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Abstract

We introduce a generic framework for the distributed ex-
ecution of combinatorial optimization tasks. Instead of re-
lying on custom hardware (like dedicated parallel machines
or clusters), our approach exploits, in a peer-to-peer fash-
ion, the computing and storage power of existing, off-the-
shelf desktops and servers. Contributions of this paper are
a description of the generic framework, together with a first
instantiation based onparticle swarm optimization(PSO).
Simulation results are shown, proving the efficacy of our
distributed PSO algorithm in optimizing a large number of
benchmark functions.

1 Introduction

Distributed optimization has a long research history [14].
Most of the previous work assumes the availability of either
a dedicated parallel computing facility, or, in the worst case,
specialized clusters of networked machines that are coor-
dinated in a centralized fashion (master-slave, coordinator-
cohort, etc.). While these approaches simplify manage-
ment, they normally show severe limitations with respect
to scalability and robustness.

The goal of our work is to investigate an alternative ap-
proach to distributed function optimization. The idea is
to adopt recent results in the domain of large-scale decen-
tralized systems and peer-to-peer (P2P) systems, where a
large collection of loosely-coupled machines cooperate to
achieve a common goal. Instead of requiring a specialized
infrastructure or a central server, such systems self-organize
themselves in a completely decentralized way, avoiding sin-
gle points of failure and performance bottlenecks. The ad-
vantages of such approach are thus extreme robustness and
scalability, and the capability of exploiting existing (unused
or underused) resources.

The applicative scenario we have in mind is a potentially
large organization that owns, or at least controls, several
hundreds or even thousands of personal workstations, and
wants to exploit their idle periods to perform optimization
tasks. In such systems, high level ofchurnmay be expected:
nodes may join and leave the system at will, for example
when users start or stop to work at their workstations.

Such scenario is not unlike a Grid system [12]; a reason-
able approach could thus be to collect a pool of independent
optimization tasks to be performed, and assign each of them
to one of the available nodes, taking care of balancing the
load. This can be done either using a centralized scheduler,
or using a decentralized approach [4].

An interesting question is whether it is possible to come
up with an alternative approach, where a distributed algo-
rithm spreads the load ofsingleoptimization task among a
group of nodes, in a robust, decentralized and scalable way.
We can rephrase the question as follows: can we make a
better use of our distributed resources by making them co-
operate on a single optimization process? Two possible mo-
tivations for such approach come to mind: we want to obtain
a more accurate result by a specific deadline (focus on qual-
ity), or we are allowed to perform a predefined amount of
computation over a function and we want to obtain a quick
answer (focus on speed).

Two opposite techniques could be followed to design a
distributed optimization algorithm:

• Without coordination: exploiting stochasticity —
Global optimization algorithms are stochastic by na-
ture; in particular, the first evaluation is not driven by
prior information, so the earliest stages of the search
require some random decision. Different runs of the
same algorithm can evolve in a very different way, so
that parallel independent executionof identical algo-
rithms with different random seeds yields a better ex-
pected outcome w.r.t. a single execution.

• With coordination: exploiting communication —
Some optimization algorithms can be modeled as par-



allel processes sitting in a multi-processor machine
supporting shared data structures. Processes can be co-
ordinated in such a way that every single step of each
process (i.e., decision on the next point to evaluate) is
performed while taking into account information about
all processes. In order for such approach to be effi-
cient, the cost of sharing global information should not
overcome the advantage of having many function eval-
uations performed simultaneously.

In between the two extremal cases presented above (no co-
ordination at all or complete information), it is possible to
imagine a wide spectrum of algorithms that perform indi-
vidual searches with some form of loose coordination. The
main contribution of this paper is to present a generic dis-
tributed framework that enables experiments into such spec-
trum, and to discuss a first instantiation of such framework
based onparticle swarm optimization(PSO) [10]. We ex-
perimentally demonstrate that on particular conditions, our
algorithm shows better performance than the original (cen-
tralized) one.

Our algorithmic approach is based on theepidemic
paradigm, a very light-weight approach to distributed com-
puting. Originated in the context of databases [1], gossip
protocols have proven to be able to deal with the high lev-
els of unpredictability associated with P2P systems. Apart
from the original goal of information dissemination (mes-
sages are “broadcast” through random exchanges between
nodes), they are now used to solve several different prob-
lems: membership management [3], aggregation [5], topol-
ogy management [2], etc.

