
LiteLoad: Content Unaware Routing for Localizing P2P protocols

Shay Horovitz and Danny Dolev
School of Computer Science and Engineering

Hebrew University of Jerusalem
Jerusalem, Israel

{horovitz,dolev}@cs.huji.ac.il

Abstract

In today’s extensive worldwide Internet traffic, some
60% of network congestion is caused by Peer to Peer ses-
sions. Consequently ISPs are facing many challenges like:
paying for the added traffic requirement, poor customer sat-
isfaction due to degraded broadband experience, purchas-
ing costly backbone links and upstream bandwidth and hav-
ing difficulty to effectively control P2P traffic with conven-
tional devices.

Existing solutions such as caching and indexing of P2P
content are controversial as their legality is uncertain due to
copyright violation, and therefore hardly being installed by
ISPs. In addition these solutions are not capable to handle
existing encrypted protocols that are on the rise in popular
P2P networks.

Other solutions that employ traffic shaping and blocking
degrade the downloading throughput and cause end users
to switch ISPs for a better service.

LiteLoad discerns patterns of user communications in
Peer to Peer file sharing networks without identifying the
content being requested or transferred and uses least-cost
routing rules to push peer-to-peer transfers into confined
network segments. This approach maintains the perfor-
mance of file transfer as opposed to traffic shaping solutions
and precludes internet provider involvement in caching, cat-
aloguing or indexing of the shared content. Simulation re-
sults expresses the potential of the solution and a proof of
concept of the key technology is demonstrated on popular
protocols, including encrypted ones.

1. Introduction

In its early days, the Internet was used to transport fairly
homogeneous and relatively light textual content between
computers. Since then, the Internet has become an ex-
tremely diverse platform which is used to transfer a myriad
of different types of content in a variety of formats. Today,

bandwidth intensive content, such as media files, for exam-
ple, traverses the Internet alongside relatively light content,
such as text and simple graphics.

Peer to peer (P2P) technology is a major contributor to
the dramatic rise in the amount of bandwidth intensive con-
tent being exchanged over the Internet. P2P services, such
as eDonkey/eMule and BitTorrent are believed to be respon-
sible for approximately 60% [10] of all Internet traffic. In-
ternet Service Providers (ISPs) typically pay for external
links (links with nodes located outside the specified portion
of the IPS’s network). Thus, P2P traffic, being associated
with content intensive traffic, is a significant contributor to
the operating costs of ISPs and has become a heavy finan-
cial burden on the shoulders of the ISPs. In addition, the
quality of the service is degraded as heavy P2P users ex-
ploit the available bandwidth for external throughput.

If ISPs were provided with effective means for reduc-
ing the operating expenses associated with P2P traffic, their
profitability may increase. Such solutions need to maintain
a relatively high quality of service level due to the popular-
ity and demand of P2P services. Therefore, simply blocking
P2P traffic or employing a traffic shaping mechanism is not
feasible. In an attempt to provide effective means for re-
ducing the operating expenses associated with certain types
of traffic, in particular - P2P traffic, several solutions have
been suggested such as using cache servers and content-
aware P2P routers, all aimed to localize P2P traffic inside
the IPS’s network. However, such solutions expose the ISP
to the content of P2P communications and even involve
storing (caching) data which is associated with (or refers
to) the content of the P2P communications. Exposure to the
content of the P2P communications may impose consider-
able liabilities on the ISP, for example, in lieu copyright
infringement. In addition, recent versions of P2P protocols
are encrypted - thus removing the benefit of cache servers
and other routing solutions that try to inspect the content of
the packets.

Thus, there is a need for a method and a system for con-
tent insensitive management of P2P communications arriv-

1



ing from or to a node connected to a specified portion of a
network. It is further needed to provide a solution for man-
aging communications arriving from or to a node connected
to a specified portion of a network without being exposed
to the content of the communications and without being re-
quired to store or cache any data which is associated with or
including reference to the content of the communications.
In addition, support of encrypted P2P protocols is required.

We present the design of LiteLoad, a system that pro-
vides a method for managing communications arriving from
or to a node connected to a specified portion of a network
or an ISP in particular. LiteLoad does not store any in-
formation about the content being transferred between P2P
nodes. The concept was tested in a simulation that showed
a fundamental advantage. In addition, we built a proof-
of-concept prototype for some portions of the system and
proved its ability to perform over popular P2P protocols,
both encrypted and non encrypted.

