

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

1

PROD: Relayed File Retrieving in Overlay
Networks

Zhiyong Xu, Dan Stefanescu, Honggang Zhang
Suffolk University

{zxu, dan, zhang}@mcs.suffolk.edu

Laxmi Bhuyan
University of California, Riverside

bhuyan@cs.ucr.edu

Jizhong Han
Chinese Academy of Science

jzhan@ict.ac.cn

Abstract—
To share and exchange the files among Internet users, Peer-

to-Peer (P2P) applications build another layer of overlay net-
works on top of the Internet Infrastructure. In P2P file sharing
systems, a file request takes two steps. First, a routing mes-
sage is generated by the client (request initiator) and spread to
the overlay network. After the process finishes, the location in-
formation of the requested file is returned to the client. In the
second step, the client establishes direct connection(s) with the
peer(s) who store a copy of that file to start the retrieving pro-
cess.

While numerous research projects have been conducted to de-
sign efficient, high-performance routing algorithms, few work
concentrated on file retrieving performance. In this paper, we
propose a novel and efficient algorithm — PROD to improve the
file retrieving performance in DHT based overlay networks. In
PROD, when a file or a portion of a file is transferred from a
source peer to the client, instead of creating just one direct link
between these two peers, we build an application level connec-
tion chain. Along the chain, multiple network links are estab-
lished. Each intermediate peer on this chain uses a store-and-
forward mechanism for the data transfer. PROD also introduces
a novel topological based strategy to choose these peers and
guarantees the transmission delay of each intermediate link is
much lower than the direct link. We conducted extensive simu-
lation experiments and the results shown that PROD can greatly
reduce the transfer time per file in DHT base P2P systems.

I. INTRODUCTION

In recent years, Internet experienced fast growing usage
of Peer-to-Peer (P2P) applications such as Napster, Gnutella,
Kazaa, Edonkey and BitTorrent, [1], [2], [3], [4], [5] etc. Un-
like Client/Server (C/S) architecture, in P2P systems, there’s no
strict separation between clients and servers. Every peer gets in-
volved in the business and takes a portion of system tasks. Due
to the fascinating characteristics such as decentralized control,
self-organization, fault tolerance and load balancing, P2P sys-
tems are very attractive for certain applications, such as file shar-
ing, online gaming and online streaming services. Currently,
P2P applications are the dominant file sharing and swapping
tools among Internet users. They are No. 1 bandwidth con-
sumer on the Internet, the data transferred on these applications
counted for more than half of the total Internet traffic. However,
as a relatively new architecture, many open questions such as

the routing algorithm, the retrieving mechanism, load balancing
strategy, cache and storage management, consistency control,
fault tolerance and security, etc. need further investigation. In
the past several years, numerous research papers have been pub-
lished to address these issues.

In P2P systems, if a peer wants to download a file (We use the
client to denote this peer hereafter), two steps are needed. First,
in order to search the file location information, it has to initiate a
routing process to find out the peer which keeps the information
about the peers who have a copy of the requested file. Accord-
ing to the methodologies used in the routing process, P2P ap-
plications can be divided into two categories: unstructured P2P
systems and structured P2P Systems. In unstructured P2P sys-
tems, a flood-based routing algorithm (e.g. Gnutella) has to be
executed or a central facility has to be contacted (e.g. Napster).
For the later approach, the hotspot and single point of failure
problems in C/S architecture still exist. If the central facility
fails, the whole system becomes out of service. Such a struc-
ture greatly reduces the benefits of using P2P model and can
not be considered as the pure P2P system. On the other hand, a
flood-based routing algorithm will inject a large amount of un-
necessary routing messages in the system and waste the precious
Internet bandwidth. Thus, these architectures do not work well
for large-scale P2P applications.

Structured P2P systems introduced well-organized routing
data structures and fully distributed management strategy to
solve the above problems. Distributed Hash Table (DHT) based
algorithms are the dominant mechanism in this category. DHT
systems such as Chord [6] [7], Pastry [8], Tapestry [9] and CAN
[10] attracted great attentions in research community. They also
got attention from the real world applications. For example, Bit
Torrent is now using DHT data structure in its file sharing pro-
tocol. All these systems use the similar strategy: each peer is
given a unique identifier (peerid) and each file is also associ-
ated with a key (fileid). Both ids are generated on a large name
space (2n) using a collision-free hash function [11]. Routing
and file location information are maintained in hash tables and
distributed on all the peers. Each peer only stores a small portion
which determined by the routing mechanism.

