
Modeling and Analysis of Power in Multicore Network Processors

S. Huang1 Y. Luo2 W. Feng1
1Department of Computer Science2 Dept. of Electrical and Computer Engineering

Virginia Tech University of Massachusetts Lowell
Blacksburg, VA 24060 Lowell, MA 01854

{huangs,feng}@cs.vt.edu yan luo@uml.edu

Abstract

With the emergence of multicore network processors in
support of high-performance computing and networking
applications, power consumption has become a problem
of increasing significance. Lower-power multicore proces-
sors, such as the Intel IXP network processors, have been
employed in network devices to try to address this problem;
however, effective tools are still needed to assist in the ex-
ploration of the “performance versus power” design space.

In this paper, we present a composite power model that
simultaneously leverages three existing power-modeling
tools (Cacti, Wattch, and Orion) to model the power con-
sumption of Intel IXP2400. This model is then integrated
with an open-source Intel IXP2400 NP simulator called
NePSim2 and validated against its datasheet to within 5%
of actual power consumption. We utilize the simulator and
power model to explore how architectural parameters affect
the performance and power consumption of a set of high-
performance security applications, thus delivering valuable
insights to chip architects for designing energy-efficient
multicore network processors.

1 Introduction

Modern general-purpose microprocessors have recently
incorporated multiple cores on a single chip in order to
achieve scalable performance under a stringent power bud-
get due to thermal and packaging requirements. Such mul-
ticore architectures have long been present in network pro-
cessors (NPs). While NPs have their roots in embedded
systems, recent trends point to the use of NPs in high-
performance network cards in order to support network
co-processing for high-performance computing (HPC) and
real-time intrusion detection for high-performance network
security [17].

NPs have even more cores on a chip than general-
purpose processors to exploit packet-level parallelism.

In addition, these programmable cores typically support
hardware-based multithreading to hide memory latency.
Such optimized multithreaded cores enable high-speed
packet processing; this capability, combined with its pro-
grammability, distinguishes NPs as the core components
in the next generation of high-performance routers and
switches.

At the same time, power consumption has become a ma-
jor concern in designing high-performance computer sys-
tems, including high-performance network devices, where
the workload of processing network packets continues to
increase in complexity. For example, it is now common for
network routers to accommodate a large variety of proto-
cols and carry out complex tasks, such as encryption and
decryption for a virtual private network (VPN) [9].

In addition, network line rates at network endpoints are
moving towards 10 Gbps and beyond. Consequently, the
frequency and density of NPs has necessarily increased to
keep pace, leading to increased power consumption and
potential thermal dissipation issues. Specifically, the Intel
IXP2800 NP contains 16 microengines (packet-processing
cores), each operating at 1.4 GHz, and consumes 19-25
watts of power [6], while its predecessor, the IXP1200 NP,
contained only six microengines operating at 232 MHz and
consumed only 4.5 watts. In addition, typical routers mount
a few racks containing groups of line cards (e.g., 8), each of
which contains one or two NPs. Such routers are extremely
dense in power dissipation (e.g., 375 watts per line card [2]
and 200 watts per packet-processing module [15]), resulting
in higher operating temperatures and requiring aggressive
cooling facilities.

Both processor architects and system designers face the
tradeoff between performance and power. The common
goal is that the required performance should be guaran-
teed within a power budget and to do so without over-
architecting the processor. It is highly desirable that this
early exploration of the design space is donebeforethe im-
plementation of the system. In responding to the need of
studying the performance and power consumption of mul-

ticore network processors, NePSim [11] was designed to
model the performance and power of the Intel IXP1200
NP as a first step in this direction. With the release of the
IXP2400/2800 family of NPs, NePSim necessarily evolved
into NePSim2.0. However, until now, the power model
in NePSim2.0 was still missing because the power model
from NePSim could not be used for NePSim2.0 due to the
dramatic architectural changes between the IXP1200 and
IXP2400.

Thus, this paper focuses on the construction and evalu-
ation of a new power model for the Intel IXP2400 NP. We
then incorporate NePSim2.0 with this power model and use
the performance-power model to explore the design space
of network processors with a set of cryptographic applica-
tions. We observe that the simulation framework can pro-
vide valuable insights on the design of network processors.
The specific contributions of this paper are as follows:

• Architectural analysis of the major components of the
IXP2400 that contribute to the overall power consump-
tion.