The rest of the paper is organized as follows. Section 2
provides the background of the paper. Section 3 introduces
the design of our framework and the decentralized PSO al-
gorithm. Section 4 discusses the experimental results, while
Section 5 concludes the paper.

2 Background

Particle Swarm Optimization PSO [10] is a nature-
inspired method for finding global optima of functions of
continuous variables. Search is performed iteratively up-
dating a small numberN (usually in the tens) of random
“particles” (solutions), whose status information includes
the current position vectorxi, the current speed vectorvi,
the optimum pointpi and thefitnessvalue f(pi), which
is the “best” solution the particle has achieved so far. An-
other “best” value that is tracked by the particle swarm op-
timizer is the global best positiong, in which the swarm
has achieved the best fitness value obtained so far by any
particle in the population.

After finding the two best values, every particle updates
its velocity and positions as described by the following
equations:

vi = vi + c1 ∗ rand() ∗ (pi − xi) + c2 ∗ rand() ∗ (g− xi) (1)

xi = xi + vi (2)

In these equations,rand() is a random number in the
range[0, 1], while c1 andc2 are learning factors. Usually
c1 = c2 = 2. The pseudo code of the procedure is as
follows:

foreach particle i do
Initialize i;

end
while maximum iterations or

minimum error criteria is not attaineddo
foreach particle i do

Calculate current fitness value f(xi);
if f(xi) is better than f(pi) then

pi ← xi;
end

end
g← bestOf(pi), i = 1 to N ;
foreach particle i do

Calculate velocityvi according to equation 1;
Update positionxi according to equation 2;

end
end

Particle speeds on each dimension are bounded to a
maximum velocityvmaxi, specified by the user. If the sum
of “accelerations” causes the velocity on that dimension
to exceed it, then the velocity on that dimension will be
limited tovmaxi.

PSO on incomplete topologies The above-described ver-
sion of PSO assumes that all particles agree on the global
best pointg found so far, and is often referred to as the
“classical” or “full-information” version. Effects of in-
complete topologies on the performance of PSO have been
studied for sociology-inspired small-world graphs [8] as
well as other types of random graphs [11]. Such studies
were motivated by the observation that incomplete topolo-
gies may prevent the system from concentrating too much
on early-found local optima, therefore improving solution
quality. Dynamic topologies based on particle clustering
have also been proposed [9] to induce a differentiated be-
havior among groups of particles having similar local best
positions. While full information has generally been shown
to outperform partial topologies [13], our work focuses on
a case where incomplete information is a consequence of
network topology, and global data maintenance is not prac-
tical.

Epidemic Protocols The research on the application of
epidemic protocols in distributed systems started with the
seminal work of Alan Demers [1], who proposed several



Param. values avg min max Var
F2 0.0 0.0 0.0 0.0

n 1, 10, 100, 1000 Zakharov 0.52043 0.23106 0.95915 0.02700
k 1, 4, 8, 16, 32 Rosenbrock 0.07979 3.27435E-7 3.98660 0.31785
e 1000 × n Sphere 2.49767E-51 1.56467E-53 2.20189E-49 0.80330
r k Schaffer 0.00972 0.00972 0.00972 0.00000

Griewank 0.09849 0.01232 0.28627 0.00187

Table 1. Adopted values for the configuration parameters and best results of the first set of experi-
ments - Solution quality vs swarm size

models for the decentralized dissemination of database up-
dates. The models are as follows:

Anti-Entropy Each node periodically selects a random
peer and performs aninformation exchangewith it; the
exact meaning ofexchangedepends on the specific ap-
plication. In the case of database updates, exchanges
may be characterized aspush– the originator of the
exchange sends its own updates to the peer;pull – the
originator asks for updates from the peer;push-pull–
both the operations are performed.

Gossip Whenever a node receive an update, it selects a
small numberk of peers and sends the update to them;
if the update has already been received, the node may
also decide to stop the spreading of the update with
probabilityp. Valuesk andp presents a trade-off be-
tween the probability of reaching all the nodes and
the communication overhead given by redundant mes-
sages.

