A Plug-and-Play Model for Evaluating
Wavefront Computations on Parallel Architectures*

Gihan R. Mudalige®

$Dept. of Computer Science
University of Warwick
Coventry, CV4 7AL, UK

{g.r.mudalige, saj}@dcs.warwick.ac.uk

Abstract

This paper develops a plug-and-play reusable LogGP
model that can be used to predict the runtime and scaling
behavior of different MPI-based pipelined wavefront appli-
cations running on modern parallel platforms with multi-
core nodes. A key new feature of the model is that it re-
quires only a few simple input parameters to project per-
formance for wavefront codes with different structure to the
sweeps in each iteration as well as different behavior during
each wavefront computation and/or between iterations. We
apply the model to three key benchmark applications that
are used in high performance computing procurement, illus-
trating that the model parameters yield insight into the key
differences among the codes. We also develop new, simple
and highly accurate models of MPI send, receive, and group
communication primitives on the dual-core Cray XT system.
We validate the reusable model applied to each benchmark
on up to 8192 processors on the XT3/XT4. Results show ex-
cellent accuracy for all high performance application and
platform configurations that we were able to measure. Fi-
nally we use the model to assess application and hardware
configurations, develop new metrics for procurement and
configuration, identify bottlenecks, and assess new applica-
tion design modifications that, to our knowledge, have not
previously been explored.

1 Introduction

Particle transport and other parallel wavefront appli-
cations form up to 50-80% of high performance scien-
tific computing load [1] at institutions such as the Los
Alamos National Laboratories (LANL) and the Atomic
Weapons Establishment (AWE) in the U.K. For this rea-
son, benchmark codes that are representative of this

*This work was partially sponsored by the NSF under Grant CNS-
0435437 and by the United Kingdom Atomic Weapons Establishment un-
der grants CDK0660 and CDK0724. Gihan Mudalige was funded by a
Warwick-Wisconsin Madison Research Exchange Fellowship.

Mary K. Vernon* and Stephen A. Jarvis®

Dept. of Computer Sciences
University of Wisconsin-Madison
Madison, WI 53706-1685

vernon@cs.wisc.edu

class of applications — such as the codes known as
Sweep3D from LANL and Chimaera from AWE — are
used to evaluate new high performance architectures dur-
ing both design and procurement. The communication
primitives used in these parallel benchmark codes are
the blocking send, receive, and group communication
primitives in the Message Passing Interface (MPI) [2].

To aid design and procurement decisions, consider-
able recent research has developed and applied accurate
parametrized analytic models of Sweep3D on high per-
formance architectures [1, 3, 4, 5, 6]. These and a sim-
ilar model of LU [7], sum the critical path computa-
tion and communication times to obtain the total execu-
tion time on a given parallel architecture. Several of the
previous papers [1, 3, 4, 8] have demonstrated that these
abstract models can be highly accurate. On the other
hand, each previous application model requires signifi-
cant and unspecified modifications in order to apply it to
other wavefront codes, such as Chimaera or a production
code of interest to a given organization. Hoisie et. al
[1] provide a model of a single sweep in any wavefront
code, but that model also requires significant customiza-
tion to represent message contention, the structure of the
sweeps, and other operations in an actual benchmark or
production code. A key point is that the model equa-
tions must be developed from scratch for each new code.

In this paper we investigate the open question of whether
a plug-and-play re-usable model can be developed, such
that the user only needs to specify a few input parame-
ters to obtain a model of any given wavefront application
on a parallel architecture, or to assess various possible de-
sign changes in the wavefront application or parallel archi-
tecture. We develop such a model, validate it on a large
Cray XT4, and apply the model to assess example system
procurement and configuration questions as well as several
key application and architecture design alternatives. Specif-
ically, we make the following contributions:

(1, m) (1,1)

(n, m) (n,1)

s

X
(a) 3-D Data Grid Mapping

XY diagonals compute""'.- 1
the same tile in the |-

Sweep originating at (1,1)

stack”

(b) Pipelined Wavefronts

Figure 1: Data Mapping and Sweep Wavefronts

e We modify and extend a previous LogGP model of
Sweep3D [3] to create a plug-and-play model that re-
flects the functional behavior of existing and imaginable
wavefront computations that use MPI and operate on a
regular orthogonal grid of data. Only a small number
of input parameters are needed to specify the particu-
lar behavior of any given wavefront benchmark or pro-
duction code. Other new features of the model include
(a) extensions to model the application performance on
multicore (CMP) nodes, and (b) a more precise model
of message contention in the multicore nodes than pre-
vious work.

o The new input parameters capture the key structural and
behavioral differences among different wavefront appli-
cation codes, providing insight into alternative wave-
front application designs.

e We develop and validate new models of off-chip and on-
chip MPI send, receive, and all-reduce operations on the
Cray XT4. Results quantify XT4 communication soft-
ware overhead and hardware latencies, showing that the
communication software and hardware is highly opti-
mized.

e We validate the new plug-and-play application model
using parameters for LU, Sweep3D and Chimaera com-
putations on the Cray XT4, which has dual-core nodes.
The model predicts execution time on up to 8192 pro-
cessors with less than 5% error for LU and less than
10% error for all high performance configurations of the
particle transport benchmarks. These accuracies, com-
parable to previous models, are sufficient for platform
and application design assessments as illustrated in Sec-
tion 5. The validated model is also the first analytic
model for AWE’s Chimaera benchmark.

e Model results show that synchronization costs, which
were previously found to be significant on the SP/2, are
a negligible fraction of the total execution time for up to
8192 processors on the XT4.

e Applications of the model in Section 5 provide new ap-
proaches to procurement and configuration assessments,

as well as new wavefront application optimizations, and
new insight into model utility.

Section 2 provides background on pipelined wavefront ap-
plications - LU, Sweep3D and Chimaera benchmarks, and
previous models. Section 3 develops and validates the mod-
els of MPI primitives for the Cray XT3/XT4 system. This
section also provides new measures of XT4 communication
performance, in terms of L, o, and G. Section 4 develops
the plug-and-play LogGP performance model that reflects
the operation of alternative wavefront codes, including the
input parameters for each of the three benchmarks. Sec-
tion 5 applies the new models of Chimaera and Sweep3D
to assess the quantitative impact of various application and
platform configuration and design changes on the execution
time of large particle transport simulations. Section 6 sum-
marizes the results and concludes the paper.

2 Background
2.1 Pipelined Wavefront Sweeps

A pipelined wavefront sweep operates on a three dimen-
sional discretized grid of data cells, depicted in Figure 1(a).
The dimensions of the data are denoted by z, y, and z, with
the total number of cells given by IV, x N, x N. The 3-D
data grid is partitioned and mapped onto a two-dimensional
m X n array of processors, such that each processor is as-
signed a stack of data cells of size N /n x N,/m x N, as
also depicted in the figure. A processor is indexed as (i,),
where ¢ is the horizontal position (column number) and j is
the vertical position (row number) respectively. Each parti-
tion of data cells assigned to a processor can be viewed as
a stack of tiles, with each tile being one or more grid points
high in the z-dimension.