In DHT systems, a routing request is accomplished with the
collaboration among a group of peers. In each routing hop, the
message is sent to a peer whose peerid is numerically closer
to the requested key (fileid). This process continues until fi-
nally, the message arrives the peer whose peerid is the numeri-
cally closest to the key. This peer is the destination peer of the
routing process which stores the location information of the re-

2

quested file. It sends this information back to the client. With
such a well designed strategy, a routing procedure is guaranteed
to be finished within a small number of routing hops (normally
log(N), N is the total number of system peers). Thus, those
DHT algorithms can greatly improves the routing efficiency in
large-scale P2P applications.

In realty, the efficiency of the second step- file retrieving
procedure is even more important because it is the actual data
transmission from which clients get what they really want. Fur-
thermore, the routing process only needs to execute once, while
a contiguous retrieving connection is needed to download the
entire file. However, in both unstructured and structured P2P
systems, the file retrieving procedure does not receive enough
attention. To accelerate the processing, in most P2P applica-
tions, the client sends the file downloading requests to the set of
source peers (the peer who stores the copy of the file, we use this
name hereafter), a network connection is established between
the client and each source peer. If a source peer is topologi-
cally far away from the client, such a link has to pass through
multiple network and routers. From time to time, the available
bandwidth will be greatly affected by the network traffic along
the route. The end client is very likely facing long access de-
lay and get very poor throughput. Thus, it may take hours or
even days to download a file (if the file is big and the number of
source peers is small). A fast, efficient file retrieving algorithm
to achieve high throughput per connection (between the source
peer and the client) is in great need. Unfortunately, few efforts
have been conducted on this issue.

In this paper, we attempt to address the retrieving problem in
DHT based overlay networks. We develop a novel and efficient
retrieving algorithm — PROD (Peer Relay on file Download)
for this purpose. PROD can significantly speed up the file re-
trieving procedure and improve the system throughput. In our
algorithm, instead of setting up a direct network connection be-
tween a source peer and the client, we break the connection and
create multiple network connections by introducing multiple in-
termediate relay peers. Along this chain, each relay peer uses
a store-and-forward strategy to assist the retrieving process. It
receives data packages from the upstream, and forwards it to the
next peer in the downstream. Clearly, the actual data transmis-
sion delay is determined by the largest delay in these interme-
diate connections. We design an efficient peer selection mech-
anism in which the peers’ topological information is taken into
account. In most scenarios, our strategy can guarantee the ac-
cess delay of any intermediate connection in this chain is much
smaller than the original direct link between the source peer and
the client. Thus, PROD is able to achieve much higher through-
put.

PROD algorithm considers to improve the throughput of a
single source peer-client connection only. Thus, it is orthogo-
nal to multiple source peer-client connection mechanisms used
in today’s P2P applications. PROD can be applied to each
source peer-client connection to further increase the file retriev-
ing throughput.

We organize the rest of the paper as follows: In Section II,
we briefly review the fundamental concepts in DHT based over-
lay networks and describe the routing/retrieving problems. In
Section III and IV, we present the motivation of our algorithm,
system overview, and the relay peer selection algorithm. In Sec-
tion V and VI, we conduct the trace based simulation experi-
ments to evaluate and compare the performance of PROD with
current DHT algorithms. In Section VII, we discuss the related
works. Finally, in Section VIII, we conclude the paper and give
the future work.

II. DHT BASED OVERLAY NETWORKS

Our target is to improve the retrieving performance in struc-
tured P2P systems. In this section, we briefly review the fun-
damental techniques in DHT systems, and then we describe the
routing/retrieving problem. For description purpose, we choose
Chord as the baseline DHT algorithm, and build our solution on
top of Chord. However, our scheme can also be applied to other
DHT systems such as Pastry, Tapestry, and CAN, etc.

A. Chord Algorithm
In Chord, to uniquely identify a peer, consistent hashing [12]

is used. An n-bit identifier (peerid) is assigned to each peer on
the circular name space [0, 2n]. A collision-free algorithm such
as SHA-1 [13] is used to generate identifies to avoid the possi-
ble conflict problem. The peerid represents a peer’s numerical
position on the name space. Each file is also assigned a fileid
with the same algorithm which reflects the file’s location on the
name space as well. Chord uses finger tables to store the infor-
mation of other peers. On any Peer P, a finger table has (at most)
n entries, with the ith entry contains the peerid and IP address
information of the first peer, S, that succeeds P by at least 2i−1

on the name space. It is denoted as P.finger[i].node. In Chord,
when a peer joins the system, its finger table is created with all
the peers are used as candidates. The peers who satisfy the nu-
merical requirements are selected. Clearly, with this approach,
only the numerical characteristics are considered on the finger
table construction. Though not specified directly, Chord has an-
other table: file location table on each peer to store the location
information of the files whose fileids are numerically closest to
this peer’s peerid. An entry in this table has a file name, its fileid,
and the peerid and IP addresses of a peer who has a copy of this
file.