• Power models of the identified components employing
existing power-modeling tools.

• Validation of the power models against Intel NP power
data.

• Power evaluation of cryptographic benchmarks and
micro-benchmarks.

• Performance-power analysis using the power model to
guide the design of programmable network processors.

The remainder of the paper is organized as follows. Sec-
tion 2 outlines the current research on the optimization of
power dissipation. Section 3 then describes the technique
and approach that we employed in our power modeling of
Intel IXP2400. Section 4 presents how we validate our
power model and simulation followed by some analysis. At
the end of that section, we utilize the performance-power
simulation tool to explore the design space of multicore net-
work processors. Finally, we provide some concluding re-
marks in Section 5.

2 Related Work

Power is a critical concern in NP design from the model-
ing of performance-power tradeoffs to addressing static and
dynamic power. With respect to the former, Franklin and
Wolf developed an analytic performance-power model for
typical NPs, explored the design space of NPs, and showed
performance-power tradeoffs for different core and memory
configurations [3]. With respect to the latter, many power-
reduction techniques, both static and dynamic, have been
proposed for modern NPs, as described below.

To address static power, researchers have focused on
lowering the power for individual components in a NP.
Kaxiras et al. proposed a set-associative memory approach
for efficient IP lookup called IPStash to replace ternary con-
tent addressable memories (TCAMs). This approach ef-
fectively reduces the set associativity of TCAMs in order
to signficantly reduce power consumption [8]. Mallik and
Memik investigated the optimal operating frequency of data
caches with the goal of reducing energy and improving per-
formance but at the slight expense of reliability. This ap-
proach was justified by observing that errors in NPs could
be fixed by higher levels of the network protocol stack [13].
In addition, techniques have been proposed to include dual
threshold voltages (dual-Vt) and stacked transistors. With
the dual-Vt technique [16], low-Vt devices are used in the
critical path of a design while high-Vt devices are used to
reduce the leakage in the non-critical parts of the design.
Stacked transistors [20] reduce leakage through transistor
stacks to maximize the number of transistors that are “off”
during the idle mode.

To reduce dynamic power, many approaches have been
proposed to reduce the NP’s switching activities, voltage
and capacitance. Luo et al. proposed a clock-gating tech-
nique to reduce the power of NPs under fluctuating net-
work traffic [12]; their results show that power reduction
can reach up to 30%. Luo et al. [11] also presented how
to apply dynamic voltage scaling (DVS) to reduce the NP’s
power. Compared to clock gating, DVS incurs longer delay
for adjusting the voltage and clock frequency.

Finally, thread migration and adaptive resource alloca-
tion are also common approaches towards improving power
efficiency in NPs or general CMPs. For example, Kokku
et al. present an analytical model for allocating the appro-
priate number of processors to each service on NPs [10].
However, their work made several assumptions to derive the
estimate for the benefits in an ideal adaptation scheme.

3 Power Modeling of the Intel IXP2400 Net-
work Processor

In this section, we describe our methodology for mod-
eling the power consumption of the Intel IXP2400 network
processor in NePSim2.0.

3.1 Overview of Methodology

The powermodel is built on theperformancemodel of
the IXP2400 that is implemented in NePSim2.0 [14]. NeP-
Sim2.0 is an open-source, cycle-accurate, execution-driven
simulator that models the performance of IXP2400/2800
NPs. The simulator takes benchmark executables and
packet traces as inputs, simulates the execution, and pro-
duces extensive performance statistics including access

counters to individual functional units. As shown in Fig-
ure 1, we leverage interim results from the performance
simulation and integrate our power model into the cur-
rent release of NePSim2.0. Specifically, in the simula-
tion, benchmark applications are preprocessed before being
loaded into NePSim. The traffic generator generates the in-
puts to the loaded applications. When NePSim starts the
execution-driven simulation, it begins recording the num-
ber of accesses to each individual unit on the NP chip. Our
power estimator leverages the cycle-by-cycle access coun-
ters kept in NePSim and derives the power consumption of
the NP. � � � � �� � ��	 �
 � � �
 � �� � � � � �
 � � �

� � � �
 � � � � �
 � � �
� � � � � �
 � � � � �� � � � � � � ! " � # � $ � % &! ' � � (� � # � $ � % &! ') � ! � & "' � ! � � * � � + " " � , ," � - ! * � � ,
Figure 1. Power modeling infrastructure

3.2 Anatomy of the IXP2400 NP

Figure 2 presents the architecture of the IXP2400 NP.
The main components shown in the figure are microengines
(MEs or packet-processing elements), XScale core, mem-
ory controllers (one SDRAM channel and 2 SRAM chan-
nels), media switching fabric (MSF) and SHaC (short for
scratch pad, hash unit, and control & status registers). The
MEs are programmable processing elements used for packet
processing, as depicted in more detail in Figure 3. In this
paper, we denote architectural constituents like the MEs as
“components” and denote the basic units that compose an
individual component as “units” (e.g., control store or reg-
ister file).

Of the architectural components in IXP NPs, we model
the MEs, memory controllers (SRAM and DRAM con-
trollers), media switching fabric (MSF), and SHaC. The
XScale core and PCI controller are not simulated in NeP-
Sim2.0, primarily because they consume relatively a small
amount of power. The XScale core handles primarily non-
critical workloads such as logging and system initialization
while the PCI controller is used only when the NP commu-
nicates with host CPUs, which is quite rare in standalone
network systems. Thus, the XScale core and PCI controller
are excluded from our power modeling. Although our cur-
rent modeling implementation does not cover all the com-
ponents, we validate the total power consumption by adding

the power of unsimulated components to our simulated re-
sult.

MSF

SHaC

DRAM

Controller

SRAM

Controller

SRAM

Controller

Rbuf

Tbuf

Hash

unit

Scratch

Pad

CSRs

ME1 ME2

ME4 ME3

XScale
PCI

Controller

ME5 ME6

ME8 ME7

BUS

BUS

Figure 2. Architecture of the IXP2400

The IXP2400 NP contains eight identical microengines.
Figure 3 shows the internal architecture of a microengine
(ME). The datapath includes an ALU, a shifter, and sev-
eral storage units. The control store keeps the instructions
that the ME executes. The GPRs (General Purpose Regis-
ters), XFERs (Transfer Registers), and local memory serve
as high-speed data storage, among which XFERs are used
for SRAM and DRAM transactions. There are also 128
next-neighbor registers (not shown in Figure 3) in the dat-
apath for direct communication between two neighboring
MEs. Because the next-neighbor registers are structurally
the same as GPRs, when we simulate their power, we sim-
ply treat them as GPRs. Due to page-length limitations, we
refer readers to the IXP2400/2800 hardware reference man-
ual [7] for more detailed information.

A B

128 GPR

B Bank

128 GPR

A Bank

128 SRAM

XFER IN

128DRAM

XFER IN

128 SRAM

XFER OUT

128 DRAM

XFER OUT

Control

Store

640 Local

Memory

Command

FIFO

16 entries

CAM

ALU

Shifter

Control

Output

Input

Figure 3. Architecture of a microengine

3.3 Power Modeling

We estimate the power consumption of each individual
structural component in the IXP2400 at the architectural

Table 1. Model types and corresponding tools

Model type Power-Modeling tool
register file cacti

queue & CAM wattch
array cacti
arbiter orion

ALU & shifter wattch

level and sum them up to derive the total power consump-
tion of the IXP2400. Similarly, we estimate the compo-
nent power by summing up the power consumption of all
its sub-level units. Furthermore, power consumption in dig-
ital circuits can be divided into static and dynamic power
consumption. The static power is estimated with 2% of the
peak power when assuming that all components are actively
switched. We estimate the dynamic power by multiplying
the number of voltage switches and the power consumption
per voltage switch. In summary, our power modeling can
be represented by the formula below.

Pt =
∑

(Ps + Pd ∗ C)

where Pt stands for the total power consumption of the
IXP2400,Ps is the static power of a unit,Pd is the dynamic
power of a unit per access, and C is for the access count for
that unit.

In our experiments, before the performance simulation
starts, the power consumption of each unit per access is cal-
culated. Then we leverage the performance simulation to
obtain the total access count for each particular unit. Fi-
nally, we apply the formula above to calculate the total
power consumption.

