24 sequences used. Genomatix 

TFBS database used for MatInspector tool [4] is 

capable of for predicting of response elements of the 

glucocorticoid, androgen and progesterone receptors 

(ARE, GRE and PRE), but this database was 

constructed based on only one experimental result [5] 

with a strong limitation for HRE selection process. 

That is, a reliable and exhaustive (but non-redundant) 

dataset of HREs for training and testing purposes is a 

must for further development of any HRE prediction 

model; otherwise, any possible experiments will be 

inconclusive. 

For this purpose, a set of DNA sequences of 

experimentally verified HREs was collected from 

literature. At first, we collected only progesterone 

response elements, but this hormone looked like to be 

the least investigated among all steroid hormones, so 

we considered a canonical assertion that 

glucocorticoid, androgen and progesterone receptors 

tended to share the same response elements on DNA. 

The collected set contained 661 HRE sequences 

extracted from more than 200 literature sources. The 

amount of progesterone response elements in the 

collection was 66, in addition to 377 glucocorticoid 

HREs and 218 androgen HREs. These sequences are 

housed in our database Tiger HRE DB [6]. 

 

3. Building a Cascade Markov Model for 

HRE Prediction 
 

A Markov chain is an extension of a finite state 

machine with the Markov property [1]. The Markov 

model can be used to represent the probability of 

transition between adjacent nucleotides in a DNA 

sequence. However, a naïve Markov model does not 

associate the transition probabilities with the position 

of the nucleotides in the sequence. It is thus necessary 

to define a more sophisticated model to incorporate the 

targeted complex sequence pattern in computation of 

the transition probabilities, which leads to our solution 

for the HRE prediction. With reference to the 

suggested HRE structure [2], we designed a cascade 

model in which the two HRE half-sites, the internal 

spacer, and the two flanking regions were considered as 

five components of the HRE model. Each component 

model had its own transition parameters, while the top-

level model computed the transition probabilities 

between them. Transition probabilities for the 

component HRE models and probabilities for inter-

model transitions were trained using maximum 

likelihood estimation. 

The defined positions of half-sites are highly 

position-specific due to the presence of contact points 

typical for the HRE. The binding site for HRE consists 

of three domains: two half-sites and a spacer. In our 

model, we also considered flanking regions since they 

were reported to be involved into the process of 

binding [3]. Therefore, the number of domains to be 

included in the model is five. Each of these domains is 

expected to have its own properties (i.e. internal 

transition probabilities), so the Markov models for the 

corresponding domains have to be examined and 

trained separately. We created a Markov model for 



representation of steroid HRE motif as shown in Fig. 1.  

The model structure satisfies the described 

conditions: different domains are considered 

independently, and transition probabilities between 

them are determined. The transition probabilities for 

the first component model, which corresponds to states 

1 through 4, are determined using 3bp flanking regions 

at the beginning of the HRE, the probabilities for the 

second model (states 5-8) correspond to the left half-

site, etc. The fact that the right half-site is highly 

conservative is reflected in the structure of the fourth 

component model, which corresponds to the states 13-

31. The transition probabilities in this part of the model 

are position-dependent, unlike the probabilities in the 

other parts of the sequence. Based upon the collected 

PFMs, where GpT dinucleotide in the right half-site is 

observed in 99% cases, we decide that the presence of 

GpT should be declared as an essential feature. If this 

dinucleotide is absent at the specified position in the 

sequence being tested, which corresponds to states 18 

and 21 in the model, then the sequence cannot be an 

HRE (and referred to transition to the state 19).  

Given the length of each constituent part of HRE, 

namely the flanking regions are of length 3 and so on, 

we define the number of possible transitions inside 

each of the Markov models. In particular, there are two 

transitions allowed in the flanking regions models, so 

that three states are visited and the 3bp-long sequence 

is returned.  

There exist certain differences in lengths of training 

sequences as not all of them have flanking regions 

annotated in the literature. Hence, normalization 

procedure for resulting Markov probability value is 

used – logarithm of probability is divided by the 

sequence length. Also prior Markov distribution, in 

case of the starting position of the sequence different 

from B (i.e. if no left flanking region annotated), is 

taken from position frequency matrices; otherwise this 

distribution is considered as uniform. 