Figure 1 shows a sample finger table and a file location table
of the peer (peerid: 121). Here, if Peer 121 sends a routing re-
quest for a file with the fileid 168 (key), the first routing hop goes
to Peer 158 who is responsible for the name space interval [153,
185). Peer 158 searches its own finger table, and if another peer
whose peerid is numerically closer to the key exists, Peer 158
forwards the request to that peer. This process continues until
eventually, the request arrives the peer whose peerid is the nu-
merically closest to the key than all the other peers. No further
routing hops are needed. The location information of File 168
will be returned to Peer 121. It can retrieve the file after receiv-
ing this message. For another example, a request for a file with
the fileid 102, 107 or 121 from any peers will reach Peer 121
after several hops, and it will check the file location table and
send the corresponding location information back to the client.
More details of Chord protocol can be found in [6].

B. Routing and Retrieving Problems
According to the previous description, in Chord, the routing

data structure records the peers’ numerical characteristics only,
the network topological information is not incorporated into the
routing algorithm. It is very likely that a routing hop is taken
between two peers which are topologically separated. For ex-
ample, as shown in Figure 2, Client A in Boston, MA may tra-
verse several distant peers in Europe, Asia and Africa before its
routing request reaches the destination: Client E in Worcester,
MA. In this extreme scenario, the resulting routing latency may
be tens of times higher than the actual topological distance be-
tween Client A and E. However, there’s no way to detect and fix
this problem in Chord.

3

File Location Table

122

123

125

129

137

153

185

249

124

124

131

131

139

192

intervals
[122,123)

[123,125)

[125,129)

[129,137)

[137,153)

[153,185)

[185,249)

[249,121)

Successor

158

253

start Name Fileid Nodeid NodeIP
File1

File2

102

File2

File2

FileK

107

107

107

121

215

131

69

237

214

X.X.X.X

X.X.X.X

X.X.X.X

X.X.X.X

X.X.X.X

Finger Table

Fig. 1. Sample finger table and file location table for the Peer 121 on name space [0, 256)

Fig. 2. A sample routing procedure in Chord, the routing request is
denoted by arrows. The number of routing hops is 4.

The reason for the routing problem is: we generate the peerid
for each peer using SHA-1 algorithm which can not reflect the
peer’s topological characteristic. A mismatching between the
system logical organization and the peers’ topological distribu-
tion occurs. For example, two peers with the adjacent peerids
could be located in different continents, while two peers which
are topologically close to each other are very likely have sep-
arated numerical peerids. To achieve better performance, we
have to put topological information into account when we make
the routing decisions.

Furthermore, Chord also has the retrieving problem: After
the routing process finishes, the client was acknowledged of the
information about the peer or the group of peers that store the
requested file. It contacts one or several of them to start down-
load process. A single direct retrieving connection is created
between the client and a source peer. The bandwidth available
between these two peers is limited by the round trip propagation
delay [14]. If two peers are topologically far away from each
other, the client will experience long access delay. It may take
hours or even days to download the entire file if the file is big.
In this stage, no other peers can get involved in this transaction,
even if many of them are not busy and could offer some helps.
This problem is more serious for the files with small number of
copies. This is because the client might have no choice but to
download the file from a single remote peer.

III. SYSTEM OVERVIEW

The above routing and retrieving problems exist in all DHT
algorithms. They reduce the system throughput significantly. To
address these issues, we have to build a bridge between the log-
ical DHT data structures and the underlying physical network.
In this section, we describe our solution.

A. Motivation
Recent studies shown that the performance of end-to-end

long-haul transmission degrades over lossy links [15], [16]. This
phenomenon seriously hurts the overall performance in large-
scale distributed systems, such as P2P overlay networks. We
propose the Peer Relay On file Downloading — PROD: A novel,
fast and efficient algorithm to boost the file retrieving perfor-
mance in DHT based P2P system. Our approach is motivated
by the following observations:

• First, today’s personal computer is very powerful, and
it can take some responsibilities previously taken by the
servers. This is the motivation of P2P overlay networks.
However, current DHT algorithms did not fully utilize
these resources. The majority of peers are not busy most of
the time. For example, under the current service scenarios,
for a file retrieving procedure, a direct data transmission
connection is established on the source peer and the client
only. The idle resources on some other peers can not be
utilized to speed up the process. A new strategy is needed
to take advantage of these resources.

• Second, in general, retrieving a file from a nearby peer is
much fast than retrieving from a remote peer. The reason
is the end-to-end link between two close-by peers always
has higher bandwidth and lower access latency than the
link between two remote peers. In case there’s no adjacent
peer stores the requested file, if we break a long end-to-end
link into several short links, the performance can also be
improved.