3.4 Tools for Power Modeling

In our power-modeling process, we leverage and in-
tegrate three existing power-modeling tools: Cacti [19],
Wattch [1] and Orion [18]. We categorize the structural
units into several types and summarize the chosen power-
modeling tools for each type. Such choice of tools is driven
by the characteristics of the tools and the nature of the com-
ponents to be modeled. Cacti models caches and other
SRAM structures. Register files and array structures like lo-
cal memory and control store fall into this category. Wattch
estimates the power of the queue structures, ALU, shifter,
and content-addressable memory (CAM). Orion models the
power of the arbiters for buses and thread scheduling. Ta-
ble 1 summarizes how we modeled the basic units.

Table 2 describes the specific parameters of the power
model for the ME. Tables for the SRAM controller, DRAM

Table 2. Decomposition and power modeling
of ME

Unit Model type Configuration
ALU ALU 32 bits
shifter shifter 32 bits
GPR register file 2 128-entry files

1 read/write port per file
XFER register file 4 128-entry files

1 read/write port per file
command FIFO queue 4 entries * 64 bits

control store array 4k * 40 bits instruction
local CSR register file 16-entry file

1 read/write port per file
context arbiter arbiter round-robin
local memory array 640 entries * 32 bits

CAM CAM 16 entries * 32 bits

controller, SHaC, and MSF are omitted due to space limi-
tations. In these tables, the first column presents a unit in a
structural component; the second column shows the type of
model; the third column shows the configurations. Table 2
lists the units in MEs including GPRs, command FIFO, and
context arbiter. Each ME has two identical GPR register
files: A and B. Each register file has one read/write port and
contains 128 registers that are 32-bit wide. The command
FIFO in Table 2 is a queue structure that is used to store
the SRAM, DRAM, and CSR accesses issued from the ME
before sending them to the target memory units. Thus, we
use Wattch to model it, and its settings are 64 bits with 4
entries reflecting the specification of the command FIFO.
The context arbiter schedules the hardware-based threads
in the ME, applying a round-robin scheduling policy. It is
modeled using Orion.

4 Experiments and Analysis

With the power model developed in Section 3 integrated
into the cycle-accurate NePSim 2.0 infrastructure, we now
describe the evaluation methodology of the effectiveness of
our power model for the IXP2400 network processor (NP).
In particular, we study the power model with typical crypto-
graphic benchmark applications because of the importance
of security applications in high-performance network sys-
tems. We tune the major architectural parameters of the
processor to investigate the performance and power trade-
off in designing multicore network processors.

Table 3. Parameters of NePSim 2.0
Components Frequency
Microengine 600 MHz

SRAM controller 200 MHz
DRAM controller 150 MHz

MSF 133 MHz
SHaC 300 MHz

4.1 Benchmark Applications

In our experiments, we use eight cryptographic bench-
mark applications that are ported to the IXP2400/2800
NPs [21]:aes, blowfish, des, idea, md5, rc5, rc6,
sha. They are well-known cryptographic algorithms, thus
detailed descriptions of them are not included in this paper.

In addition to the cryptographic benchmark applications,
we also employed two microcode applications in our eval-
uation:meter andsram dram. Themeter algorithm is
the single-rate three-color marker, which gives three possi-
ble mark choices at the output for a packet flow that is be-
ing metered. Thesram dram application performs SRAM
and DRAM read-write operations and SRAM atomic op-
erations (testandset commands) involving read-modify-
writes wherein pre-modified data is returned.

4.2 Configuration of NePSim2 Modeling

To estimate the power consumption of the IXP2400, we
configure the NePSim simulator according to the specifica-
tions in the IXP2400 datasheet [5]. Table 3 shows the oper-
ating frequency that we use for different components when
simulating these components. The operating voltage simu-
lated in NePSim is set at 2.0V. The technology feature used
in the model is 0.18 um.

The Intel IXP2400 contains eight powerful microengines
to process network packets. In order to clearly observe
how much power each application consumes, and thereafter,
compare and analyze their power distribution, we load the
same benchmark application on each microengine in a sin-
gle run.