One of the key requirement for implementing an epi-
demic protocols is the capability of selecting a random peer
among all nodes. This is easy when the set of participants is
fixed, small and knowna priori; it is a problem by itself in
case of dynamic, large-scale distributed systems. To solve
this issue, the concept ofpeer sampling servicehas been de-
vised; this service provides each node with a uniform ran-
dom sample of the entire population of a P2P networks [3].
Interestingly enough, protocols implementing the peer sam-
pling service are epidemic as well: push-pull exchanges are
performed, in which random subsets of nodes are shuffled
among the nodes.

Once solved this issue, a large collection of problems
may be solved on top of the peer sampling service. Dif-
ferent problems require specific exchange mechanisms; for
example, it is possible to compute the average aggregation
over a collection of values stored at peer nodes by simply
averaging the values exchanged by a pair of nodes [5].

3 Generic Framework and Specific PSO Al-
gorithm

This section describes the architecture of our optimiza-
tion framework. We first present the assumptions over
the underlying system model; we then present the generic
architecture and how we instantiate it based on the PSO
paradigm.

3.1 System Model

We consider a network consisting of a large collection of
nodes. The network is highly dynamic; new nodes may join
at any time, and existing nodes may leave, either voluntar-
ily or by crashing. Since voluntary leaves may be simply
managed through “logout” protocols, in the following we
consider only node crashes. Byzantine failures, with nodes
behaving arbitrarily, are excluded from the present discus-
sion. We assume nodes are connected through an existing
routed network, such as the Internet, where every node can
potentially communicate with every other node. To actu-
ally communicate with another node, however, a node must
know its identifier, e.g. a pair〈IP address, port〉.

The nodes known to a node are called itsneighbors, and
as a set are called itsview. Together, the views of all nodes
define the topology of the overlay network. Given the large
scale and the dynamism of our envisioned system, views
are typically limited to small subsets of the entire network.
Views can change dynamically, and so the overlay topology.

3.2 The Architecture

The architecture of our generic framework is composed
of three modules:

• The topology serviceis responsible for creating and
maintaining an adequate overlay topology to be used
by the other layers to communicate information about
the search space. As examples, consider a random
topology used by a gossip protocol to diffuse informa-
tion about global optima; a mesh topology connecting



Param. values min
F2 0.0

n 2i, i = 0 to 16 Zakharov 0.0
k 1, 4, 8, 16, 32 Rosenbrock 2.8890E-29
e 220 Sphere 0.0
r k Schaffer 0.0097

Griewank 0.0221

Table 2. Adopted values for the configuration
parameters and best results of the second
set of experiments

nodes responsible for different partitions of the search
space; but also a star-shaped topology used in a master-
slave approach.

• The function optimization serviceevaluates the target
function over a set of points in the search space, oppor-
tunely selected based on both local information (pro-
vided by this module, based on past history) and re-
mote information (provided by the coordination ser-
vice). This module depends heavily on the particular
optimization mechanism adopted.

• The coordination service, as the name implies, co-
ordinates the selection of points to be evaluated in
the search space. Examples of possible strategies in-
clude, for example, partitioning of the search space
in non-overlapping zones under the responsibility of
each node; or broadcasting of search information to all
nodes of the system.

3.3 Distributed PSO

We demonstrate the applicability of our framework by
discussing a first example instantiation of the architecture.
Here, the topology service is based onpeer sampling, which
is a well-known technique for creating and maintaining a
random topology over the entire network. The function op-
timization service is based onparticle swarm optimization,
while coordination is based on an epidemic diffusion algo-
rithm. Each of these components are described in the sub-
sequent sections.

3.3.1 Topology Service: Peer Sampling

The topology service is provided byNEWSCAST [7], which
has proven to be a valuable building block to implement
several P2P protocols [4]. We provide here a brief descrip-
tion of the protocol and its characteristics.

Each NEWSCAST node maintains a view containingc
node descriptors, each of them composed of a remote node
identifier and a logical time-stamp.NEWSCAST is based on

the epidemic paradigm: periodically, each node (i) selects
a random peer from its partial view; (ii) updates its local
descriptor and (iii) performs aview exchangewith the se-
lected peer, during which the two nodes send each other
their views, merge them, and keep thec freshest descrip-
tors.