A sweep starts with one of the corner processors comput-
ing over the cells in its top or bottom tile. Consider the case
that processor (1, 1) in Figure 1(a) begins by computing the
results for its bottom-most tile. At the end of that calcula-
tion, it sends the respective boundary values (i.e., the new
values for the data cells at the edge of the tile) to processors

\‘ Octant 4

Forward 5.6 74
1,1 n1 1Im
sweep
i
1m n,m |Backward Octant 1,1
sweep 7.8 /‘1)'
(a) LU

(b) Sweep3D

I'e Octant Octant g X Octant
X 1,2 4,6 4 X 1,2
n,m I,m nm
ij
nl Octant Octant 11 nl Qctant
A bl b ,\'\ 3.5

(c) Chimaera

Figure 2: Structure of the Sweeps per Iteration in Key Benchmark Codes

(1,2) and (2,1). After receiving those values, processors
(1,2) and (2,1) compute values for each of their bottom
tiles, while processor (1,1) computes values for the next
tile in its stack. Each processor sends boundary values to
its east and south neighbors and then computes new val-
ues for the next tile in its stack, and so forth, until all the
tiles have been processed. This creates a series of wave-
fronts, depicted in Figure 1(b), since the processors along
each z — y diagonal are all processing the tile at the same
position in their respective stacks. The sweep ends when the
processor (n,m) at the opposite corner finishes processing
its top-most tile — that is, the tile at the opposite corner
of the 3-D grid. The shaded tiles in Figure 1(a) depict the
tiles that are processed during the final three wavefronts —
light gray, then medium gray, then dark gray, ending with
the top-most tile on (n,m). Such pipelined sweeps are the
bulk of the execution time in wavefront computations such
as particle transport simulations.

2.2 LU, Sweep3D, and Chimaera

As noted in Section 1, LU, Sweep3D and Chimaera are
important scientific benchmark codes. LU is a NAS bench-
mark that represents a compressible Navier-Stokes equation
solver used in computational fluid dynamics. Sweep3D is
an ASC benchmark developed by LANL to represent parti-
cle transport applications that make up 50-80% of the com-
putations that run on their high performance systems [1].
Chimaera is a particle transport benchmark from the Atomic
Weapons Establishment (AWE) in the U.K., representative
of a major potion of their workload and also used for the
procurement of their high performance systems.

Figures 2(a) and (b) show the starting points and order-
ing of the pipelined sweeps that are performed in each iter-
ation of LU and Sweep3D, respectively. (Note that proces-
sor indexing in the 2-D array is different in each of these
codes.) An iteration in LU consists of two sweeps [7],
one sweep starting from the bottom most tile on processor
(1,1) to the top-most tile on processor (r, m), followed by
a sweep in the opposite direction. In contrast, Sweep3D has
eight sweeps, one originating from each corner (or octant)
of the 3-dimensional grid [3], as shown in the figure.

To our knowledge, the structure of the sweeps in Chi-
maera has not previously been reported, but from the code

we determined the structure shown in Figure 2(c). Note
that in both Sweep3D and Chimaera, processor (n, m) be-
gins the first tile of the second sweep immediately after it
finishes the last tile of the first sweep, and the third sweep
begins when processor (7, 1) has completed its stack of tiles
in the second sweep. In Sweep3D, the fourth sweep begins
as soon as processor (n, 1) has finished its tiles in the third
sweep, but in Chimaera the fourth sweep does not begin un-
til processor (1, m) at the opposite corner finishes the third
sweep. These are some of the similarities and differences
that need to be captured in the input parameters for a plug-
and-play re-usable model.

Additional structural and behavioral differences among
these three benchmarks and other wavefront codes also need
to be captured in a re-usable model. To our knowledge,
there are no previous papers detailing those differences nor
detailing the operation of the Chimaera code. In Section
4 we outline the key further differences obtained from the
source codes, to motivate the design decisions in the new
re-usable wavefront application model.

2.3 Related Work

In an early paper, Yarrow et. al [7] develop models of
two different versions of LU that elucidate the differences
in communication structure. They find a maximum of 30%
error compared with measured LU execution time on an
SP system. Sundararam-Stukel and Vernon [3] develop a
LogGP model of Sweep3D on the SP/2 that includes syn-
chronization overheads, and obtain a high degree of accu-
racy for up to 128 processors. Their results include opti-
mized application configuration parameters and number of
processors for key problem sizes. They also show that syn-
chronization cost is significant on the SP/2. Mathis et. al
[6] use less precise communication costs in a model of a
single sweep in Sweep3D and apply the model to explore
two possible alternative data decompositions. Kerbyson et.
al [4] provide a Sweep3D model that is derived from the
Hoisie et. al [1] single-sweep model, and use the model to
project performance for the Earth Simulator. Validations of
their model on BlueGene/L, ASC Purple at Lawrence Liv-
ermore and the Cray RedStorm at Sandia are presented in
[8]. Their model does not quantify communication soft-
ware overhead (o) and latency (L). They include terms for

o 4

2000 4000 6000 8000 10000 12000
Message Size (Bytes)

(a) Inter-Node

2 14 o7
5 12 B Model 66
o [&]
g 10 — Measured § °
8 4
S 6 g3
2 4 22
g 2 g1
= 0 T T T T T 1 = 0 T T T T T 1

o 4

2000 4000 6000 8000 10000 12000
Message Size (Bytes)

(b) Intra-Node

Figure 3: Measured and Modeled MPI End-to-End Communication Times

multi-core contention on the outgoing communication link.
The model validates well on dual-core single-link nodes but
total communication time (rather than contention) reduces
to zero as the number of links per node increases.

Each of these previous analytic models of wavefront ap-
plications are specific to LU or Sweep3D and require sig-
nificant (unspecified) restructuring to apply to other bench-
marks or production codes of interest. This paper derives
a plug-and-play LogGP model for a wide variety of wave-
front codes, derives XT4 communication overhead, latency,
and bandwidth, models contention more precisely, and pro-
vides new applications of the models for system design and
configuration. The LogGP model and its parameters are de-
scribed in [9].

3 MPI Communication on the XT4

A key component of a LogGP application model is the
set of sub-models that define the execution time of the com-
munication primitives on the platform of interest. Thus, the
plug-and-play model of wavefront codes developed in Sec-
tion 4 requires LogGP sub-models of MPI send and receive,
and the MPI group all-reduce primitive.

The platform of interest here is the high performance
Cray XT3/XT4 which we have access to through the PEAC
Project at ORNL. Each node in the XT4 is a dual core
2.6GHz Opteron [10]. The interconnection between nodes
is a 3-D torus network, which facilitates efficient map-
ping of wavefront applications and implies near-neighbor
send/receive operations.

To our knowledge, XT4 MPI communication models
have not previously been reported on in the literature.
Hence, we derive these models below. Note that we con-
firmed the basic operation of the XT4 MPI implementations
with XT4 system architects. To our knowledge, the models
in Section 3.2 are also the first validated LogGP models of
on-chip MPI send/receive for any platform.