4.3 Validation of Power Estimation

Here we validate our power model within the cycle-
accurate NePSim 2.0 infrastructure. Figure 4 shows the to-
tal power consumption generated using our simulator for
IXP2400. The Intel datasheet [5] states that the typical
power consumption of the IXP2400 core (B-stepping) at
600 MHz is 8.26 watts. Since we did not model the power
consumption of XScale and PCI, we expect the estimated
power consumption that we derive to be smaller than what
is reported in the IXP2400 datasheet.

The XScale technical summary [4] reports that the typ-
ical power consumption of Intel XScale processor is 0.45
watts running at 600 MHz. In our simulation, the aver-
age power consumption of all the benchmark applications
shown in Figure 4 is 7.558 watts. Thus, the total power con-
sumption of the IXP2400 (including XScale) turns out to be
7.558 + 0.45 = 8.01 watts which is 97% of the measured
power (8.26 watts). Considering that we did not model the
power consumption of PCI controller (very small as stated
before), the simulated power we derive is close to the power
reported in [5].

Figure 4. Total power consumption

4.4 Power Distribution within IXP2400

Figures 5 and 6 plot the power breakdown of the struc-
tural components within the IXP2400. From these fig-
ures, we make several observations. First, the microengines
(MEs) in the IXP2400 consume the largest percentage of
the total power. The reasons for this are two-fold.

• There areeightpowerful microengines in the IXP2400
NP. Each one is a multithreaded processing unit.

• The cryptographic applications that we ran are com-
putationally intensive. Thus, the data path and con-
trol store (instruction storage) of the microengines are
heavily utilized. The I/O interfaces are idle for most of
the running time, so generally, the I/O power consump-
tion is due mainly to its static power consumption,
which is relatively smaller than its dynamic power. Al-
though there are some accesses to I/O, the dynamic
power is negligible for those I/O components.

Second,meter and sram dram consume relatively
more power in SRAM than other benchmark applications,
particularly as shown in Figure 5. We attribute this phe-
nomenon tometer depositing all of its data stractures
and packet-descriptor data in SRAM. Thus, DRAM is not
required in the execution ofmeter. With respect to
sram dram, it uses SRAM more heavily than DRAM, so
that the SRAM controller power is more significant than

DRAM controller. In contrast, the cryptographic bench-
mark applications use DRAM more often than SRAM.

95%

96%

97%

98%

99%

100%

des
id

ea
m

d5
rc

5
rc

6
sh

a
m

ete
r

sr
am

_d
ra

m

po
w

er

DRAM
SRAM
MSF
SHaC
ME

Figure 5. Power distribution over structural
components

Third, for theaes andblowfish applications in the
crypto benchmarks, the distribution of power behaves a
bit differently. Figure 6 shows the power breakdown for
these two crypto benchmark applications. While the power
consumption of the microengines (MEs) in other crypto
benchmark applications exceed 90%, the MEs foraes and
blowfish applications consume less than 90% of the total
power consumption. This is due to the fact that these appli-
cations possess a large number of I/O operations, which in
turn, consume about 15%-20% of the total power consump-
tion, as shown in the figure via the SHaC component. As a
result of the queuing effect of the accesses to the shared I/O
components (in this case SHaC), MEs idly wait for the com-
pletion of the I/O operations. During this idle time, MEs
consume only static power.

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

aes blowfish

po
w

er DRAM
SRAM
MSF
SHaC
ME

Figure 6. Power distribution over structural
components

Fourth, referring back to Figure 4,aes, blowfish,
meter, sram dram consume less power thandes,
idea, md5, rc5, rc6, sha. The second and third
points above show thataes andblowfish has relatively
more I/O operations andmeter andsram dram has rel-

atively more memory operations than others. Since MEs
are idle waiting for I/O and memory accesses, MEs in
aes, blowfish, meter, sram dram should consume
less power. Furthermore, an I/O operation usually takes
longer than memory access. That explains whyaes and
blowfish consume further less power thanmeter and
sram dram.

Overall, our results show that MEs typically consume
over 80% of the total power in the IXP2400. To understand
what contributes to power consumption of an ME, we show
the power breakdown inside one ME in Figure 7. For all of
the applications that we ran, the control store and ALU were
the two most power-consuming units. The control store is
SRAM and holds the program that the ME executes. There
are two reasons for the control store’s large power consump-
tion. First, since the control store holds the instructionsa
microengine executes, it will be accessed almost every cy-
cle, leading to considerable dynamic power consumption.
Second, the size of the control store (i.e., 4096 40-bit in-
structions) requires a large number of SRAM cells, thus
significant power is consumed in an access. The ALU con-
sumes the next most amount of power within an ME be-
cause the ALU is utilized in every instruction. Finally, the
third most power-hungry component is the GPRs, where in-
struction operands and results reside in.