This exchange mechanism has four effects: views are
continuously shuffled, creating a topology that is close to a
random graph with out-degreec; views can be considered
a random sample of the entire network (hence the name
“peer sampling”); the resulting topology is strongly con-
nected (according to experimental results, choosingc = 20
is already sufficient for very stable and robust connectiv-
ity); and finally, the overlay topology is self-repairing, since
crashed nodes cannot inject new descriptors any more, so
their information quickly disappears from the system.

3.3.2 Function Optimization Service: Distributed PSO

At each nodep, the PSO function optimization service
(briefly, PSO service) maintains and executes a particle
swarm of sizek. Each particlei ∈ {1, . . . , k} is character-
ized by itscurrent positionpp

i , its current velocityvp

i and
the local optimumx

p

i . Slightly departing from the standard
PSO terminology, we say that each swarm of a nodep is
associated to aswarm optimumgp, selected among the par-
ticles local optima. Clearly, different nodes may know dif-
ferent swarm optima; we identify the best optimum among
all of them with the termglobal optimum, denotedg.

The PSO service works by iterating over the particles,
updating the current position and velocity as described in
Section 2, and selecting, after each evaluation, the best local
optimum as the swarm optimum.

3.3.3 Coordination Service: Global Optimum Diffu-
sion

The coordination service is implemented as an anti-entropy
epidemic algorithm, whose task is to spread information
about the global optimum among nodes. Such algorithm
works as follows: periodically, each nodep initiates a com-
munication with a random peerq, selected through the peer
sampling service described in the previous section.p sends
the pair〈gp, f(gp)〉 to q, i.e. its current swarm optimum
and its evaluation. Whenq receives such a message, it com-
pares the swarm optimum ofp with its local optimum; if
f(gp) < f(gq), thenq updates its swarm optimum with the
received optimum (gq = g

p); otherwise, it replies top by
sending〈gq, f(gq)〉.

The rater at which messages are sent by the anti-entropy
algorithm is a parameter of the algorithm which is related to
the communication overhead: The more often messages are
sent, the larger bandwidth is required.



Param. values avg min max Var
F2 1.0120E-8 1.3080E-10 1.5402E-7 0.4798

n 10, 100, 1000 Zakharov 0.0285 0.0076 0.0570 9.4755E-5
k 16 Rosenbrock 11.6670 5.4879 170.8049 530.4765
e 1000 Sphere 0.0027 7.4966E-4 5.8552E-3 0.0259
r 2, 4, 6, . . . , 64 Schaffer 0.0105 0.0097 0.0372 0.0165

Griewank 0.7133 0.4053 0.8868 0.0094

Table 3. Adopted values for the configuration parameters and best results of the third set of experi-
ments

3.3.4 Robustness to Failures

No special provisions are taken to deal with failures. Mes-
sages initiated by random peers can be eventually be lost,
with the only effect of slowing down the spreading of in-
formation, thanks to our distributed PSO algorithm. Nodes
may be subject to churn without affect the consistency of
the overall computation, thanks to the robustness provided
by the chosen topology service (NEWSCAST). Joining nodes
start with a random position and velocity; as soon as they re-
ceive an epidemic message containing the swarm optimum
and its evaluation, their swarm optimum is updated.

4 Experimental Results

Simulation scenarios We tested our distributed frame-
work using a P2P simulator calledPeersim [6]. Each ex-
periment simulatesn nodes, each of them runs a swarm of
k particles, that repeatedly evaluate a functionf . Globally,
then swarms performe total evaluations, evenly distributed
among their particles, and each node exchanges the infor-
mation about the global optimum with a random peer every
r local function evaluations (r is thecycle lengthof the epi-
demic algorithm implemented in the coordination service).
Experiments are repeated 50 times, and individual dots for
each experiment are shown whenever possible.