After the sequence is processed by the model, its 

Markov probability is stored into a database and is 

subject to a threshold for decision making. The model 

is designed to be used as a part of a multiple-feature 

prediction framework where the putative HREs are first 

selected by a simple method, such as PWM, with high 

sensitivity. However, if the model is intended for 

screening of a long DNA region, an optimization based 

on a systolic array or a similar technology should be 

used. 

 

4. Fine-Grained Parallelization with FPGA 
 

In the software implementation, we often limit the 

prediction accuracy to avoid the prohibitively long 

execution time. Based on the Field-Programmable Gate 

Arrays (FPGA), we developed a hardware-accelerated 

solution to exploit the modeling capability of the 

proposed HRE Markov model. The entire model 

consists of consecutive component models, but in fact 

these models can be processed in parallel if additional 

input prepocessing is involved. We can expect the 

acceleration benefiting from fine-grained paralleli-

zation, with optimization of logic interconnections 

which is a significant advantage of the FPGA 

technology in comparison with other application-

specific approaches to hardware design. 

 

4.1 Schematic Design of the Cascade Markov Model 

We use the ADM-XRC-4 PCI board with the Xilinx 

Virtex-4 chip which contains 135,168 logic cells and 

5,184Kbit of embedded RAM. Initially the RTL 

(register-transfer level) description in Verilog HDL 

was simulated by creating test benches to validate the 

system. Then, after the synthesis engine had mapped 

the design to a netlist, the netlist was translated to a 

gate level description where simulation was repeated to 

validate the synthesis results. Finally, the design was 

laid out in the FPGA at which point propagation delays 

were added and the simulation ran again with these 

values back-annotated onto the netlist.  

The configured FPGA chip is then used as a co-

Fig. 1. A five-stage cascade Markov model for HRE recognition 
 



processor for the computing system. The C++ 

application reads the input DNA sequences, converts 

the letters of DNA alphabet into binary numbers (two 

bits per nucleotide positions, and 21 positions per 

input), and sends the 42bit-long input vector to the 

FPGA board. It also obtains the output Markov 

probability from the board, and proceeds it to the 

decision making scheme for HRE recognition. 

Transition probabilities were obtained using the 

maximum likelihood approach, and stored in the 

memory as 32 bit unsigned fixed point numbers. 

The Markov model implemented on FPGA consists 

of seven main units: five units for the component 

Markov models for the two half-sites of HRE, two 

flanking regions, and the spacer between the half-sites; 

the memory unit, which stores the transition 

probabilities for each component model; and the 

merging unit, which receives the resulting Markov 

probabilities from the five component model units, and 

returns the overall Markov probability for the input. 

The input to the FPGA-implemented Markov model is 

a DNA sequence. It is then split into five partially 

overlapping subsequences, each of which is processed 

by a component Markov model, as shown in Fig. 2. 

By involvement of the overlapping areas instead of 

a consequence of component Markov models, we can 

make these models to operate in parallel. The 

overlapping area for the splitting of the input sequence 

into subsequences is for the Markov property of the 

model since the current state depends on the previous 

state only. When the first-order Markov model is 

considered for HRE modeling, one previous nucleotide 

is merged together with the following component 

constituent as its beginning state. For the higher-order 

Markov model, it would be necessary and sufficient to 

only increase the size of overlapping for the sequence 

splitting. 

 

5. Logic Interconnection in the Markov 

Model 
 

Each of the five component HRE Markov models 

was implemented in a form of Markov processing 

element (MPE). Two types of processing elements 

were proposed for the two main types of model atomic 

constituents of HRE pattern, in particular, for the 3bp-

long neighboring regions (MPE F, or Markov 

processing element for flanking areas and the spacer), 

and for the 6bp-long HRE half-sites (MPE H, or 

Markov processing element for the half-site, shown on 

the Fig. 3). All Markov processing elements have their 

Fig. 3. The dataflow scheme of the Markov 
processing element MPE H for the cascade 

Markov model. The element processes a 6bp-
long half-site of an HRE. The MPE F element has 
similar structure, though uses only two 
multiplications for the 3bp-long flanking regions. 
The half-site sequence is in upper case, while the 
letter in lower case is from the preceding element.  