LiteLoad’s approach to the problem is to learn the pat-
terns of communications of P2P protocols and accordingly
apply rules that influence the behavior of such protocols for
creating a localized network.

The remainder of this paper examines these issues both
analytically and empirically. In Section 2 we discuss related
work in this field. Section 3 elaborates on the problem and
the different aspects of the tention between ISPs and P2P
networks. Section 4 presents our approach and discusses
how and in what scenarios this approach will benefit the
ISP and its customers. Section 5 presents our experiments
on popular protocols and the results of our simulation.

2. Related Work

In order to solve the problem of P2P bandwidth conges-
tion on external links of ISPs, several solutions have been
proposed. Aggarwal et al. [13] proposed employing an or-
acle service. P2P clients should supply the oracle with a
list of possible P2P neighbors and the oracle ranks them
according to certain criteria such as their proximity to the
requesting client.

In [17] the authors propose a caching solution which
leverages existing web cache proxies. Yet, the P2P client
should be adapted to this service.

The above solutions are not able to deal with existing
P2P networks and require the designer of the network to
adapt its architecture to these solutions.

Solutions that were offered by CacheLogic [3], Peer-
App [11] and Joltid [8] proposed to cache P2P traffic. This
makes sense as in P2P it was shown that 20% of the files
account for more than 80% of the downloads [16]. Yet,
caching means that portions of copyrighted material are
stored on the ISPs disks and this raises a legal dispute about
copyright violation. In addition, due to the new trend of

encrypted protocols with changing keys and the use of ob-
fuscated packets, caching seems to be losing its grip in the
market.

Gummadi et al [14] offered that an ISP will deploy a
redirector at its boundary. The redirector would index the
locations of objects (shared files) on peers within the ISP
and route internal clients’ requests to other internal peers
whenever possible. Such a solution might expose the ISP
to frequent demands from the music and film industries to
block the delivery of copyrighted material. Yet, ISPs are
not interested to prevent access to copyright infringements
as their users might leave to a competing ISP, therefore - any
solution that will make an ISP ”aware” of copyrighted ma-
terial is not acceptable. Another offer presented in the same
paper related to current P2P systems that use supernodes.
It was offered to employ a topological distance estimation
techniques to make it possible to infuse supernodes with lo-
cality awareness. Still, this solution requires a change in the
code of supernodes and will not work on existing networks
or future networks that will not implement it.

Another routing-based solution was offered by Sand-
vine’s Peer to Peer Element [12]. A device is installed by
the ISP and it acts as a large scale supernode, serving in-
ternal nodes and trying to match queries with content that
is being shared locally. This solution requires deep reverse
engineering of each P2P protocol as it mimics the supern-
ode. This requires the ISP to continuously update the device
for changes in each protocol. In addition, since it acts as a
supernode, it holds a list of shared files and the addresses
of peers that share them, and by doing so, it makes the ISP
”aware” of copyrighted infringement. Another weakness of
Sandvine’s solution is that it can’t support encrypted proto-
cols where it’s not possible to reveal the requested query of
the client.

3. The Problem of P2P congestion in ISPs

Many solutions were proposed to solve the problem of
P2P bandwidth in ISPs yet there is evidence that this prob-
lem was not solved yet.

Though many ISPs still deny employing solutions for
that problem, recently (Nov, 07) Canada based Bell Sim-
patico has confessed [5] to using ”traffic management” on
heavy users during peak hours. According to their ad-
ministrator, Bell Simpatico’s traffic shaping affects several
applications and protocols including BitTorrent, Gnutella,
Limewire, KaZaA, eDonkey, eMule and WinMX.

Only a month earlier, an independent testing [6] per-
formed by Associated Press revealed that Comcast, the sec-
ond largest ISP in the US interferes with P2P traffic going
to and from its high-speed internet subscribers, by imper-
sonating users’ machines and sending fake disconnect sig-
nals.BitTorrent Inc confirmed these findings and noted that

2



similar practices were already seen from several Canadian
IPSs.