• Finally, in order to find out the set of relay peers which can
be used to generate short links, a relay peer searching al-
gorithm has to be designed. In HIERAS [17], we take the
peers’ topological information into consideration, and cre-
ated a hierarchical DHT based routing algorithm. It solved
the routing problem in Chord. In PROD, we believe the
topological information can also be used to improve the
retrieving performance, and it can be used to select relay
peers.

Suppose in an overlay network, we have N peers distributed
all around the world. Assume Peer Pc finished a routing pro-
cedure. Now, it starts a retrieving procedure to download a file

4

from Peer Ps (who has a copy of that file or a portion of that file).
Under current DHT algorithms, a direct end-to-end connection
is created. While in PROD, we generate a connection chain.
Figure 3 compares a normal file retrieving procedure used in
Chord and PROD. As shown in the figure, a single connection
between the client and the source peer is created using Chord
algorithm (noted as route R1). With PROD algorithm, our relay
connections are created among peers V1, V2,and V3, (noted as
route R2). For each peer in route R2, it stores the data package
in the reserved buffers upon receipt, and it delivers the packages
to the downstream peer. This process continues until the data
packages arrive the final peer (the client). Clearly, in route R2,
the propagation delay of the entire chain is determined by the
slowest among four relay connections.

To achieve the satisfactory performance, picking the right in-
termediate relay peers is of great importance. If we can guaran-
tee the propagation delays on all the four relay connections are
much shorter than the delay on the direct link, we can achieve
higher throughput. Thus, these relay peers should be chosen
as they are approximately distributed along the direction of the
physical link from Pc to Ps. For example, suppose the transmis-
sion delay do (two way propagation delay, plus possible queuing
delays due to congestions) on the direct link between Pc and Ps

is 100ms, and for i = 0, 1, 2, 3, the transmission delays dis be-
tween Vis and Vi+1s are 30, 35, 40, 30ms, respectively. Thus,
the maximum package delay on route R2 is only 40ms. If we
assume there’s no package lose (If it is not 0, we still can get
the same conclusion, the analysis can be found in [14]). The
throughput of route R2 (TR2) can be approximately character-
ized by the following formula [18],

T (R2) =
C

MAX(di), 0 ≤ i ≤ 3
(1)

While in route R1, the throughput T(R1) is:

T (R1) =
C

do
(2)

C is a constant and used as a metrics to describe the band-
width characteristic of the underlying physical network. Since
the maximum propagation delay on route R2 is 40ms, PROD
algorithm can achieve great performance improvement. The
throughput could be improved more than doubled than the di-
rect link. However, if we failed to select the relay peers appro-
priately, (let’s say one of the propagation delays is 85ms, or even
higher than 100ms), then few benefits we can obtain, or PROD
may even have lower throughput than the original route R1.

To make our approach succeed, we have to design an efficient
relay peer searching algorithm which can find out the right relay
peers, and guarantee the link latency of every relay connection
is much shorter than the direct link between the source peer and
the client. In our algorithm, the topological information of peers
is used for this purpose. For each intermediate connection, the
peers on both ends are carefully chosen that they are relatively
topologically close to each other.

B. Distributed Binning Scheme
In order to solve the above problem, our algorithm should be

able to estimate the relative topological distance among peers.
Thus, we have to design a schema which can figure out the ap-
proximate topological distribution of the peers. A simple mech-
anism to do this is the distributed binning scheme proposed by
Ratnasamy and Shenker [19]. It used the link latency as the met-
ric to measure the distance between two peers. In this scheme, a

well-known set of machines are chosen as the landmark nodes,
and they are well selected and evenly distributed in the system
to ensure accuracy of the measurement results. If k landmark
nodes L1, L2, ... , Lk are picked, when a peer joins the system,
it measures and records the latencies to these nodes in the order
of 1, 2, ..., k. Then we can generate an ordering link latency in-
formation (denote as order information hereafter) for this newly
joined peer. The range of the possible latencies between each
[peer, landmark node] pair can be divided into different levels.
A set of numbers Z0, Z1, ...Zt can be used, and t+1 zones will
be defined. For example, as shown in Figure I, we defined 3
numbers: 20, 40, 60ms. Then, four levels are created: level 0
represents the link latencies within [0, 20ms], level 1 for the la-
tencies within (20, 40ms], level 2 for the latencies between (40,
60ms], and level 3 for the latencies greater than 60ms. Thus,
we can use a single digit value such as 0, 1, 2 or 3 to repre-
sent the relative distance between a peer and a landmark node.
For k landmark nodes, on each peer, we can generate k dig-
its to represent the order information. This information can be
viewed as the approximate topological position of a peer in a
k-dimensional space. For any two peers, the more number of
digits are in common (which means they have similar link la-
tencies to more landmark nodes), the topologically closer these
two peers are. The detailed information about the distributed
binning scheme can be seen in [19].