Fig. 2. The schematic diagram of FPGA 

implementation of the HRE Markov model    



own memory storage units for corresponding transition 

probabilities (that is, the physical memory is 

distributed, as it allowed us to use less area resources in 

comparison with a common memory unit for the entire 

Markov model), and are connected to the Markov 

merging element (MME) which is in turn connected to 

the output of the Markov model FPGA module.  

Each MPE has a transition probability detection 

(TPD) unit for preprocessing of the input sequence 

(Fig. 3). For each input DNA sequence, the TPD unit 

returns the memory indexes, which are then used for 

extraction of the corresponding transition probability 

values from memory. Thus, the transition profile of the 

input sequence is generated and processed. In case of 

higher order models, more preceding elements should 

be involved, and the transition profile becomes (in 

general, exponentially) larger. 

For calculations of Markov probabilities, the 

unsigned fixed point notation is used. Here, inside of 

MPEs, we use 32 bits to represent a numerical value of 

probability with 32 fractional bits, while for the 

merging element we extend it to 64 bits. The reason is 

that after a series of tests, 32 fractional bits have been 

found to cause notable underestimation of resulting 

Markov probabilities for most of HRE inputs. Indeed, 

for the length of the input sequence of 21 bp, the 

precision of 64 bits used for fraction part is enough, 

though for longer inputs it may be reasonable to 

involve logarithmic transformations so as to replace 

multiplications by additions. 

Arithmetic operations used here are standard 

procedures: 36bit×36bit multiplication is implemented 

as a finite state machine which regulates the sequence 

of pairwise 18bit×18bit multiplications accomplished 

by the two dedicated hardware multipliers. 

Multiplications were not replaced by logarithmic 

additions in order not to overload the limited number of 

logic gates. When 64 bits are used instead of 32 for 

fractional number representation, four embedded 

multipliers are involved, instead of two, into Markov 

probability calculations. It is necessary to note, though, 

that the architecture of frequently used arithmetic 

operations is always a trade-off between limited 

resources and corresponding latency.  

The FPGA clock frequency was set to 100 MHz 

Summary of the ensued implementation of the 

cascade Markov model is as follows: 

 
Logic elements: 21,396 of 135,168 (16%) 

RAM:            160Kbit of 5184Kbit (3%) 

I/O pins:       120 of 960 (13%) 

DSP slices:     42 of 96 (44%). 

6. Analysis of Computational Performance 

and Complexity 
 

The complexity of the Markov model training is 

O(w2
*L*n) where L is the length of the pattern of 

interest, w is the size of the alphabet, and n is the 

length of the sequence to process. The computational 

complexity is higher than that of conventional position-

specific models because the amount of possible 

transition patterns is square to the cardinality of the 

alphabet. However, for the developed five-stage model 

of HREs, the complexity is lower than it might be in 

average, because we consider the GpT dinucleotide to 

be essential for binding as it is the most important 

contact point for protein-DNA interaction; therefore, 

we can eliminate the candidate sequences which do not 

have this pattern in the required position. It allows us to 

gain the average speed-up as much as 16 times only 

with the software implementation. 

The FPGA speed-up for the multi-stage Markov 

model is examined using 1Mb of randomly generated 

sequences of the DNA alphabet. The list of the testing 

sequences is preprocessed by the encoding application, 

and then the sequences are submitted into the board, 

one at a time, after a handshake signal for the 

completion of calculations for the previous input is 

received. In this case, we do not benefit from the 

possible re-distribution of the data flow, though it is 

possible to decrease the latency even more if the MPEs 

modules start processing the next input while the MME 

module calculates the current output. For testing 

purposes, we also did not include the selection 

procedure based on high conservation of the GpT 

dinucleotide in the right HRE half-site. 

The results of test on computational performance of 

different implementation of the models can be 

summarized as follows: 

• with the IBM 4-way server (4 CPUs each of 

3.17GHz, 3.25GB RAM, Win 2003 Server), it 

takes about 60 seconds to process 1 Megabyte of 

DNA text by the five-stage Markov model; 

• by the FPGA-based hardware acceleration, it allows 

to screen 1Mb of DNA within 8 seconds of runtime, 

thus allowing up to 8X speed-up. 