The LogGP communication models derived below can
be used for any application that uses MPI primitives. They
also yield insights into the implementation as well as quan-
titative values of the end-to-end communication latency (L),
the processing overhead (o) at the sender and receiver, and

the per-byte transmission cost (G). Thus, these models are
valuable in their own right.

Note that in modern architectures, a node can transmit a
new message as soon as a previous message transmission is
complete, and thus the gap parameter, g, is equal to zero.

3.1 MPI Send and Receive: Off-node

Figure 3(a) plots one half of the round-trip time for a
ping-pong message exchange between two nearest neigh-
bor nodes in the XT4, as a function of the size of the mes-
sage that is transmitted back and forth. Note that each node
posts a receive immediately after completing a send, and
thus there is very low variance in the measured round-trip
times. The solid line connects the measured values, while
the points in black are the highly accurate values predicted
by equations (1) and (2) in Table 1.

The slopes of the curves before and after the 1024 byte
message size are equal. This slope is the per-byte transmis-
sion cost or Gap per byte (G), given in Table 2. G is the
sum of the per-byte costs for each of the copy operations
at the sender and receiver. Note that 1/G yields an XT4
inter-node bandwidth of 2.5 Gigabytes/second.

For messages smaller than 1025 bytes, equation (1) mod-
els the total time to send a message, including the message
processing time (o) at each end and the latency (L) between
the two processors. For all messages larger than 1024 bytes
a handshake is performed. That is, the sender first sends a
short message requesting a reply when the message receive
has been posted, and waits for a reply before sending the
message. Let h denote the total time for the handshake, ob-
tained as the difference in transmission times for 1025 and
1024 bytes. Let 0 = 0;nit + 0can 1 Where 0;,;: denotes the
overhead for the copy between application and kernel, and
ocon1c denotes the time to set up a (DMA or other) copy
of the message data between kernel memory and the NIC
and to prepare or process the message header. Using these
processing overheads, (2) models the total time to send a
message larger than 1024 bytes, including the handshake
time.

Assuming that op is negligible we solve equations (1)
and (2) for given respective message sizes simultaneously
to derive the values of o and L, given in Table 2. These

Table 1: LogGP Model of XT4 MPI Communication

(a) Off-Node Communication Model
Total_Comm<ikB,offchip = 0 + Message_size x G+ L + o (1)
Total CommsikB,of fehip = 0+ h + 0+ Message_size x G+ L+o0 | (2)

where h = L + o, + L + oy,

Send<ikB,offchip = 0, Receive<ikB,offehip = 0 3
Sends1xB,of fchip = 0+ h (4a)
Receives1xB,offchip = L + 0+ Message_size x G+ L+ o (4b)

(b) On-Chip Communication Model
Total_Comm<ik B,onchip = Ocopy + Message_size X Geopy + Ocopy 5)
Total Comms1K B onchip = 0 + Message_size X Gama + Ocopy (6)
SendglKB,onchip = Ocopy> ReceiveglKB,onchip = Ocopy (7
Send> 1K B,onchip — O = Ocopy + Odma (8&)
Recetves 1k B,offehip = Message_size X Gama + Ocopy (8b)

values provide the predicted communication times plotted
in Figure 3(a). Note that the model is highly accurate. Fur-
thermore, the off-node parameters in Table 2 are one to two
orders of magnitude lower than the values for the SP/2 [3],
which are: G = 0.07 usec/byte, L = 23 usec, and o = 23
pusec. Thus, the Cray XT4 communication hardware and
software are highly optimized.

LogGP application models also require sub-models of
the time to execute the Send and Receive code. These are
easily derived from the total time to transmit a message, and
are given in equations (3),(4a) and (4b) in the Table 1.

3.2 MPI Send and Receive: On-chip

Figure 3(b) provides half the round-trip in the ping-pong
MPI communication benchmark as a function of message
size when the sender and receiver are on the same dual-core
chip. We again observe a significant increase in transmis-
sion time for message size equal to 1025 bytes. However,
in this case it is unlikely that a handshake operation with
the other on-chip core could account for the magnitude of
this increase. Instead, note that the slope of the curve for
message sizes below 1024 bytes is larger than the slope for
larger messages. These two per-byte transmission costs -
G eopy and G g, - are given in Table 2. The subscripts de-
note that it is likely that the larger messages are transferred
using a dma operation. Since a slower message copy is used
for messages smaller than 1025 bytes, the fixed increase at
1025 bytes is due to the dma setup cost.

Using the notation in the previous section, and assum-
ing L ~ 0 for on-chip message transmission, the total time
to send a message smaller than 1025 bytes is modeled in
equation (5). Note that oy, is the processing overhead be-
fore and after the message copies on the sender and receiver
while Gy is the total time per byte to copy the data from
one application buffer to the other. For message sizes larger
than 1024, we let 0 = 0¢opy + 0ama and model the total end

to end message communication time in equation (6).

We solve equations (5) and (6) simultaneously for given
respective message sizes to obtain values for o and 0¢epy -
These are given in Table 2. The value of o is nearly the same
as in the off-node model. Additionally, the per-byte gap to
move the data from sender to receiver is lower on-chip than
off-node for all message sizes. These observations greatly
increase our confidence in these communication models and
derived parameter values.

Similar to the off-node model, the models for Send and
Receive are given by equation (7) in Table 1 for message
size less than or equal to 1024 bytes and by (8a) and (8b)
for messages larger than 1024 bytes.

Table 2: XT4 Communication Parameters

Off-node Value On-chip Value
G 0.0004 Geopy | 0.000789 ps/byte
us/byte Gama | 0.000072 ps/byte

L 0.305 us o 3.80 s

o 3.92 us Ocopy 1.98 s

3.3 MPI All-reduce

To complete this section, we develop a simple abstract
model of the MPI all-reduce execution time. The all-
reduce operation is performed at the end of each iteration
in Sweep3D and Chimaera. Letting C' denote the number
of cores per node, the all-reduce execution time is given by
Tatireduce = [l0g2(P) — log2(C)] x C x Total Commiof fehip

+log2(C) x C x Total . Commonchip (9)

Note that in the special case of C' = 1, the equation re-
duces to loga(P) TotalComm. This all-reduce model has
less than 2% error for up to 1024 dual-core nodes on the
XT4, and thus provides insight into all significant process-
ing and communication costs in this group communication
primitive. The model can be used for any applications that
perform all-reduce.

Table 3:

Model Application Parameters

Parameter LU Sweep3D Chimaera
Ny, Ny, N, Inputsize | Inputsize | Inputsize
W measured | measured | measured
Wy pre measured 0 0
Hyjie(cells) 1 mk x 1
mmi/mmo
Nsweeps 2 8 8
T full 2 2 4
Ndiag 0 2 2
Tnonwavefront Tstencil 2Tallreduce Tallreduce
Message 40N, /m 8Hyile 8Hyite
Sizepw X#angles | X#angles
(Bytes) XNy /m XNy /m
Message 40N, /m 8Hyile 8Hyite
Sizens X#angles | X#angles
(Bytes) XNy /n XN, /n

4 The Plug-and-Play Model

In this section we develop a plug-and-play re-usable
LogGP model for wavefront applications. Section 4.1 out-
lines the significant structural and behavioral differences
among wavefront codes, and develops a simple set of pa-
rameters to capture those differences. Section 4.2 develops
the basic re-usable model equations, assuming for simplic-
ity that each core executing the computation is on a different
node. Section 4.3 then extends the model for the case that
the computation runs on multi-core chips or nodes.