0%

20%

40%

60%

80%

100%

ae
s

blow
fis

h des
id

ea
m

d5
rc

5
rc

6
sh

a
m

ete
r

sr
am

_d
ra

m

po
w

er

ALU shifter GPR XFER
control store command fifo local CSR command arbiter
CAM loal memory

Figure 7. Microengine power distribution
over units

4.5 Exploring Performance-Power Trade-
offs

To help architects to design and optimize multicore net-
work processors, we utilize our power model to explore the
design space. The data obtained with the simulation frame-
work and power model can guide chip architects to deter-
mine the architectural parameters under the constraints of
power and performance. As shown in Section 4.4, MEs
consume a significant amount of power in the IXP2400.
Thus, we tune some of the key architectural parameters of

the ME to study the power and performance characteristics.
The parameters under study are the number of on-chip cores
(microengines) and operation frequency. The base config-
uration of our experiment is as described in Section 4.4, in
which the frequency is 600 MHz and the number of micro-
engines is 8.

Figure 8. Power consumption on various fre-
quencies

Figure 9. Power consumption on various
number of microengines

Figures 8 and 9 show the power behavior while tun-
ing the frequency and the number of microengines, re-
spectively. As shown in Figure 8, the maximum power
consumption across the cryptographic benchmarks is 10.30
watts (all the power is the total power including XS-
cale hereafter) fordes at 600 MHz. The average power
consumption for all benchmarks at frequency levels of
400 MHz, 450 MHz, 500 MHz, 550 MHz, 600 MHz are
5.20 watts, 5.92 watts, 6.68 watts, 7.48 watts and 8.01 watts,
respectively. Figure 9 shows that the maximum power con-
sumption for the cryptographic benchmarks is also 10.30
watts fordes for 8 microengines. The average power con-
sumption for all benchmarks for 1, 2, 4, 8 microengines are
1.65 watts, 2.75 watts, 4.59 watts, 8.01 watts respectively.
The higher the frequency or the larger the number of micro-
engines, the more power is consumed.

Power efficiency is another important factor to evalu-
ate in NPs. We choose Million Instructions Per Second
Per Watts (MIPS/Watt) as the metric to measure the power

Figure 10. Performance-power trade-off
across various frequencies (number of cores
fixed to eight)

efficiency of a multicore-based design, and the results are
shown in Figures 10 and 11. The performance-power effi-
ciency for security applications rises as the number of mi-
croengines increases and drops as frequency goes higher.
This is because of the computationally intensive nature of
cryptographic algorithms. On average, the power efficiency
of multicore processors decreases by 5.9% when the opera-
tional frequency increases from 400 MHz to 600 MHz. In
constrast, increasing the number of cores from 1 to 8 im-
proves the power efficiency by 42.6%. This indicates that
it is more energy efficient for these security applications
to lower processor frequency or use more microengines to
do parallel computation, thus indirectly supporting the low-
power supercomputing approaches of Green Destiny and
IBM BG/L.

Figure 11. Performance-power trade-off
across various number of microengines
(core frequency is 600 MHz)

To better understand the impact of the number of cores
and operational frequency on power and the performance-
power tradeoff, we extensively study one of the crypto
benchmarksidea. The behavior ofidea should be typical
since the analysis above shows consistent behavior among
all benchmarks. Figure 12 shows the power consumption

(left) and performance-power tradeoff (right) ofidea for
all combination of number of cores and frequencies. In the

Figure 12. Power and performance-power
tradeoff for idea

left graph, the power increases with an increase in the num-
ber of cores and frequency. In the right graph, power effi-
ciency increases with an increase of frequency for a small
number of cores, e.g., 1. On the other hand, power effi-
ciency drops with the increase in frequency for a large num-
ber of cores, e.g., 8. For a moderate number of cores, e.g., 2
to 4, it does not have significant variation, since they are
the transition steps. This further confirms our claim of us-
ing more cores and lower frequency to achieve high power
efficiency.