That is, the achieved speed-up value is due to not 

only the parallelization itself, but also involves the 

advantage of application-specific logic-interconnection 

design benefiting from the use of FPGA. The 

scalability of the design was also measured using 

complete genomic sequences of human and mouse that 

are nearly 3 billions of base pairs-long each, and a 

similar acceleration of nearly an order of magnitude 

was achieved. 



7. Experimental Results 
 

To evaluate the sensitivity of the developed cascade 

model, we used the experimental setup with different 

proportions of the collected dataset of HREs used for 

training and testing. The typical values of the Markov 

probability for functional HREs were found to be 

around 0.35. The accuracy of HRE prediction by the 

five-stage Markov model is summed up in Table 1, and 

if Fig. 4, the ROC curve is given. 

 

Table 1. Accuracy of HRE prediction by the 
five-stage cascade Markov model. 
 
 

Sensitivity, % 
b 

70/30 50/50 100/100 
RE, bp

-1
 

0.30 95.3 93.9 97.3 192 

0.31 94.9 93.2 96.5 293 

0.32 94.2 92.2 95.9 458 

0.33 89.3 85.0 93.1 737 

0.34 84.8 75.5 88.0 1325 

0.35 73.0 66.3 79.2 2942 

0.36 63.5 61.8 66.6 4254 

0.37 60.0 58.3 61.0 6734 

0.38 51.3 46.8 55.9 15342 

0.39 41.1 37.0 42.2 35876 

0.40 33.4 28.6 33.8 723462 
 

Notation: b - the Markov probability threshold, RE – 
random expectation value (1 prediction per RE base 
pairs of randomly generated nucleotide sequence). 

 

In Table 1, the results of three series of independent 

accuracy tests are given. First, the tests were performed 

with 70% of the HRE collection used for training and 

the rest for testing. Second, the training/testing split 

was into half and half (50/50 column), and the 

sequences for training sample were randomly selected 

from the database without replacement. Finally, the 

entire HRE dataset was used for training and testing; it 

is noted in the table by the 100/100 column. For the 

cascade five-stage Markov model, we achieved the 

average sensitivity of 85% with random expectation of 

1:1325bp, and a level of prediction rate of 1:6.5kb with 

60% of correctly predicted HREs. The AUC value for 

the model is 0.924, which is lower that of the position 

weight matrix methods (reported 0.953 and 0.941, 

respectively [1]), but still in the range of good 

prediction rates for the problems of TFBS recognition. 

The five-stage Markov model provides a versatile 

method for modeling the transition pattern of the HRE 

sequence. However, it is reasonable to believe (and this 

strategy is already widely used in the design of 

ensemble models [2]) that if two pattern recognition 

methods consider different properties of the object 

under recognition, their combination may outperform 

each single method. Here we use a nucleotide 

frequency model based on position weight matrix for 

enhancing the Markov model by establishing a 

position-transition ensemble for HRE recognition. 

In particular, for combined HRE prediction, we 

designed a unanimous voting system. A HRE is 

predicted only if the single- and dinucleotide PWMs 

support the HRE predictions by the cascade Markov 

model. Using this scheme, we eliminate a large amount 

of false positives. The combined position-transition 

prediction accuracy was tracked in comparison with 

each of the methods involved. 

Figure 4 shows the ROC curves for different 

possible combinations of the statistic methods of HRE 

prediction. The ROC curve for the single nucleotide 

PWM is labeled with PWM1. The curve for the 

dinucleotide PWM is labeled with PWM2. The curve 

for the combination of position weight matrix methods 

is labeled with “PWM1+PWM2”. Label MM 

corresponds to the Markov model described in this 

paper. Finally, the label “Tiger” denotes the ROC 

curve for the combination of all the three prediction 

methods implemented as a unanimous voting scheme. 
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Fig. 4. The ROC curves for the combined 

prediction of HREs in comparison with the 
single- and dinucleotide PWM methods and 

the five-stage cascade Markov model alone. 
 

 For the combined predictions, such as 

“PWM1+PWM2” and “Tiger”, the generation of ROC 

curves requires selection of a combination of two or 

three threshold values simultaneously in order to 



balance sensitivity and specificity. To find an 

approximate solution, we change one parameter at a 

time by a small amount that is enough for only one 

sequence from the training data to be re-classified, and 

estimate the average specificity for each sensitivity 

value. 