For each tile of height 1 do
Pre—-Compute specified domain of grid
Receive from west;Receive from north

Compute specified domain of grid

Send to south

(a LU

For each angle—-group of size mmi do
For each tile of height mk do
Receive from west;Receive from north

Send to east;

Compute specified domain of grid
Send to east; Send to south

(b) Sweep3D
Figure 4: Wavefront Operations

4.1 Application Parameters

Recall from Figure 2 in Section 2.2 that different wave-
front applications can have different numbers of sweeps as
well as a different structure to the sweeps. We specify the
number of sweeps, Nsyeeps, as shown in Table 3.

In the case of LU, sweep 1 must completely finish ex-
ecuting on all the processors before sweep 2 can begin,
and sweep 2 must also completely finish before the iter-
ation ends. In Sweep3D, sweep 4 must complete before

sweep 5 begins and sweep 8 must complete before the it-
eration ends. However, as shown in Figure 2(b), sweep 2
in Sweep3D can begin as soon as the first corner processor
(n,m) finishes its stack of tiles for sweep 1, and sweep 3
can begin as soon as the stack of tiles for sweep 2 have been
processed by the main diagonal processor (7, 1). Note that
while sweep 3 is starting up in Sweep3D, sweep 2 is finish-
ing its last few wavefronts. Chimaera has some similarities
and some differences in how soon each sweep follows the
previous sweep, as shown in Figure 2 and noted in Section
2.2. Other wavefront applications may still have other struc-
tures for their sweeps.

We have developed two new simple parameters namely,
Ny and Ngiag, also given in Table 3, to capture the rele-
vant behavior of a wide range of possible sweep structures.
n gy specifies the number of sweeps that must fully com-
plete before the next sweep begins, while n4;44 specifies the
number of sweeps that must complete at the second corner
processor on the main diagonal of the wavefronts. All other
sweeps (e.g., sweep 2 in Sweep3d) only need to complete
on the processor where the sweep originates before the next
sweep begins. The reader can verify that the values of n .,
and ng;q4 for each application in Table 4 are accurate for
the corresponding sweep structure in Figure 2.

Further differences among the three codes, including
those illustrated in the bold-faced portions in Figure 4, are
captured using parameters as follows. First, LU performs a
pre-calculation before performing the MPI receives, while
Sweep3D and Chimaera do not. We use Wy ;.. (Table 3)
to specify the computation per grid point that occurs before
the receives, and set this parameter to zero if no computa-
tion is performed. Second, Sweep3D has an input param-
eter (mmo) that defines the number of angles to be com-
puted for each data cell, whereas Chimaera and LU have
a fixed amount of work per data cell, as shown in Table
3. Sweep3D also has a parameter (mmz) that specifies the
number of angles to be computed before sending the bound-
ary values to the near neighbors. Common values of these
parameters in the benchmark are 6 and 3, respectively. We
use mmi and mmo to compute an effective value of the
height of the tile, as described next. Third, Sweep3D has
a parameter (mk) that defines the height of a tile (in terms
of the number of grid cells). We define a new parameter
Hyjie in our model inputs in Table 3. LU and Chimaera
each have a fixed tile height equal to one cell. Sweep3D
computes mmi of the angles in the tile before sending the
boundary values, and then computes another mmsi of the
angles. In terms of total code execution time, this is the
same as computing all of the angles for a tile of height
Hijie = mk X mmi/mmo, as shown in the table. Note
that this implies that W, is the measured total computation
time for all angles in a cell.

Parameter T},onwave front 1 the execution time for the

Table 4: LogGP Model for Sweep3D from [3]

Wi ; = Wy x mmi x mk x jt x it (s1)
StartP; ; = max(StartP;,_1 ; + W;_1 ; + Total_comm + Receive,
StartP; j_1 + W; j_1 + Send 4 Total_Comm) (s2)

Timesg = StartPy m + 2[(W1 m + Sendg + Receiven + (m — 1)L) x #kblocks x mmo/mmi] (s3)

Timer g = StartPy_1 m + 2[(Wy—1 m + Sendg + Receivey + Receivey + (m — 1)L + (n —2)L)
x#kblocks x mmo/mmi| + Receiveyw + Wy m (s4)

T = 2(Times ¢ + Timerg) (s5)

operations performed between iterations. For instance LU
performs a four-point stencil computation after the 2 sweeps
in each iteration, while Sweep3D performs two all-reduce
operations. The model of stencil execution time (Ts¢encir) 1S
omitted to conserve space but is a sum of terms with similar
simplicity and abstraction as the all-reduce model.

Note that a wide range of different wavefront application
behaviors are captured in the relatively simple and small set
of application parameters in Table 3. In particular, the pa-
rameters can be used to specify various amounts of work
before and after the boundary values are received, a range
of tile height, an arbitrary number of sweeps per iteration, a
wide range of sweep precedence structures including those
in the three benchmarks, and a general processing time be-
tween iterations. Hence these application parameters sup-
port the evaluation of LU, Sweep3D, Chimaera, other pos-
sible wavefront applications, and many if not most possible
application code design changes.

The parameters are more complete than previous param-
eters for Sweep3D or LU because they include both the
sweep structure and the computations that are performed at
the end of each iteration. As discussed in Section 5, the re-
usable model accurately computes execution time for each
wavefront code from these application parameters. Hence,
the parameter values provide a succinct summary of the key
differences among wavefront codes with respect to mea-
sured application performance.

4.2 Re-usable Model: One Core per Node

Table 4 provides the accurate LogGP model of Sweep3D
in [3], which serves as a starting point as well as a use-
ful comparison and contrast for our plug-and-play re-usable
model for a wide variety of wavefront applications. We
briefly discuss these previous equations before develop-
ing the new reusable model. Note that in this Section
we assume the computation is mapped to one core per
node on the XT4. In this case all communication is
off-node and the sub-models in equations (1)-(4) apply.

Equation (s1) models the time to compute each set of
mmsi (out of mmo) angles for a tile. The parameters it
and jt define the x and y dimensions of the tile. Fur-
thermore, W, in this previous model is the computation

time for one angle of one data cell whereas in our new
model this parameter is the total execution time for all
the angles of one data cell. The total execution time for
a sweep is the same regardless of which corner it origi-
nates from. The model computes execution times for a
sweep that starts from the upper left corner in the proces-
sor grid using the processor indexing in Figure 1(b), and
then applies portions of the sweep time to the appropri-
ate actual sweeps in the code. Equation (s2) defines the
time at which the sweep starts on each other processor in
the grid. Equation (s3) computes the time until the cor-
ner processor on the main diagonal completes its stack of
tiles in the sweep. Equation (s4) computes the time un-
til the sweep completely finishes on processor (n, m), and
equation (s5) sums the total time to execute the 8 sweeps.