A recent survey from traffic-management company
Ipoque [7] show that P2P traffic range between 50% up
to 90% of all Internet traffic. File sharing applications like
eMule/eDonkey and Bittorrent dominate with shares of up
to 75% of all P2P traffic (depending on geographical zones).

For better understanding the size of the problem and
learn the required properties for a feasible solution, we vis-
ited several ISPs. Following is a summary of the most im-
portant properties in the eyes of those who face the problem
on a daily basis:

1. Must be oblivious of the content being shared and/or
transferred between nodes;

2. Enforce both exposed and encrypted protocols;

3. No additional new protocol should be required;

4. Automatically support protocol updates as much as
possible.

Several studies [14, 15] showed that bandwidth savings
of the order of 60% are achievable by exploiting traffic lo-
cality in P2P. Therefore, using cache or a global index of
shared files and employ redirection is reasonable. Yet, these
solutions are controversial as the ISP would no longer be
merely providing an infrastructure but also store and for-
ward copyrighted content - that leads the ISP into copyright
violation. Thus, many ISPs avoid using these solutions and
prefer traffic-shaping solutions such as those offered by Al-
lot [1], Cisco (PCube) [4] and Packeteer [9]. Traffic Shap-
ing solutions can be recognized by end users as they expe-
rience poor performance compared to their friends that are
connected to a different ISP. Azureus(BitTorrent client) for
example, maintains a list [2] of ISPs that use traffic shaping
and provides a set of simple steps how to avoid that. In addi-
tion, as we mentioned earlier in this document current meth-
ods can not handle encrypted protocols as they require ei-
ther a substantial reverse engineering of the protocols, deep
packet inspection filtering.

4. LiteLoad

The previously discussed problems motivate the need for
a new approach that makes it possible to localize P2P pro-
tocols without being aware of the requested and transferred
content. Therefore, it should neither employ caching of
content nor maintain tables or lists where one can deduce
that specific portions of a given content is being shared by
specific user as it contradicts the interests of the ISP. In ad-
dition, it should also handle encrypted protocols. Existing
caching solutions or any other solutions that perform re-
verse engineering of the protocol cannot handle encrypted
protocols.

4.1 Behavioral Patterns

LiteLoad is a solution for managing communications ar-
riving from or to a node connected to a specified portion
of the network without examining the content being trans-
ferred. Instead, it looks for patterns of communication that
match existing P2P networks’ patterns.

For example, we examine the communications pattern of
a browser that browses a simple HTML page that contains
an image. If we monitor the network activity we will find
that:

1. Client asks for index.html;

2. Server returns index.html;

3. Client asks for image1.gif;

4. Server returns image1.gif;

This pattern is very simple and it looks like one can hardly
learn anything from it. Yet, if we monitor the same server
and notice this sequence:

1. Client asks for index.html;

2. Client asks for index.html;

3. Server returns index.html;

we know that there was a problem in the process that made
the client ask for the file twice. However, if there was a
large time gap between the first two requests, we can con-
sider it as normal. By employing similar techniques we can
test P2P protocols and learn their behavior on different sce-
narios. Once we are familiar with a protocol behavior, we
can trick it to perform various actions, depending on the
protocol and topology. In this work we demonstrate these
techniques and show how they can support us in localizing
P2P protocols.

4.2 Structure

We first describe informally a typical simplified scenario
of LiteLoad to localize a supernode based network (such
as eDonkey/eMule and KaZaA): When a user runs the P2P
client application, the application tries to connect to a su-
pernode. We term the first message that is being sent to a
potential supernode by the client as session initiation mes-
sage. This message tells the supernode that the client re-
quests to register to it and later on query it for desired con-
tent. LiteLoad intercepts all session initiation messages of a
P2P protocol and checks whether the destination address (of
the requested supernode that the client tries to connect to)
is internal or external to the ISP’s network. In case it’s in-
ternal, LiteLoad lets the message reach it’s original destina-
tion. In case it’s external, LiteLoad alters the header of the

3



message to a new destination of an internal supernode. Now
assume that the client didn’t find the file it looked for, then
it will try to connect to a different supernode within a short
time. LiteLoad stores the time stamps of the client’s session
initiation messages so it can recognize that the client failed
to find its requested content in the previous connection to a
supernode; therefore, for the current request, LiteLoad will
let the new session initiation to proceed to its original desti-
nation (that may be external to the IPS’s network). This type
of behavior pushes the P2P clients of an ISP to try inter-
nal supernodes first. Since eventually internal supernodes
will serve mainly internal clients, a substantial part of file
transfers will be served by internal clients. Notice that the
policy we chose to replace the address is content insensitive
as we only modified the header of a session initiation mes-
sage. Moreover, we do not intercept the actual content in
the messages.