The combination of the three prediction methods 

eliminates a large number of the false positives while 

keeping the number of true positives. The sensitivity 

and random expectation values of the combined 

method are the functions of three variables and can be 

tuned in a three-dimensional space. For the problem of 

HRE recognition in gene promoters, we set the 

following values for recognition thresholds: for 

PWM1, the recognition threshold was 0.85; for 

PWM2, the recognition threshold was 0.73; for MM, 

the recognition threshold was 0.35. Using these values, 

we received a combination of sensitivity 73% and 

random estimation of 1 hit per 4.74kb. The 

corresponding AUC is 0.968, in comparison with the 

five-stage MM’s AUC of 0.924, and PWM1+PWM2 

AUC of 0.963. 

 

8. Discussion and Conclusion 
 

Several stochastic ways of modeling TFBS motif 

profiles exist. As TFBS sequences are typically short 

and degenerate, signal-to-noise ratio for their de novo 

prediction is usually low. Therefore, TFBSs are 

intrinsically hard to be accurately predicted by methods 

of statistic modeling. In this work, we presented a 

method for TFBS prediction based on a Markov model 

approach, and test it by the example of hormone 

response elements. 

Unlike the PWM-based methods which consider 

only single or multiple nucleotide patterns of the HRE 

sequence consequently, in the proposed cascade 

Markov model, several component models can be 

designed to represent the actual constituents of the 

complex response element architecture. With this 

multi-stage approach, the HRE dimeric structure can be 

accurately described. When used in combination with 

the position-specific PWM methods, the multi-stage 

Markov model allows increasing the HRE prediction 

accuracy notably. 

Based on the tests performed using an extensive 

HRE dataset, our findings are indeed promising. For 

comparison, the results of analysis of TRANSFAC-

based prediction performance provided by Rahmann et 

al. [3] can be used. In that paper, the authors showed 

that a specificity level higher than 0.99 can be achieved 

for only 43 profiles (i.e. 7%) among 623 used for 

testing. Some profiles of high interest in practice like 

nuclear receptor binding sites were not included in that 

high-quality group. All other profiles resided below the 

specificity level of 99%, which was nearly 

disappointing because the corresponding prediction 

specificity was as low as 1 prediction per 0.1kb. 

The proposed FPGA architecture of the cascade 

model allows for certain versatility in hardware design. 

In particular, the partially parallel structure can be 

redesigned for trade-off between latency and area. 

Furthermore, higher-order Markov models might be 

required for in silico prediction of sequence motifs, as 

it has been shown by Rajapakse and Ho for the case of 

genomic signals [4]. With reference to the described 

multi-stage model, the increase of the order of Markov 

model would result in a slightly modified memory 

management scheme and additional logic 

interconnections for distribution of the input to 

processing elements. For example, if we consider a 

second order model, with reference to Fig. 2, we only 

need to extend the borders for the operation coverage 

for the processing elements (vertical rectangles along 

the DNA sequence), and modify the size and 

mechanisms of control for the memory units. 

To our knowledge, design and development of the 

cascade Markov model is a pioneering work. However, 

due to the model complexity, large genomic sequences 

may cause prohibitively long computing time. Thus, in 

order to make the approach useful in practice, we also 

studied the applicability of hardware-acceleration 

methods using FPGA technology. The conclusion is 

that the FPGA has been successful for enhancement of 

HRE prediction. The described hardware design refers 

to both advantages of FPGA – fine-grained 

parallelization and application-specific inter-

connections. The achieved speed-up up to an order of 

magnitude allows us to conclude that the HRE 

modeling approach with the proposed hardware-

acceleration architecture allows not to compromise best 

possible accuracy. 

 

References 
 
1. Freedman LP and Luisi BF (1993) On the mechanism of 

DNA binding by nuclear hormone receptors: a structural and 

functional perspective. J Cell Biochem. 51(2):140-150. 

2. Smirnov AN (2002) Nuclear receptors: nomenclature, 

ligands, mechanisms of their effects on gene expression. 

Biochemistry (Mosc). 67(9):957-977. 

3. Nelson CC, Hendy SC, Shukin RJ, Cheng H, Bruchovsky 

N, et al. (1999) Determinants of DNA sequence specificity of 

the androgen, progesterone, and glucocorticoid receptors: 

evidence for differential steroid receptor response elements. 