We use the order information as part of the peer identification
information. For example, Peer 121:1012 represents the peer
with peerid 121. Four landmark nodes (L1, L2, L3 and L4) are
used in the system, and the link latencies from this peer to each
of the landmark nodes are within zones (20, 40], [0,20], (20,40]
and (40, 60], respectively.

TABLE I
SAMPLE PEERS WITH 4 LANDMARK NODES

Peer Dist Dist Dist Dist Order
-L1 -L2 -L3 -L4

N1 25ms 5ms 30ms 100ms 1013
N2 40ms 18ms 12ms 200ms 1003
N3 100ms 180ms 5ms 10ms 3300
N4 160ms 220ms 8ms 20ms 3300
N5 45ms 10ms 100ms 5ms 2030
N6 20ms 140ms 50ms 40ms 0321

Table I shows 6 sample peers N1, N2, N3, N4, N5 and N6.
The order information is created according to the measured la-
tencies to the 4 landmark nodes L1, L2, L3 and L4. For example,
Peer N1’s landmark order is 1013. Peers N3 and N4 have the
same ordering information: 3300. According to the ordering in-
formation of these peers, we can estimate that Peers N3 and N4
are topologically close while N3 and N1 are topologically apart.
Distributed Binning Scheme can only reflect the approximate
topological information, it is not very accurate. However, from
our simulation results, we found it is good enough to achieve
significant performance improvement.

C. Hierarchical Architecture
We introduce the hierarchical architecture to represent the

topological information. We define a P2P circle as a collection
of peers with associated routing and file location data structures.
A P2P circle is a self-organized and relatively independent unit,
the members in a P2P circle are equally important and take the

5

P0Pc = V
4s = V

V2

V3
V1

R2

R2

R2

R2

R1

Fig. 3. Comparison of the connection model

Fig. 4. A Two-layer Hierarchical System, P is the layer-1 circle, P1,
P2, P3, P4 and P5 are layer-2 circles.

equal responsibility for the workloads within this circle. In cur-
rent DHT systems, there’s only one P2P circle exist, it contains
all the peers. In our system, we create a hierarchical P2P in-
frastructure: Besides the biggest circle which consists of all the
peers, many other P2P circles in different layers which contain
different number of peers are generated as well. These circles
are created in such a mechanism: the lower the layer, the closer
the peers in this circle. Thus, the average link latency between
two peers in a lower layer circle is much smaller than the peers
in a higher layer circle. We define the number of layers as the
hierarchy depth. In a m-depth P2P system, each peer belongs to
m P2P circles with one in each layer. Clearly, the lowest layer
circles consist of the set of peers which are the topologically
closest to each other.

A simple illustration of a two-layer hierarchical P2P organi-
zation is shown in Figure 4. P is the Layer-1 (biggest) circle
which contains all the peers. This global layer circle has five
layer-2 circles: P1, P2, P3, P4 and P5. Each peer in the system
belongs to the layer-1 circle P and one of the five layer-2 circles.
For example, Peer A is a member of circle P1 and Peer Z is a
member of circle P5. At the same time, both of them are also
members of the global circle P. Topologically adjacent peers are
grouped in the same layer-2 circle. For example, peers A, B, C,
D, E and F are located on the same continent, they are grouped
together in layer-2 circle P1.

In our system, we use the peers’ order information to generate
circles. For example, if we want to create a two-layer system,
we can group peers which have the same order information into
one lower layer P2P circle. Thus, Peer 121: 0123 is in a circle
with all the members which have the same ordering information
– 0123. We denote “0123” as the circleid for this circle. Peer
121: 0123 and Peer 047: 0123 belongs to the same lower layer
circle, but it does not belong to the same lower circle as Peer
221: 0110. However, if a three-layer system is needed, we can
create an intermediate layer by taking the ordering information
of landmark nodes L1 and L2 only. Peers who have the ordering
information — 01XX belong to the same intermediate layer

circle, although they might not in the same lowest layer circle.
For example, Peer 121: 0123 and 221: 0110 are in the same
intermediate layer circle but not in the same lowest layer one.

We can use a well-known set of landmark machines spread
across the Internet as [19]. In case of a landmark node failure,
newly added nodes are binned using the surviving landmarks
while previous binned nodes only need to drop the failed land-
mark(s) from their order information. In this case, performance
degrades. To relieve the landmark nodes failure problem, we can
use multiple geographically closest nodes as one logical land-
mark node [19].

The number of landmark nodes has great impact on the sys-
tem performance. As we increases the number of landmark
nodes, the number of lower layer P2P circles will increase and
the average link latency in each circle will reduce. System has
more accurate information about a peer’s topological location
and can add it to a circle with closer neighbors. On the other
hand, as the number of landmark nodes increases, the number of
circles also increases, thus the average number of peers within
each circle will decrease.