Other behavioral patterns may be relevant for the pro-
cess. For example, a user that looks for 10 different files
in a short period of time might appear to the system as if it
received no search results. In most protocols this is not a
problem since the search message is different than the ses-
sion initiation message, thus there’s still one session initi-
ation message per all searches. However there might be
future protocols where each search will initiate an initiation
message to other supernodes thus recognizing the behavior
of each protocol is crucial.

In addition, a user behavior might affect the decision
modules of the system as in EMule some users manually
switch supernodes. It’s possible to recognize behavior per
user and decide how to perform per each behavior pattern
under different scenarios.

4.2.1 Address Replacement Module

We now refer to Figure 1. P1 is a P2P client application
that was asked to download a specific file F. LiteLoad is in-
stalled at ISP X’s premises and is represented at the center of
ISP X’s cloud. The Filter resides inside the ISP’s router and
forwards certain P2P messages to LiteLoad. For example,
in a supernode-based network, the Filter will forward only
session initiation messages between clients and supernodes
(which is the first message that a client sends to a potential
supernode for registration). The Filter may be configured
to determine that a certain message is a session initiation
message by reading its header.

Message D represents a message that did not comply
with the interception criteria implemented by the Filter and
therefore it is allowed to pass through the Filter substan-
tially uninterrupted to proceed to its original external des-
tination address, which is associated in this case with node
P5. Upon receiving a message from the Filter, the mes-
sage or certain data relating to the message may be input to

the External Link Identifier - which is adapted to identify
whether messages’ destination address is external to ISP X
by reading the message’s header. In case that the address is
internal to ISP X, the External Link Identifier will allow the
message to proceed to its original destination unchanged.
However, if the External Link Identifier identifies a P2P
session initiation message with a destination address that is
external to ISP X, the message will be forwarded to the Ad-
dress Replacement Module as in the case of messages A,B
and C in our example. In Figure 1, message A includes the
address of external node P6, message B includes the address
of external node P4 and message C includes the address of
external node P5.

The address replacement module may be adapted to de-
termine whether an address or addresses included in an
identified P2P session initiation message should be replaced
in accordance with a content insensitive replacement policy.
Some examples of various replacement policies which may
be implemented by the address replacement module where
provided above. As already mentioned above, the address
replacement module may use the replacement policy to de-
termine if and when an address included in an identified
P2P session initiation message should be replaced. The ad-
dress replacement module and the replacement policy uti-
lized by it, may relate to information found in the header
of an identified P2P session initiation message, and the ad-
dress replacement module may not access the content of the
message. Thus, the address replacement module may not
become exposed to the actual content or payload of an iden-
tified P2P session initiation message.

4.2.2 Address Pools

LiteLoad includes at least one pool of replacement ad-
dresses. In the sample presented in Figure 1, two pools
are included. The first pool is a pool of internal addresses,
and the second is a pool of external addresses. The inclu-
sion of an address in either of the pools may be insensitive
to the content of the address as it is being collected from
previous headers only. LiteLoad may include a pools man-
agement module. The pools management module may be
adapted to create and manage each of the internal and exter-
nal addresses pools. Each of these pools may be associated
with a different preferred address criterion. The pool man-
agement module may be configured to determine whether
a candidate address should be included in the internal or
the external pool in accordance with the preferred address
criterion with which each of the pools are associated. The
certain portion of the network ISP Y to which the criteria
associated with external addresses pool relates may be, for
example, a network of another ISP (or other organization)
with which external links are relatively cheap.

Notice the LiteLoad also includes an internal candidate

4



Figure 1. LiteLoad Architecture

identifier. The internal candidate identifier may be config-
ured to receive from the filter messages which have been in-
tercepted by the filter or data with respect to such messages.
The internal candidate identifier may be configured to read
the header of a message intercepted by the filter , or cor-
responding data, to determine whether the header includes
an internal address. If an internal address is found in the
intercepted message, the internal candidate identifier may
forward the data with respect to the candidate address to the
pools’ management module. The pools management mod-
ule utilizes further criteria to determine whether the candi-
date address should be added to the pool. For example, the
pools’ management module may check whether the candi-
date address is already included in the pool.