Functions We focused our attention on six well known
testing functions (De Jong’s F2, Zakharov, Rosenbrock,
Sphere, Schaffer’s F6, Griewank), whose evaluations pro-
duced a quite interesting set of results. While the first (being
a Rosenbrock specialization) is defined in a 2-dimensional
domain space, all the others have been evaluated in a 10-
dimensional domain space. These function are widely
used in order to benchmark optimization algorithms, there-
fore we omit their analytical expression here. The bench-
mark functions have been carefully selected to provide a
large spectrum of behaviors with respect to their solvability
with PSO. We can say that F2 is ‘easy’; Zakharov, Sphere
and Rosenbrock present some ‘nice’ outcomes; whereas
Griewank and Schaffer are the most difficult to treat. Al-

though we are aware that this is not an insightful and thor-
ough classification, we believe that this set represents a di-
versity of behaviors w.r.t. to PSO.

Figures of merit In the following, three figures of merit
are considered: thesolution quality, measured as the dis-
tance between the best known global optimum and the solu-
tion obtained by our mechanism; thetotal number of eval-
uations, performed globally by all swarms; and thetotal
time required to complete a task. Time is measured as the
number of evaluations locally performed at each node; we
deliberately avoid to evaluate actual time, as it depends on
the particular function evaluated and the computing power
of nodes.

Other figures of merit are only briefly mentioned here, as
they can easily obtained from the other parameters.commu-
nication overheadis produced by both theNEWSCASTlayer
and the coordination service. Depending on the expected
rate of churn,NEWSCAST cycles length could be expected
in the range[10s, 60s]; during a cycle two messages of few
hundred bytes are exchanged per node, inducing an over-
head of few bytes per second. Similar considerations can be
done for the coordination service, but the overhead depends
on the specific gossip rate adopted. The system present a
high robustness to churn, i.e. the capability of dealing with
nodes continuously joining and leaving. In fact, the reliabil-
ity of the computation does not depend on any single point
of failure; even if a large portion of the network fails, the
computation will end successfully, slowing down propor-
tionally to the number of failed nodes.

4.1 Evaluating Quality

The first set of experiments is aimed at finding out as the
solution quality changes with respect to the number of com-
puting particles per node, and with respect to the number of
involved nodes. In each experiment, we report the solution
quality of the best global optimum found after1000 evalu-
ations of the function per node. Gossiping rate is equal to
k, meaning that a gossip exchange is performed after all the
particles within the same swarm had been evaluated once.



Param. values avg min max Var
F2 235940.0 186000.0 271000.0 2.48384E8

n 2i, i = 0 to 10 Zakharov 511800.0 478000.0 540000.0 1.42082E8
k 1, 4, 8, 16 Rosenbrock 1927000.0 1740000.0 2033000.0 9.75250E9
e 220 Sphere 36740.0 16000.0 66000.0 1.46687E8
r k Schaffer 192020.0 151000.0 224000.0 2.29734E8

Griewank – – – –

Table 4. Adopted values for the configuration parameters and best results of the fourth set of exper-
iments

The idea here is the following: how the quality of solution
change, if we are willing to dedicate a fixed quantity of time
(i.e., number of evaluations per node) but a variable number
of nodes to the computation? What is the influence of the
main configuration parameter (swarm size) on the results?

Figure 1 shows the outcomes. As we can see, there is
a profitable relation between the number of nodes and the
solution quality. But this fact only holds while particles per
node are bounded from 8 to 16.

The second set of experiments, reported in Figure 2, start
with a different assumption: we are willing to provide up to
220 evaluations (total) of the function. What are the best
number of nodes and the best configuration parameters to
obtain the maximum solution quality?

The best results are obtained when 8 to 256 particles
are working, no matter how they are partitioned among the
nodes. We can actually slightly narrow the empirically es-
timated range; a look at the raw data tells us that the most
reliable particles range to evaluate the “nice functions” is
16 to 64 particles. Besides, the overhead due to gossip-
ing communications is practically negligible. We can see
this by paying attention to the fact that differently sized net-
works reach the same performance as soon as their number
of active particles becomes the same.

So what about having different number of nodes work-
ing at the same task? The good news is given exactly by
the combination of what we have just observed. The per-
formance of PSO is mostly related to the number of work-
ing particles and not to their belonging to a particular node.
This means we can choose to have different numbers of in-
volved nodes while keeping the solution quality as much
as accurate. Thus we have an effective way to distribute
the load of a PSO computation through different machines
while obtaining the same performance we would have on a
single, but much more powerful, machine.