In HIERAS [17], we proposed multi-layer routing algo-
rithms, the main idea is to replace a large amount of long-latency
routing hops which occurred in the global layer (in Chord) with
the low-latency hops in the lower layers (in HIERAS), and it
greatly reduced the routing overhead. In PROD, we inherit the
algorithm and solve the routing problem. The details of HI-
ERAS algorithm can be found in [17].

Although HIERAS can successfully improve the routing per-
formance, it can not solve the retrieving problem. As tradi-
tional DHT algorithms, in HIERAS, after the routing process,
the client has to download the file from a peer which stores a
copy no matter how far it is. New solution is needed to address
the retrieving problem. We extend the idea in HIERAS and de-
sign an efficient retrieving mechanism using the topological in-
formation.

IV. FILE RETRIEVING ALGORITHM

In this section, we first describe the data structures to be used
in PROD, then we present the relay peer searching algorithm.
We also discuss the failure tolerance issue related to our algo-
rithm.

A. Data Structures
In our system, the ordering information is stored as part of

the peer’s characteristics. Since we created a multiple layered
system, to support the routing and retrieving operations in dif-
ferent layers, we have to modify the structure of the Chord finger
table. If we create an m-depth PROD system, for each peer, m-
layer tables are needed with one in each layer. Figure 5 shows
a two-layer finger table for Peer 121: 0123. In the higher layer
finger table, as Chord algorithm, for each entry, the successor is
selected from all system peers if it has the smallest peerid in that
interval. However, for the lower layer finger table construction,
we only pick the peers from the same circle “0123” as Peer 121.

6

253: 0123

start
122

123

125

129

137

153

185

249

124: 0011

124: 0011

intervals
[122,123)

[123,125)

[125,129)

[129,137)

[137,153)

[153,185)

[185,249)

[249,121)

layer 2 successor

143: 0123

143: 0123

143: 0123

143: 0123

143: 0123

158: 0123

253: 0123

212: 0123

layer 1 successor

158: 0123

131: 1121

131: 1121

139: 0220

192: 0012

Fig. 5. Peer 121: 0123’s finger tables in a two-layer Hierarchical system with 4 landmark nodes, name space [0, 256)

118

FileK

File2

File2

File2

File1

Name Fileid
102

107

107

107

121 214: 1111

Nodeid
215: 2103

131: 1120

69: 0123

237: 0201

NodeIP
X.X.X.X

X.X.X.X

X.X.X.X

X.X.X.X

X.X.X.X

Layer 2 File Location Table

Layer 1 File Location Table

Fileid Nodeid NodeIPName
X.X.X.X

X.X.X.X

X.X.X.X

X.X.X.X

File2 107 69: 0123

File3

File3 118

FileX 98

143: 0123

212: 0123

158: 0123

Fig. 6. The Two-layer file location tables on Peer 121: 0123

We also modify the structure of the file location table. Fig-
ure 6 shows the two-layer file location table for Peer 121: 0123.
The contents in the higher layer table are the same as Chord. It
records the information of the peers which have copies of the
corresponding files, no matter which lower layer circles these
peers are in. For the lower layer table, it only records the infor-
mation of the peers within the same layer-2 circle which store
the corresponding files. We introduce the topological informa-
tion into the file location table, thus a client can always choose
the closest peer who has a copy to start retrieving.

Besides the data structures inherited from the underlying
DHT algorithms, in PROD, we use landmark table to maintain
landmark nodes information, it simply records the IP addresses
of all landmark nodes and list them in order. We omit it here. We
use Circle tables to maintain the information of P2P circles. The
structure of a circle table is shown in Table II. The circlename is
defined by the landmark order information such as “0123”. The
circleid is generated by using the collision-free algorithm on the
circlename. A circle table is stored on the peer whose peerid is
the numerically closest to its circleid. It records 4 peers inside
the circle: the peer with the smallest peerid, the peer with the
second smallest peerid, the peer with the largest peerid and the
peer with the second largest peerid. A circle table is duplicated
on several numerically close peers (these peers can be get easily)

for fault tolerance. A peer which stores the circle table periodi-
cally checks the status of these nodes. In case of a peer fails or
leaves, a new routing procedure is performed to add a new peer
into the table. If the system has more layers, the circleids for
intermediate circles are generated by using the partial ordering
information. For example, for Circle “01XX”, 01 will be used
to generate the circleid. And the circle table for “01XX” will be
stored on the peer whose peerid is numerically closest to “0100”.
Circle tables are used by the relay peer searching algorithm to
find a peer in a particular P2P circle during the searching pro-
cess of the next intermediate relay peer. The details of its usage
are introduced later.