The external candidate identifier is configured to read
the header of a message intercepted by the filter , to deter-
mine whether the header includes an external address that
is within a certain portion of the network. If an address
from within that certain portion of the network ISP Y is
found, the internal candidate identifier may forward the data
with respect to the candidate address to the pools’ manage-
ment module, which utilizes further criteria for determining
whether the candidate address should be added to the pool
prior to the inclusion thereof in the external pool.

As in the example of supernode based networks,in ac-
cordance with the replacement policies implemented by the
address replacement module, an external address included
in an identified message (P2P session initiation message)
should be replaced, by default, by an address from the pool
of internal address. Furthermore, an external address in-
cluded in an identified message should be replaced with an
address from the pool of external addresses, if the identified
message follows a previously identified message from the
same source, in this case from node P1, and the interval be-

tween the identified message and the previously identified
message is less than a first threshold. An external address
included in an identified message should not be replaced
and the identified message should be allowed to proceed to
its original destination without being modified, if the identi-
fied message follows at least two previously identified mes-
sages from the same source, and the interval between each
identified message and it predecessor is less than a second
threshold.

4.2.3 Message Flow Scenarios

Message A, B and C, illustrate the application of the above
exemplary replacement policies. P2P session initiation
message A, which is the first of the three to arrive at
LiteLoad, is determined to include an address that is ex-
ternal to the ISP X’s network, for example, the address of
node P6. Upon receiving data with respect to message A,
the address replacement module may determine with which
of the replacement policies message A complies. Since at
the time of identifying message A the address replacement
module is not aware of any preceding identified messages
from the same source (node P1), the default replacement
policy is implemented by the address replacement module,
and a replacement address is selected from the pool of in-
ternal addresses for replacing the external address included
in message A. Subsequently, message A is rerouted in ac-
cordance with the internal replacement address, in this case
to internal node P2.

P2P session initiation message B, which arrives at
LiteLoad shortly after message A was identified, is deter-
mined to include an address that is external to the ISP X’s
network, for example, the address of node P4. Upon receiv-
ing data with respect to message B, the address replacement

5



module may determine with which of the replacement poli-
cies message B complies. Since message B follows a previ-
ously identified message from the same source, in this case
message A, and the interval between the identified message
E and the previously identified message A is less than the
first threshold, the address replacement module determines
that the external address included in message B, in this case
the address of external node P4, is to be replaced with an ex-
ternal address selected from the pool of external addresses,
and in this case with the address of external node P3. Sub-
sequently, message B is rerouted in accordance with the ex-
ternal replacement address, in this case to external node P3.

P2P session initiation message C, which arrives at
LiteLoad shortly after message B was identified, is deter-
mined to include an address that is external to the ISP X’s
network, for example, the address of node P5. Upon re-
ceiving data with respect to message C, the address replace-
ment module may determine with which of the replacement
policies message C complies. Since message C follows two
previously identified messages from the same source, in this
case messages A and B, and the interval between each iden-
tified message and it predecessor (in this case between C
and B, and between B and A) is less than a second threshold,
the address replacement module determines that the identi-
fied message C should be allowed to proceed to its original
destination, in this case to external node P5, without being
modified.

4.2.4 Access Hash Table

Figure 2 is a graphical illustration of a hash table that is used
by the address replacement module to store data with re-
spect to identified messages. The hash table may be a fixed
size table that includes a fixed number of hash value entries
(the table in the example contains 500 entries). Each value
in the table may represent one or more nodes from which
an identified message was received. Each hash value may
correspond to the result of a hash function, when applied,
for example, by the address replacement module, to the IP
address of the nodes from which the identified message was
received. For each value entry, a timestamp may be stored.
The timestamp is stored in connection with a certain hash
value that may correspond to the time when the most recent
message from a node whose address corresponds to that
hash value was identified. In addition, the hash table may
further include for each hash value entry a counter value.
The counter value parameter corresponds to the number of
messages received from a node whose address corresponds
to the hash value, which have been identified within a pre-
determined period from the identification of a previously
identified message from a node whose address corresponds
to the same hash value. Thus, for example, whenever a mes-
sage from a node whose address corresponds to a certain

hash value is identified and it is determined that the message
was identified within a predetermined period from the iden-
tification of a previously identified message from a node
whose address corresponds to same hash value, the counter
is incremented by 1.