The specific terms in each equation are described in de-
tail in [3]. Here we simply focus on the overall structure of
the model and note that the terms in each equation reflect the
sequencing of the operations in the code. We also note that
the synchronization term in equation (s3), namely (m—1)L,
and the term in equation (s4), namely (m — 1)L+ (n—2)L,
are due to back-propagation of handshake replies. Synchro-
nization costs were significant on the IBM SP/2, but are a
tiny fraction of the total execution time on up to 8192 pro-
cessors on the XT4 due to the extremely small value of L on
the XT4. For this reason, we were unable to verify the form
of the terms on the XT4. We omit the synchronization terms
in the development of the re-usable model, noting that these
previous or other synchronization terms can be incorporated
in the re-usable model for other architectures, as needed.

The typical approach to modeling a new wavefront code
is to modify an existing model such as the one in Table 4,
to reflect the different behaviors in the new code. The high
level of abstraction in the model facilitates modifications.
However, the model modification process is error-prone and
thus each new model must be extensively validated. Fur-
thermore, model extensions such as new synchronization
terms must be propagated to each of the customized mod-
els. To reduce such development and validation costs, we
choose to modify the performance model so as to build
in the impact of the various possible behaviors, relying on
the input parameters developed in the previous section to
specify the appropriate features for each application. The

Table 5: Plug-and-play LogGP Model: One Core Per Node

Wore = Wy pre X Hyjre X Ny /nx Ny/m (rla)
W =W, x Hyjje X Nyp/n x Ny/m (rlb)
StartPr1 = Wyre (r2a)
StartP; ; = max(StartP;,_1 j + W;_1 ; + Total_commpg + Receivey,
StartP; j_1 + W, j_1 + Sendg + Total_Commyg) (r2b)
Tdiagfill = Startpl,m (r3a)
Trupin = StartPy (r3b)
Tstack = (Receivew + Receiven + W + Sendg + Sends + Wyre)N. /Hiite — Wpre | (14)
Time per tteration = ndiagTdiagfill + nfulleullfill + nsweepsTstack’ + Tnonwavefront (1'5)

idea is analogous to re-usable software which is popular
due to reduced software development and testing costs.
To our knowledge, plug-and-play performance models
— in which the user only needs to specify a few input pa-
rameter values in order to obtain performance predictions
for application codes with different behavior — have not
previously been developed. An open question addressed in
this research is whether building in the various possible be-
haviors leads to a more complex set of equations, possibly
negating the advantages of the model generality. The results
below show that for the varied behaviors in wavefront appli-
cations, it has been possible to construct a set of equations
that are as simple as the equations that are tailored to a given
application. This was an unanticipated result that may not
hold for other classes of applications. However, the results
are encouraging for this important class of application and
may provide an incentive to extend the study more widely.

The new plug-and-play performance model (for one core
per node) is given in Table 5. We outline the key differ-
ences as compared to the previous model for Sweep3D in
Table 4. Equations (rla) and (r1b) provide the work per
tile before and after the boundary values are received, re-
spectively. These are computed in a similar way to equa-
tion (sl) in the previous model, but account for the pre-
processing time before the boundary values arrive, if any.
Equation (r1b) also illustrates the simplicity of incorporat-
ing the mmz: parameter into Hy;.. Equation (r2a) accounts
for the pre-processing time for the first time in the sweep,
and equation (r2b) is similar to the previous model equation
(s2). Note in equation (r2b) that the first term on the right
corresponds to the case where the message from the West is
the last to arrive at processor (i, 7). In this case the message
from the North has already arrived, but cannot be received
until the West message is completely received. The sec-
ond term corresponds to the case where a message from the
North arrives last. In this case, processor (,j — 1) does a
send to its East before it sends to its South processor (i.e. to
processor (7, 7)). The Total_Comm in this case is for the
message send and receive between processors (z, j — 1) and
(4,7). The next three equations provide a different perfor-

mance cost breakdown than the previous model. In partic-
ular, equations (r3a), (r3b) and (r4) specify the time for the
sweep to reach the processors on the diagonal, the time to
reach the processor at the opposite corner, and the time to
process a stack of tiles, in contrast to the previous equations
(s3) and (s4) which compute the total critical path time for
the given sweeps in Sweep3D. The new breakdown is sim-
ple and intuitive and is also needed for computing the total
execution time for various possible sweep precedence struc-
tures.

Wyre does not appear in equations (r3a) and (r3b) be-
cause the parallel pre-computation for the first tile is ac-
counted for in equation (r2a). The per-tile processing time
in (r4) includes W, for each tile. The total number of tiles
that need to be computed is given by N,/Hy;.. The sub-
tracted Wy, is an adjustment for the final tile in the stack.
The per-tile processing time also includes two sends and
two receives. The processor at the corner of the main di-
agonal or opposite the processor that started the sweep will
not perform both send operations. However, all processors
compute their tiles at the same rate due to the blocking na-
ture of the MPI send and receives.

Equation (r5) provides the time for one iteration of a
wavefront computation by (a) combining the appropriate
number of terms for sweeps that must complete at the main
diagonal or at the opposite corner before the next sweep
can begin, and (b) by adding the term for computations that
occur at the end of the iteration or possibly between the
sweeps. Note that equation (r5) provides for an infinite va-
riety of sweep sequences while the model inputs 7 ¢, and
Ndiag are the key measures of the sweep precedence struc-
ture for a given application.

The new re-usable model is significantly more powerful
than previous models of specific wavefront codes, yet it has
a similarly small number of intuitive equations. As detailed
in Section 5, the re-usable model is also highly accurate and
comparable to the previous models of the Sweep3D code [1,
4, 8], unless the wavefront code is configured inefficiently.
Model accuracy is discussed further in Section5.

4.3 Multi-Core Reusable LogGP Model

To apply the reusable LogGP model for execution on
multiple cores per node we first note that the Wp,.. and W,
inputs must be measured when the application executes on
at least four cores, or the number of cores that will share a
cache or other memory resources at a given node, whichever
is larger. Four cores are required regardless of the number
of cores per node [3], so that the code path that is executed
is about the same as will be executed for larger configura-
tions.

Two extensions to the model are also required. First,
equation (r2b) needs to be modified to specify which of the
MPI Send and Receive operations are on-chip and which
are off-node. Second, message contention at shared node
resources needs to be accounted for in equation (r4). Note
that all of the communications in equation (r4) should be
off-node because the processing of the stack of tiles occurs
at the rate of the slowest communication in each direction.

Let the wavefront application be mapped to the multi-
core nodes such that the cores at each node form a C, x Cy
rectangle in the m x n processor grid (see Figure 1 and
Figure 2). In this case, the off-node communications oc-
cur at the edge of the rectangle. Let (i,7) again denote
the location of each core in the processor grid, and note
that processor indices start from 1 in both directions. Us-
ing this notation, Table 6 provides the required modifi-
cation to equation (r2b) for on-chip communication be-
tween two cores on the same node. For example, the
Sendg operation in equation (r2b) occurs between cores
(i,j — 1) and (¢ + 1,7 — 1). This will be off-node if the
core (i,j — 1) is at the right edge of the C, x C, rect-
angle (i.e., if i mod C, = 0) and will otherwise be on-
chip. The remaining rules are derived in a similar manner.