B. Searching Relay Peers
Finding the right relay peers is critical for PROD to achieve

optimal performance. We develop a relay peer searching algo-
rithm based on the peers’ ordering information. Figure 7 shows
the pseudo code of this algorithm. Here, we assume for a client
Pc, the routing process is already finished. It has to create a
connection chain to the source peer Ps who stores the requested
file. Our algorithm is used to find out the set of the intermediate
relay peers.

In our algorithm, we first calculate the sum of the digit dif-
ferences K of Pc and Ps’s ordering information. Then, we start
the relay peer searching process from Pc. If we do not limit the
number of relay peers during the searching process, then, each
time, we change the ordering information that the sum of the
digit difference will reduce by 1 and use it as the circleid which
to search for the next relay peer. For example, if the ordering
information of the client 123 and the source peer 056 are 0123
and 2101, respectively. Then the sum of digit difference is 6.
Starts from client 123, we are looking for the peer information
of the circles with the circleids 1123, 0113, or 0122.

In order to find a peer in these circles, a DHT routing process
is performed for each of them. For a particular circle, such a
routing request will arrive the peer who stores the circle table for
that circleid as other normal routing requests. The result of a set
of peers who belong to that circle will be returned. We select one
peer from all the candidate peers according to a certain require-
ment (most cases, the peer generates the lowest delay). It will
be added to the set of relay peers. Starts from this newly added
relay peer, we reduce the sum of the digit differences of the or-
dering information again, and the searching process continues,
until finally, we reach the source peer. A message containing
the information of all the relay peers selected will be returned to
the client. Then, a connection chain between the client and the
source peer is established to start the file retrieving.

The number of intermediate peers is adjustable and can be de-
fined as a parameter. If the maximum number defined is smaller

7

Pc is the client peer
Ps is the source peer which stores the file
L is the number of Landmark nodes
K is the sum of the digit number differences of the ordering information
R is the maximum number of relay peers
S is the set of relay peers. Originally, it is empty

Function Searching Relay Peers(Pc,Ps)
{

Oc = Oc1, Oc2, ...OcL is the ordering information of Pc

Os = Os1, Os2, ...OsL is the ordering information of Ps

Set S = Ø
i = 0
K =sum of the digit number differences of the ordering information
Si = Oc

Ei = Os

N = Pc /* the process starts at the client */
m = �K/R�
while i ≤ R
{

if (m¿=K) /* PROD algorithm failed */
exit(0);

C,On = Choose next relay peer(N, Si, Ei,m);
if (such C does not found) /* no circle exist which satisfy the requirement */
{

m=m+1; /* loose the condition*/
continue;

}
i = i + 1;
S = S + C; /* add a new relay peer to S */
N = C;
Si = On

}
return(S);

}

Function Choose next relay peer(N, OS , OE , m)
{

ODiff = the sum of digit differences of the circles
OS and OE

if (ODiff ≥ 0)
{

generate a set of circleids O = On1, On2, Onj

Oni is generated by changing any m digits in OS

and make the sum of digits difference of Oni and
OE equals ODiff - m

}
Y = Ø, /* Y is the set of candidate relay peers */
for (each circleid Oni in O)
{

Yi = Chord(O); /* Seaching the circle using Chord Algorithm */
if (Yi does not exist) /* no such circle exist */

continue; /* try another one */
else
{

Y = Yi → Y
P = Ymin; /* the peer has the smallest delay to N */
Op is the circleid of P
return(P, Op)

}
return(0,0) /* no candidate circle exist */

}

Fig. 7. Pseudo Code of Searching Relay Peers Algorithm

8

TABLE II
P2P CIRCLE TABLE STRUCTURE

Circleid Circlename Peer Peer Peer Peer
(Largest Id) (Second Largest Id) (Smallest Id) (Second Smallest Id)

than the sum of the digit differences of the ordering informa-
tion, we can reduce the sum by 2 or even more each step. In our
simulations, we evaluate its effects.

Our algorithm is based on the following assumption, the
closer the two peers, the smaller the difference of the sum of dig-
its on the ordering information. However, it has the weighting
problem. The values in the ordering information have different
weights, the result might not accurate. For example, if we have
two peers with ordering information 0XXX and 1XXX (assume
the last three digits are the same), the maximal two way propa-
gation delay between these two peers is 2 × 20 = 40ms. How-
ever, if the ordering information of these two peers are 2XXX
and 3XXX, the maximal delay becomes 120ms. To relieve this
problem, we can divide the delay into more zones, such as for
[0,100]ms , we can create 0,1,...,9 zones to represent the order-
ing information. Each one is used to represent only 10ms-sized
zone.