The address replacement module may be configured to
determine if an address included in an identified message
should be replaced in accordance with the timestamp and/or
in accordance with the counter associated with the hash
value which corresponds to the address of the node from
which the address was received. The address replacement
module will reset the counter associated with a certain hash
value if the counter exceeds a predefined value. In addition,
when a message from a node whose address corresponds to
the hash value was allowed to proceed to its original desti-
nation, for example, to an external node - the counter will be
reset as well. In accordance with one exemplary scenario, if
a certain node repeatedly generates messages to enable it to
exchange content with another node, and LiteLoad seems to
have failed to provide alternative destinations to enable the
requested content exchange, the node should be allowed to
make the requested connection.

4.2.5 Links from External Entities

Notice in Figure 1 to the message E, which arrives from
node P7. This client is operating a P2P application that tries
to connect to a supernode that resides in ISP X network. As
in previous cases, here again we intercept the session initi-
ation message and filter it. Our interest in to allow a limited
access of external peers to ISPX since we’re interested in
importing new content that is not shared already by local
peers.

4.2.6 Session Initiation Message Detection

We recognize session initiation messages per protocol ac-
cording to the header of the message. We were able to
do so for current popular protocols such as BitTorent and
EDonkey as well as older ones such as Fasttrack(KaZaA)
and iMesh. Since a session initiation message is the first
message being sent from the peer to a supernode, it’s not
encrypted. Our solution is applicable for encrypted proto-
cols since we only use the session initiation messages for
extracting the address of the supernodes. In case where the
session initiation message is encrypted our solution will not
work; However, this will only be possible in cases where
encryption keys were embedded in the client software prior
to initiating communication with the supernode.

We also use session initiation messages to learn about the
addresses of internal supernodes. If the destination address
of such filtered message is internal, we store it in a table or
a pool of potential internal supernodes addresses.

6



Figure 2. LiteLoad Hash Table

5. Results

5.1 Simulation

We simulated LiteLoad for the most popular P2P supern-
ode based architecture. One interesting issue to check was
LiteLoad’s performance on various amount of files com-
pared to a normal supernode network.

On each iteration of our simulation, a randomly chosen
client selects a file to be downloaded. The requested file
is being selected according to a long tailed power law dis-
tribution such that some files are more popular than others
thus have better change to be elected by the client. We con-
structed 2000 peer objects, that are distributed randomly in
10 different zones. We changed the amount of total files
in the system for each simulation run ranging from 1000 to
15000 files. The files were logically distributed randomly
between the zones (each file object was tagged for a spe-
cific zone so we can later let peers select ”local” files to
be downloaded by preference). We created 50 super nodes
and distributed them randomly among the zones. Prior to
running time, each peer selected 100 files that are shared
by it according to the same long tailed distribution men-
tioned above. The simulation stops after exactly 1000 iter-
ations and informs how many peers were able to find their
requested file in the supernode they were connected to.

The only difference here between the Normal mode and
the LiteLoad mode is that in the normal mode each peer
selects the supernode randomly and in the LiteLoad mode a
supernode is chosen randomly out of the set of supernodes
that share the same zone as the client peer.

In Figure 3 it can be seen that as the number of files in
the system becomes larger, the normal supernode based pro-
tocols fail to supply the requested files. Notice that in this
simulation if in the case of LiteLoad the peer couldn’t find
the requested file in his connected supernode, it reports it as
a failure and the simulation continue to the next iteration.
In fact, LiteLoad can perform even better if we allow it to
redirect again to a different supernode after failure.

Figure 3. LiteLoad Simulation - different files
count

5.2 Existing Protocols Experiments

Though the concept of LiteLoad is fairly intuitive, we
wanted to test the feasibility of the destination address redi-
rection on existing protocols in general, and for encrypted
protocols in particular. Therefore we implemented portions
of the protocol - mainly the redirection mechanism by al-
tering a Socks proxy server. This way we could monitor
and alter messages as if LiteLoad was residing in the ISP’s
network.