4.2 Evaluation of Cycle Length

An interesting issue is to understand if and how the cy-
cle length can affect the effectiveness of the computation.
For this reason, we ran a set of experiments in which cycle

length rate varies between 2 and 64 local function evalua-
tions, while all nodes have 16 particles.

Figure 3 shows the results. As it was easily expected,
we discovered that performance is not heavily influenced
by the gossiping rate by itself, but rather by ratio between
the gossiping rate and the number of evaluations performed
since the last message exchange. As this ratio tends to one,
performance is sensibly better. We can therefore state that
the more the swarms are exchanging information, the better
the solution quality is expected to be. What follows is good
news for us: the distributed nodes interaction through the
adopted protocol is effective and well mimics the informa-
tion sharing mechanism among the particles within the ilk
swarm.

We can also see that the size of the network is impor-
tant, if all other parameters (like the number of particles per
swarm) are fixed. But it is also worth noticing that if the
problem is inherently hard to solve for the algorithm, the
cycle length is obviously less crucial, because no remark-
ably better value becomes available for the nodes since the
former updates.

4.3 Evaluating Time

The final task is to evaluate how the total time required
to obtain a given solution quality changes with respect to
network and swarm size. In the last set of experiments, we
stopped the simulation as soon as the global solution quality
reaches a reasonable threshold (1E − 10).

Figure 4 shows that the required time is inversely propor-
tional to the number of nodes, but proportional to the size
of the swarms. This means that what is crucial here is the
convergence speed of the best values within the swarms. Of
course the exact amount of time required to converge – in
an absolute sense – is strictly dependent on the ‘niceness’
of the evaluated function w.r.t. the adopted algorithm. The
good news we can collect is that performing the optimiza-
tion task in a distributed and decentralized fashion causesno
detriment to the computation and does not adversely affect
the quality of the results.

To conclude, it is worth recalling that it is not the per-



formance of the PSO algorithm on the various functions
that matters. What is interesting in our research is seeing
how the performance varies when the number of nodes and
all the other P2P-related settings change. Our experiments
point out that a distributed P2P-networking design of the
system can actually improve the solution quality. Further-
more, they give us some guidelines about which features are
crucially related to performance enhancing and which seem
not to be related at all.

5 Conclusions

In this paper, we discussed a novel approach to dis-
tributed function optimization, based on recent results inthe
domain of large-scale decentralized P2P systems. Instead
of requiring a specialized architecture or a central server, a
distributed algorithm spreads the load of a single optimiza-
tion task among a group of nodes in a totally decentralized
way. The advantages of such an approach are the extreme
robustness and scalability, plus the capability of exploit-
ing existent idling resources. We described a framework
architecture based on the epidemic paradigm, a very light-
weight approach to distributed computing that can be easily
adopted to other optimization paradigms.

We ran a large number of experiments in a simulated
P2P environment, testing different configurations, in order
to find out how the solution quality and the amount of time
required to have a certain solution quality change with re-
spect to the number of involved nodes.

As resulting from the presentation and the discussion of
our outcomes, we showed that: (i) distributed nodes inter-
action through the adopted protocol is effective and tanta-
mount to the information sharing mechanism of the adopted
solver; (ii) the overhead due to epidemic communications is
negligible. Networks of different sized will achieve similar
performance, if they host the same number of solver proces-
sors (in this case, PSO particles); (iii) distributed and decen-
tralized architecture cause no detriment to the optimization
task and does not affect the quality of the results; (iv) we
devised and tested an effective way to distribute the load of
a PSO computation through different machines while ob-
taining the same performance we would have on a single,
but much more powerful, machine.

Our future work will include the implementation of var-
ious different solvers to enrich the function evaluation ser-
vice and then be able to test module diversification among
peers (same solver with different parameters and configu-
rations, different solvers, diverse domain space allocation,
etc.).
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Figure 1. First set – Solution quality vs swarm size
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Figure 2. Second set - Solution quality vs network size
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Figure 3. Third set - Solution quality w.r.t. cycle length
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Figure 4. Fourth set - Total time vs network size