For message contention, we note that the primary mes-
sage contention on the Cray XT4 will occur during the
dma transfer of message data from kernel memory to the
NIC via the shared bus. Once the message data is in
the NIC memory, there should be very little contention
since messages are traveling in one direction only be-
tween any two nodes and because the NIC has a sepa-
rate port for each destination node. The time to trans-
mit a message on the bus can be derived from the mea-
sured communication primitives in Section 3.2. For each
message interference a value of [is added to the appro-
priate Send or Receive operation, as specified in Table 6.

Representative validation of the multi-core model for the
dual-core Cray XT4 is given in Section 5. Similar to previ-
ous models [3, 8], a maximum of 10% error was observed
for LU, Chimaera and Sweep3D, unless the problem size
per node is small. The case where the problem size per
node is small, the communication dominates the total exe-
cution time. Hence, such configurations are not of interest
for production runs. In those cases of less practical interest,

Table 6: Re-usable Model Extensions for CMP Nodes
Modifications to Equation (12b)

For C, x C cores per node, all communication are off-

node except the following:

tmod Cy #0& Cp # 1: Sendg = Sendonchip, B

imodCy #1& Cy #1:

Total_commpg = Total_commonchip,E

jmod Cy #1& Cy # 1: Receiven = Receiveonchip, N
jmodCy #0& Cy #1:
Total_commg = Total_commonchip,s

Modifications to Equation (r4)
For CMPs with a shared bus to memory
let I = (0gma + Message_size X Gama)
1 x 2 cores/node : add I to Receivey and Sendg
2 x 2 cores/node : add I to each Send and Receive
2 x 4 cores/node : add 2I to each Send and Receive

the abstract communication and contention model leads to
somewhat larger errors (i.e., in the order of 25%).

S Results: Application and Platform Design

In this section we apply the plug-and-play wavefront ap-
plication model to illustrate its utility in evaluating applica-
tion design and configuration (Section 5.1), hardware plat-
form procurement questions such as platform sizing and
configuration (Section 5.2), hardware platform design alter-
natives, specifically the number of cores per node (Section
5.3), application bottlenecks (Section 5.4), and application
re-design to alleviate one of the bottlenecks (Section 5.5).
We illustrate these applications for the two particle trans-
port benchmarks, Chimaera and Sweep3D, noting that the
model can be applied in a similar manner to LU or any other
wavefront benchmark or production code of interest. The
applications illustrate the versatility of the analytic model
in supporting the rapid evaluation of a number of system
configuration and design alternatives.

Throughout the results, we evaluate Chimaera with a
problem size of 2402 cells, which is the largest current cubic
problem size available as part of the benchmark. We eval-
uate Sweep3D with two problem sizes of interest to LANL
[1]: 10° cells and 20 million cells. For both problem sizes of
Sweep3D, we set the number of angles, mmo, to six. The
Chimaera code requires 419 iterations to complete a time
step for the problem provided with the benchmark. Unless
otherwise noted, we set the number of iterations per time
step in Sweep3D to 120 which we anticipate will be more
representative of many actual particle transport simulations
than the default value of 12.

5.1 Application Design: Hy;.

As shown in the LogGP model (Table 5) and in previous
studies of Sweep3D, the height of a tile or Hy;; is a key

80 7
~~ Chimaera

70 -

0 — Sweep3D

o p=4K
e P=16K

60 1 :
50 1 @
40 1 -
30 1

20 A

Execution Time (seconds)

10

H_tile
Figure 5: Execution time vs. Hy;;.
(Chimaera 2403, Sweep3D 20M cells, 480 Iterations)

configuration parameter. A larger value of Hy;. leads to
a larger ratio of computation to communication, as shown
in equations (rla) and (r1b). This leads to longer pipeline
fill times as shown in equations (r2a) and (r2b), but also
to lower communication costs because the communication
overhead (o) and latency (L) occur less frequently as shown
in equation (r4).

A key software configuration question that is easily ad-
dressed using the model is what value of Hy;;. to use for a
given application code, problem size, and number of pro-
cessors, in order to achieve minimum execution times. Fig-
ure 5 shows the execution time per time step vs Hy; for
Chimaera and Sweep3D on the 2403 and 20 million prob-
lem sizes, respectively. For each benchmark and problem
size, we provide a curve for a small system configuration
(4096 processors) and the maximum number the problem
can practically run on (16K processors). In each case, Hy;je
in the range of 2, 4 or 5 minimizes the execution time. Re-
sults for Sweep3D with the 10° problem size on 16K - 128K
processors (omitted to conserve space), also show that Hy;;
in the range of 2 to 5 minimizes execution time. In contrast,
previous work evaluating Sweep3D on the SP/2 that has
higher communication overhead and latency, found Hy;.
in the range of 5 to 10 (i.e., mk = 10 and mmi/mmo = 0.5
or 1) minimized execution time [1].

For clarity in Figure 5, we have omitted the curve for
Chimaera with problem size 240 x 240 x 960 — another
problem size of interest to AWE — for which Hy;. =2, 4
or 5 provides a 20% improvement in execution time (com-
pared with Hy;;. = 1) on 16K processors, which is simi-
lar to the improvement in Sweep3D execution time for the
10° cell problem size. We note that the architects of Chi-
maera are implementing a parameter that corresponds to
Hy;. so that these projected lower execution times will be
achievable. Our results illustrate the ability of the model to
rapidly evaluate software design modifications in order to
determine whether the implementation effort is justified.

We use Hy;. = 2 for the results in the remainder of this
section, noting that in some cases the execution time will be

[N
N
o
o

mo

1200 O Measured
1000 —#-Predicted

®]
800 K
600

400 \Q\L

200 P

Total Execution Time (Days)
o

1024 2048 4096 8192 16384 32768 65536 131072
Number of Processors (P)

Figure 6: Execution time vs. System Size
(Sweep3D, 10? cells 10* time steps, Hy;je = 2)

slightly lower if Hy;. is set to 4 or 5. One further point of
interest in Figure 5 is that on 16K processors the execution
time for one iteration of Sweep3D with a problem size of
20M cells (with 480 iterations to complete the time step)
is very similar to the execution time of Chimaera with a
problem size of 2402 cells (requiring 419 iterations). These
two benchmarks perform different processing. For exam-
ple, Sweep3D computes six angles while Chimaera com-
putes ten angles. Of interest is that the codes have quali-
tatively similar processing costs. Hence, in the remainder
of this section we consider particle transport and platform
design issues using the 2403 problem in Chimaera and the
10 problem in Sweep3D.

5.2 Platform Sizing and Configuration

For a given particle transport problem size of interest, in-
creasing the number of processors decreases execution time,
but with diminishing returns. Model results in Figure 6 il-
lustrate this for Sweep3D for the 10? problem. In this fig-
ure, we show the execution time for 10* time steps, when
the code uses both processors in each dual-core XT4 node.
Single-core vs multi-core performance is evaluated in Sec-
tion 5.3. The results in Figure 6 assume Sweep3D simulates
30 energy groups[1], which implies a 30-fold increase in ex-
ecution time compared with the execution time for a single
energy group. We use these values of interest to LANL to
illustrate the system sizing question in the context of pro-
duction problems of interest to the organizations that own
the benchmarks.