5 Conclusion

In this paper, we present a power model that is integrated
into the open-source Intel IXP2400 network processor sim-
ulator called NePSim2.0. In our experiments with a set of
benchmark applications, we validate the estimated power
against the processor datasheet. The breakdown of power
consumption shows that microengines take up the most part
of total power. Inside a microengine, the control store and
ALU are the two most power-hungry components. Fur-
ther experiments show that processor power consumption
increases as the operational frequency and number of mi-
croengine number goes up. Finally, the power efficiency of
the Intel IXP2400 increases as the number of MEs increases
while it decreases as the frequency increases.

References

[1] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a frame-
work for architectural-level power analysis and optimiza-
tions. InProceedings of International Symposium on Com-
puter Architecture, pages 83–94, 2000.

[2] Cisco. Cisco crs-1 carrier routing system 8-slot line card
chassis system description.

[3] M. Franklin and T. Wolf. Power considerations in network
processor design. InWorkshop on Network Processors in

conjunction with Ninth International Symposium on High
Performance Computer Architecture (HPCA-9), pages 10–
22, Feb. 2003.

[4] Intel. Intel xscale microarchitecture technical summary. In-
tel Corporation, 2000.

[5] Intel. Intel ixp2400 network processor datasheet. Intel Cor-
poration, 2004.

[6] Intel. Intel ixp2xxx product line of network processors. Intel
Corporation, 2004.

[7] Intel. Intel ixp2xxx network processors hardware reference
manual. Intel Corporation, 2005.

[8] S. Kaxiras and G. Keramindas. Ipstash: a power-efficient
memory architecture for ip-lookup.Proceedings of Interna-
tional Symposium on Microarchitecture, page 361, 2003.

[9] S. Kent and R. Atkinson. Rfc 2401 security architecture for
the internet protocol. RFC, 1998.

[10] R. Kokku, T. Riche, A. Kunze, J. Mudigonda, J. Jason, and
H. Vin. A case for run time adaption in packet processing
systems. ACM SIGCOMM Computer Communication Re-
view, 34(1), 2004.

[11] Y. Luo, J. Yang, L. Bhuyan, and L. Zhao. Nepsim: A net-
work processor simulator with power evaluation framework.
IEEE Micro, sept 2004.

[12] Y. Luo, J. Yu, J. Yang, and L. Bhuyan. Low power network
processor design using clock gating. InIEEE/ACM Design
Automation Conference (DAC), Anaheim, CA, 2005.

[13] A. Mallik and G. Memik. A case for clumsy packet proces-
sors. Proceedings of International Symposium on Microar-
chitecture, 2004.

[14] NePSim 2.0. http://www.cs.ucr.edu/%7Eyluo/nepsim/.
NePSim 2.0 Source Code, 2006.

[15] Radisys. Promentum atca-7010 10gbps packet processing
module datasheet. Radisys Corporation, 2006.

[16] J. Tschanz, Y. Ye, L. Wei, V. Govindarajulu, N. Borkar,
B. Burns, T. Karnik, S. Borkar, and V. De. Design optimiza-
tions of a high-performance microprocessor using combina-
tions of dual-vt allocation and transistor sizing.Symposium
on VLSI Circuits Digest of Techical Papers, pages 218–219,
2002.

[17] N. Viljoen and D. McAuley. Intelligent network applications
for 10gbps and beyond. Netronome White Paper, 2007.

[18] H.-S. Wang, X. Zhu, L. shiuan Peh, and S. Malik. Orion: A
power-performance simulator for interconnection networks.
In The 35th International Symposium on Microarchitecture,
pages 294–305, 2002.

[19] S. J. E. Wilton and N. P. Jouppi. Cacti: An enhanced cache
access and cycle time model.IEEE Journal of Solid-state
Circuits, 31(5), 1996.

[20] Y. Ye, S. Borkar, and V. De. A new technique for standby
leakage reduction in high-performance circuits.Symposium
on VLSI Circuits Digest of Techical Papers, pages 40–41,
1998.

[21] Y. Yue, C. Lin, and Z. Tan. Npcryptbench: a cryptographic
benchmark suite for network processors.ACM SIGARCH
Computer Architecture News, 34(1):49–56, 2006.