Mol Endocrinol. 13(12): 2090-2107. 



4. Lieberman BA, Bona BJ, Edwards DP, and Nordeen SK 

(1993) The constitution of a progesterone response element. 

Mol Endocrinol. 7(4):515-527. 

5. Roche PJ, Hoare SA, and Parker MG (1992) A consensus 

DNA-binding site for the androgen receptor. Mol 

Endocrinol. 6(12):2229-2235. 

6. Stepanova M, Lin F, and Lin VC (2006) In silico 

modeling of hormone response elements. BMC 

Bioinformatics. 7(4):S27. 

7. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, 

et al. (2003) TRANSFAC: transcriptional regulation, from 

patterns to profiles. Nucleic Acids Res. 31(1):374-378. 

8. Sandelin A, Alkema W, Engstrom P, Wasserman WW, 

and Lenhard B (2004) JASPAR: an open-access database for 

eukaryotic transcription factor binding profiles. Nucleic 

Acids Res. 32(Database issue):D91-D94. 

9. Ferretti V, Poitras C, Bergeron D, Coulombe B, Robert 

F, and Blanchette M (2007) PReMod: a database of genome-

wide mammalian cis-regulatory module predictions. Nucleic 

Acids Res. 35(D):122-126. 

10. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, 

et al. (2005) MatInspector and beyond: promoter analysis 

based on transcription factor binding sites. Bioinformatics. 

21(13):2933-2942. 

11. Stepanova M, Lin F, and Lin V (2006) Establishing a 

Statistic Model for Recognition of Steroid Hormone 

Response Elements. Comput Biol Chem. 30(5):339-347. 

12. Eddy SR (1998) Profile hidden Markov models. 

Bioinformatics. 14(9):755-763. 

13. Clote P (2000) Computational molecular biology: an 

introduction. John Wiley, New York. 

14. Gusfield D (1997) Algorithms on Strings, Trees, and 

Sequences. Cambridge University Press. 

15. Haelens A, Verrijdt G, Callewaert L, Christiaens V, 

Schauwaers K, et al. (2003) DNA recognition by the 

androgen receptor: evidence for an alternative DNA-

dependent dimerization, and an active role of sequences 

flanking the response element on transactivation. Biochem J. 

369(1):141-151. 

16. Stepanova M, Lin F, and Lin VC (2006) Tiger HRE 

Finder - A Tool for Identification of Hormone Receptor 

Binding Sites in Query Sequences. In Proc. of IMSCCS'06. 

1: 22-26. 

17. Kuncheva LI and Whitaker CJ (2003) Measures of 

Diversity in Classifier Ensembles and Their Relationship 

with the Ensemble Accuracy. Machine Learning. 51(2):181-

207. 

18. Rahmann S, Muller T, and Vingron M (2003) On the 

power of profiles for transcription factor binding site 

detection. Stat Appl Genet Mol Biol. 2(1): Article 7. 

19. Rajapakse JC and Loi Sy Ho (2005) Markov Encoding 

for Detecting Signals in Genomic Sequences. IEEE/ACM 

Trans Comput Biol Bioinf. 2(2):131-142. 

Authors  
 

 Maria Stepanova received her 

MSc degree in applied 

mathematics in Moscow Institute 

of Physics and Technology, 

Russia. She's currently a PhD 

student with the School of 

Computer Engineering, Nanyang 

Technological University (NTU), Singapore. Her 

research interests include bioinformatics, machine 

learning algorithms, mathematical statistics, and 

embedded systems for biomedical research. 

 

Feng Lin received his PhD degree in computer 

engineering from Nanyang 

Technological University 

(NTU), Singapore. He is 

currently an associate professor 

with the School of Computer 

Engineering, Nanyang 

Technological University, 

Singapore. His research interests 

include bioinformatics, high-

performance computing, 

visualization, and embedded 

systems for biomedical research. 

 

Valerie Lin received her PhD degree from University 

of Reading, United Kingdom. 

She is currently an assistant 

professor with the School of 

Biological Sciences, Nanyang 

Technological University, 

Singapore. Her research interest 

is primarily focused on endocrine 

and paracrine regulation of 

mammary development and breast cancer. 