Figure 6 also provides measured code execution times
for the numbers of nodes that are available in the ORNL
XT4, scaled to the 30 energy groups and 10,000 time steps.
Note that we obtained an error in the order of 10% in the
predicted execution times, due to the communication ab-
stractions in the model. These results illustrate that the pro-
jected execution times (with these abstractions) are qual-
itatively correct and sufficiently accurate to support accu-
rate decisions concerning how many processors should be
allocated to a given particle transport simulation. Similar

[]8xonP

4xonP lI2xonP [J1xonP

S _ 4,000

2 Z

o

8 2 3,000

o =

g & 2,000

78

2 s 1,000 -

= 0

32768 65536 131072
Number of Processors (P)
(a) Sweep3D 10°Cells

el
£ € 80,000

8 2 —
o £ 60,000

=

[}

¥ 3 40,000 |
2 & 20,000
= 0

16384 32768
Number of Processors (P)

(b) Chimaera 240° Cells

Figure 7: Throughput vs. Partition Size

results for Chimaera on the 2402 problem are omitted to
conserve space.

As shown in the figure, the trade-off in execution time
versus the number of nodes is complex. There are dimin-
ishing but perhaps still significant returns as the number of
processors increases beyond 16K. A given user requiring
nearly the minimum possible execution time may determine
that the desired system size is 64K or 128K cores. On the
other hand, due to the diminishing returns from 32K pro-
cessors to 64K processors, another user may want to trade-
off the execution time of one problem on 64K processors
against solving two 1B problems simultaneously, each on
half of the 64K processors.

We provide results for evaluating this trade-off in Figure
7. The black bars in Figure 7 provide the number of time
steps solved per month when a single problem executes on
the given number of processors. The other bars in Figure 7
show the number of time steps completed per month by each
of 2, 4, or 8 particle transport simulations that are executed
in parallel on equal-size partitions of the given number of
processors. For example, the dark gray bars show the num-
ber of time steps solved per month in each of two problems
solved when the given number of processors is partitioned
in half. Note that when two 1B Sweep3d problems each run
on half of 32K processors, approximately 2000 time steps
are solved per month in each of the problems. This means
that approximately five months or 150 days are required to
execute 10,000 time steps. Figure 6 also shows that ap-
proximately 150 days are required to simulate the 10,000
time steps on 16K processors. Hence, Figure 7 is another

100.00 ——
N * RIX
o RIX
[] [] L]
10.00 ¢
1.00

4096 8192 16384 32768 65536 131072

Number of Processors (P) in a Partition

Figure 8: Optimizing Partition Size
(Sweep3d 10%, P = 128K)

10 ‘ ‘

2% 87 | omin(RIX)
S8 51 | emin(RYX)
o |
5 o
56 *

(2]
-g'g 2 ° o |
27 o

16384 32768 65536 131072

Maximum Available Number of Processors (P_avail)

Figure 9: The Optimized Number of Parallel
Simulations (Sweep3D 10? cells)

way to view the performance vs system size. In the case
of 128K processors in Figure 7(a), two parallel simulations
execute at 7/8 the rate of a single simulation, providing per-
haps an attractive alternative for some users. The results in
Figure 7 illustrate that a given site may want to consider the
total number of simulations that need to be run when mak-
ing procurement decisions and/or when allocating system
resources to particle transport simulations.

It is desirable to achieve a good trade-off between min-
imizing the execution time for a single simulation (R) by
running it on as many processors as possible, and maxi-
mizing the total number of simulations that complete per
unit time (X) by partitioning the available processors so
that simulations run in parallel. It is possible to quantify
this trade-off, as illustrated in Figure 8 for the 1B problem
of Sweep3D. Two curves are plotted as a function of parti-
tion size for parallel simulations on 128K cores. When the
partition size is 32K cores, four 1B simulations are run in
parallel. The lower curve is the value of R/ X, the ratio of
time to complete each 1B particle simulation divided by the
number of simulations that complete per time R. This ratio
is minimized when the partition size is 16K processors and
thus 8 simulations are run in parallel. The upper curve is
R?/X, which places greater emphasis on minimizing the
execution time for each simulation, and is optimized at 64K
processors per simulation. A given site or user can compare
these optimized partitions with the results in Figure 6 and
Figure 7 to arrive at a decision about how to configure the

300

[.
= 250 - M Single Core/ Node
Ee] H 2 Cores/Node
o 200 - 04 Cores/Node
£ 08 Cores/ Node
= 150 16 Cores/Node
C
2 100 -
(&
e I
n

0 I T T

8192 16384 32768 65536
Number of Nodes

131072

Figure 10: Execution Time on Multi-core Nodes
(Sweep3D 107 cells, 10* time steps)

system. Figure 9 provides the optimal number of simula-
tions to be run in parallel on 128K processors as well as for
smaller platforms, for each of the two criteria considered in
Figure 8.

Figure 7(b) provides results for the 2402 problem size in
Chimaera on a maximum of 32K processors. For the 2403
problem size, running a single problem on 32K processors
provide negligible improvement in execution time over run-
ning two problems in parallel on half the processors. On
the other hand, partitioning 16K nodes into four partitions
of size 4096 nodes yields better than a 50% reduction in
execution time per problem compared with sixteen parti-
tions of size 1024 processors. A given user can determine
the ideal trade-off, but 4K - 16K processors will be the de-
sired partition size for many if not most users. These curves
again illustrate the value of the model for aiding in system
procurement and configuration decisions.

5.3 Platform Design: Multi-core Nodes

We next examine the platform design issue of how many
cores per node would be desirable for the important class
of large particle transport simulations that make up a large
fraction of the workload at places such as LANL and AWE.
These results are obtained using the model extensions pro-
vided in Table 6, which assume a shared bus architecture
within each node but can easily be modified for other node
architectures. Results are provided here to illustrate the util-
ity of the model in providing insights into the question of
interest.

Figure 10 provides the execution time for a 1B particle
transport simulation versus the number of nodes on the plat-
form, and for various possible numbers of cores per node
ranging from one core per node to sixteen cores per node.
Because there are diminishing returns when the simulation
runs on increasing numbers of nodes (with one core per
node) there are also diminishing returns for increasing the
number of cores per node. Note also that in these results,
two cores on a given number of nodes (e.g., 64K nodes) pro-
vide slightly better execution time than four cores on half
the nodes (e.g., 32K nodes) due to the assumed shared bus

10 Total Time
. \ — — Computation Time
2 8] \ - - - -Communication Time
3
SN
[0)
.
2]
0 ‘ ‘
1024 4096 8192 16384 32768
Number of Processors (P)
Figure 11: Cost Breakdown (Chimaera)
architecture.

If the target execution time is approximately the execu-
tion time on 64K single-core nodes, then the figures shows
that this performance can be nearly achieved with 32K dual-
core nodes or 16K quad-core nodes.