We started with KaZaA. We installed three clients on
three separate machines, denoted as A, B and C. We al-
lowed B to be configured as a supernode. A was configured
to transfer its messages through a local Socks proxy. We
first tested KaZaA and were able to redirect a client to B
instead of an external address it tried to connect to. In order
to make sure that A was not only connected to B but also
usable, we shared a file on C and redirected it to B as well.
A was able to find this file and downloaded it successfully.

Then we advanced into BitTorrent. We allowed the
proxy to alter the addresses that are served by the tracker
(we let our client connect to an external tracker that was
not under our control) and this way we were able to force a
download from another local BitTorrent client.

Recently we adapted the Socks proxy to support eDon-
key/eMule. eMule behaves similar to other supernode
based networks like KaZaA. We set our client to support
obfuscated-only connections, which is the encrypted ver-
sion of eMule, and similarly to what we did with KaZaA
we redirected the session initiation message to a different
server. We were able to perform well under redirected con-
nections and could download content. Notice in Figure 4
that while we requested on eMule to connect to the server
on 64.34.193.81:8579, our redirection made it possible to
connect to 83.149.116.131:5232 under an obfuscated con-
nection!

7



Figure 4. LiteLoad eMule Experiment on Ob-
fuscated Protocol

6. Conclusions

In this paper we presented Liteload - a solution for local-
izing P2P protocols in ISPs that is unaware of the content
being transferred. The concept was tested in a simulation
that showed a fundamental advantage.

We demonstrated a proof of concept on existing popu-
lar protocols such as eMule/eDonkey and BitTorrent. We
successfully tested it on an obfuscated version of eMule as
well. As LiteLoad only examines session initiation mes-
sage, it is fully unaware of the content that is being trans-
ferred between peers and since it does not perform indexing
on the content as well, our solution enables ISPs to operate
it with confidence.

In the future we plan to explore adjacent fields and prob-
lems to enrich our solution and implement it on a large scale
ISP. We will also examine performance issues on random
supernode selection as opposed to selecting peers accord-
ing to their network behavior patterns. In addition we will
examine how we can further improve the tolerance of the
system to different behavioral patterns of users.

References

[1] Allot web site. http://www.cachelogic.com.
[2] Azureus bad isps wiki web page.

http://www.azureuswiki.com/index.php/bad isps.
[3] Cachelogic web site. http://www.cachelogic.com.
[4] Cisco’s pcube web site. http://www.p-cube.com/.
[5] Dailytech story about bell simpatico traffic shaping.

http://www.dailytech.com/more+isp+ confess+ we+ throt-
tle+ p2p+ traffic/article9544.htm.

[6] Dailytech story about comcast and peer to peer.
http://www.dailytech.com/comcast+ screws+ with+
filesharing+ traffic/article9337.htm.

[7] Ipoque web site. http://www.ipoque.com.
[8] Joltid web site. http://www.joltid.com.
[9] Packeteer packetshaper web site.

http://www.packeteer.com/products/packetshaper/.
[10] Peerapp measurments on p2p.

http://www.peerapp.com/solutions- managing- transit-
link-growth.aspx.

[11] Peerapp web site. http://www.peerapp.com.
[12] Sandvine incorporated web site. http://www.sandvine.com.
[13] V. Aggarwal, A. Feldmann, and C. Scheideler. Can isps and

p2p users cooperate for improved performance? SIGCOMM
Comput. Commun. Rev., 37(3):29–40, 2007.

[14] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan. Measurement, modeling, and analy-
sis of a peer-to-peer file-sharing workload. In Proceedings of
the nineteenth ACM symposium on Operating systems prin-
ciples, volume 37, 5 of Operating Systems Review, pages
314–329, New York, Oct. 19–22 2003. ACM Press.

[15] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should
isps fear peer-assisted content distribution? In IMC, 2005.

[16] N. Leibowitza, A. Bergman, R. BenShaul, and A. Shavit.
Are file swapping networks cacheable? characterizing p2p
traffic. In WCW’02, 2002.

[17] G. Shen, Y. Wang, Y. Xiong, B. Zhao, and Z. Zhang. Hptp:
Relieving the tension between isps and p2p. In IPTPS, 2007.

8