An 8K-node system with 16 cores per node has the same
total number of cores as 32K quad-core nodes (and thus
twice as many cores as a system with 32K dual-core nodes),
but execution time is degraded due to contention for the
shared bus. However, if the 16-core node is provisioned
with a separate shared bus, shared memory, and NIC for
each group of 4 cores, then the execution time on the sys-
tem with 8192 nodes would be the same as the execution
time for the 32K quad-core nodes. This is perhaps an even
more viable multi-core design for particle transport simula-
tions. These results again illustrate the value of the model
in examining various system design and configuration ques-
tions.

5.4 Application Bottlenecks

In our final set of experiments, we illustrate the use of
the model to understand application bottlenecks which are
not readily measured when running or simulating the ac-
tual code. Figure 11 provides the total execution time for
the 2403 problem in Chimaera, as well as the breakdown
of total critical path time into computation and communica-
tion components, as a function of the number of processors
that the particle transport code runs on. The communica-
tion component of the total execution time is derived from
the Send, Receive, TotalComm and Ty equce €XECUtion
time terms in the model. The computation component is
the rest of the total execution time. Note that the point at
which communication dominates the total execution time
is the point at which increasing the number of processors
provides greatly diminished reduction in the total execution
time. Since communication of the boundary values is re-
quired for the simulations, the only opportunity for improv-
ing the observed communication bottleneck is to further im-
prove the inter-core communication efficiency. The model
can also be used by system architects to project execution

Total Time - Sequential Energy Groups
— - - Total Time - Pipelined Energy Groups
- = = = Pipeline Fill Time - Sequential Energy Groups

100
&0 00—
60 |
40 -
20 -

Time(days)

1024 4096 16384
Number of Processors(P)

65536

Figure 12: Pipeline Fill Redesign
(Sweep3D 4 x 4 x 1000 cells/processor,
30 Energy groups, 10* time steps)

times for such communication improvements.

Figure 12 shows the total execution time for a fixed per-
processor problem size as a function of the number of pro-
cessors, and also the amount of total execution time that
is due to pipeline fill at the beginning of each sweep. The
pipeline fill time during each sweep is computed from equa-
tions (r3a) and (r3b). The results are for the case of 10* time
steps and 30 energy groups.

5.5 Sweep Structure Re-design

The pipeline fill overhead might be reduced by the fol-
lowing Sweep3D re-design. Instead of performing all eight
sweeps for the first energy group and iterating to con-
vergence before solving the next energy group, we could
pipeline the solution of the energy groups by performing
the first two sweeps for all 30 energy groups followed by
sweeps 3 and 4 for all 30 energy groups, and so forth.

Pipelining the energy groups might require more itera-
tions to reach convergence. We can project the execution
time if no additional iterations are needed by modifying
the model input parameters. In other words, a total of 240
sweeps are required per iteration, with ng;,4 = 2 and n g,y
= 2. The projected execution time with these parameters
is also given in the figure, showing that nearly all of the
pipeline fill overhead is eliminated. The projections can be
made for an increased number of iterations to reach conver-
gence, if the user can provide knowledgeable estimates of
this increase. Again these results illustrate how the model
can be used to rapidly gain insight into software bottlenecks
and the impact of possible software modifications, in order
to determine where implementation effort might profitably
be placed.

6 Conclusions

This paper has developed and applied a plug-and-play
analytic model for pipelined wavefront applications on reg-
ular orthogonal grids. The re-usable analytic model requires
only a few input parameter changes to obtain a model of any

given wavefront application on a parallel architecture with
multi-core nodes. It also supports the assessment of various
possible design changes in a given wavefront application or
parallel platform. The model was validated on a large Cray
XT4 system for three key wavefront applications — namely
LU, Sweep3D and Chimaera. The model has predictive er-
ror under 10% for configurations in which computation time
dominates communication time.

As part of this work we have developed and validate
highly accurate MPI send, receive and all-to-all communi-
cation models for a Cray XT4 system. Platform parameter
values derived from those models show that the XT4 com-
munication software and hardware are highly optimized.

We applied the plug-and-play models of Chimaera and
Sweep3D to determine optimized application configura-
tions (Hy;e =2 to 5), platform procurement decisions using
quantitative metrics, as well as platform and application de-
sign changes for large particle transport simulations. Model
projections show, for example, that increasing the number
of cores per node to more than 4 on a single bus, results in
diminishing returns for particle transport codes.

Acknowledgments

This research used resources at the National Center for
Computational Sciences at the Oak Ridge National Labo-
ratory, which is supported by the Office of Science of the
U.S. DOE under Contract DE-ASC05-000R22725. We ac-
knowledge Andy Herdman and Ben Ralston regarding ac-
cess to the Chimaera code, Patrick H. Worley and the ORNL
PEAC project for access to the Cray XT4, and Howard
Pritchard at Cray and David Sundaram-Stukel for their valu-
able comments on this work.

References

[1] A.Hoisie, H. Lubeck, and H.J. Wasserman. Performance and
Scalability Analysis of Teraflop-Scale Parallel Architectures
using Multidimensional Wavefront Applications. Int. J of
High Performance Computing Applications, 14(4):330-346,
Winter,2000.

[2] The message passing interface (mpi).
www-unix.mcs.anl.gov/mpi/.

[3] D. Sundaram-Stukel and M. K. Vernon. Predictive Analysis

of a Wavefront Application Using LogGP. In PPoPP ’99:

Proceedings of the seventh ACM SIGPLAN symposium on

Principles and practice of parallel programming, pages 141—

150. ACM Press, 1999.

D.J. Kerbyson, A. Hoisie, and H.J.Wasserman. A Compari-

son Between the Earth simulator and Alphaserver Systems

using Predictive Application Performance Models. Com-

puter Architecture News (ACM), December 2002.

[5] A. Hoisie, O. Lubeck, H. J. Wasserman, F. Petrini, and
H. Alme. A General Predictive Performance Model for
Wavefront Algorithms on Clusters of SMPs. In ICPP ’00:
Proceedings of the Proceedings of the 2000 International

http://

[4

—

(6]

(7]

(8]

(9]

(10]

Conference on Parallel Processing, page 219. IEEE Com-
puter Society, 2000.

M. M. Mathis, N. M. Amato, and M. L. Adams. A General
Performance Model for Parallel Sweeps on Orthogonal Grids
for Particle Transport Calculations. Technical report, Texas
A&M University, 2000.

M. Yarrow and R. Van der Wijngaart. Communication im-
provement for the LU NAS parallel benchmark: A model for
efficient parallel relaxation schemes. Technical Report NAS-
97-032, NASA Ames Research Center, November 1997.

A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang, and
S. Pakin. A performance comparison through benchmarking
and modeling of three leading supercomputers: blue gene/l,
red storm, and purple. In SC ’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 74, New
York, NY, USA, 2006. ACM.

A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. LogGP: Incorporating Long Messages into the
LogP Model for Parallel Computation. Journal of Parallel
and Distributed Computing, 44(1):71-79, 1997.

Cray XT4 data sheet. http://www.cray.com/
products/xt4.