During the searching process, we might find a circle with a
certain circleid does not exist. In this case, we try another candi-
date circleid. If none of the candidate circles are found, we can
change the circleid generation criteria, say, reduce the sum of
the digit difference even more, or take out the ordering informa-
tion of some certain landmark nodes. If none succeed, we claim
we can not find a suitable connection chain. In our simulations,
we found such situations seldom happen.

We also observe for two peers, if they have similar ordering
information for most landmark nodes, it is not likely they have
quite different digits in the ordering information for the remain-
ing landmark nodes. For example, two peers with the ordering
information “0123” and “0120” are not likely to exist. It means
the weighting problem is not as severe as we thought. Further-
more, in our algorithm, we measure the delays for all the possi-
bilities and choose only the peer with the smallest delay as the
relay peer. Our simulation experiments shows, although they are
not always the best choices, our relay peer searching algorithm
is able to find out the suitable set of peers which can boost the
retrieving performance significantly.

After determining the set of relay peers, the multi-connection
chain can be created easily.

C. Failure Recovery
In PROD, a retrieving process needs the collaboration among

a set of relay peers. Though it can reduce the propagation delay,
it introduces other issues. For example, the possibility of a peer
failure during the file transmission is higher than the direct link.
We use the following two mechanisms to reduce the effect:

• For each peer, we record the alive time, and based on that,
we can choose peers who are likely to stay longer in the
system as relay peers;

• For each relay connection along the chain, both peers keep
the IP addresses of some other peers which belong to the
same circle as the relay peer on the other side. This infor-
mation can be obtained easily from the circle table. If a
peer failure is detected, an alternative peer can be selected
quickly and replace the role of the dead one.

• When we choose the relay peers, we always choose the
peer with more resources and few current workload. These

peers have more computer resources to be used for the file
retrieving process.

Overall, PROD consumes more network resources since it
needs a group of relay peers. This problem can be relieved by
limit the maximum number of relay peers. Furthermore, since
the majority peers are not busy most of time, it is not harmful
to take these idle resources. We can also design an adaptive
algorithm, in case of the system is not busy, we can increase the
number of relay peers. Otherwise, we decrease the number. For
example, during the night, few people are using their computers,
more relay peers can be used.

V. EXPERIMENT ENVIRONMENT

To evaluate the performance of PROD algorithm, we con-
ducted trace-driven simulations. In this section, we describe the
simulation environment.

A. The Network Model
We choose GT-ITM Transit-Stub (TS model) as the primary

network topology model. TS is an internetwork topology model
proposed by E. Zegura in [20]. It is a two-layer internetwork
model, a TS network is composed of interconnected transit and
stub domains. Transit domains function more like Internet back-
bone while stub domains work more like local area networks.
TS model reflects the hierarchical character of internetwork and
it is more accurate than a random model. In our simulation, the
delays of intra-transit domain links, stub-transit links and intra-
stub domain links are set to 100, 20 and 5ms respectively (We
also use other distributions but our conclusion does not change).

In our simulations, we vary the number of peers from 1000
to 10000. The number of peers in each stub domain varies from
12 to 20 depends on different total number of peers. We choose
Chord as the baseline DHT algorithm and we compare the file
retrieving performance of Chord with PROD. We use Chord to
represent the original algorithm, if multiple copies exist, the
source peer for retrieving is selected randomly, Chord-T to rep-
resent Chord algorithm which downloads the file from the clos-
est source peer, PROD-R represents PROD algorithm without
the limitation on the number of relay peers. PROD-L represents
PROD with fixed maximum number of relay peers. In our sim-
ulation experiments, unless specified, we use a two-layer hierar-
chy system with four landmark nodes used to generate circleids
for lower layer P2P circles.

B. Workload Traces
Due to the lack of appropriate P2P system traces, we use

web proxy logs obtained from the National Laboratory for Ap-
plied Network Research (NLANR) as P2P workload traces in
our simulation. This method has been used in many other re-
search projects [21] [19]. The trace data we use are collected
from eight individual servers between July 8, 2004 and July 14,
2004.

VI. PERFORMANCE EVALUATION

In this section, we present the evaluation results for the sim-
ulations we conducted on the above environment.

9

0

50

100

150

200

250

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of peers

Av
er

ag
e

re
tri

ev
in

g
de

la
y

(m
s)

Chord

Chord-T

PROD-R

PROD-L

Fig. 8. Propagation Delay Comparison

A. Average retrieving propagation delay
Our purpose is to reduce the retrieving access delay in order

to improve the file retrieving throughput in DHT overlay net-
works. In the first experiment, we compare the retrieving per-
formance of PROD with the Chord algorithm. The results are
shown in Figure 8.

From the results, we can get the conclusion that among all
these algorithms, PROD-R achieves the best performance. The
average retrieving delay is only 24.9% to 52.1% of the delay
measured in Chord. As the network becomes bigger, the retriev-
ing delay does not change too much. This is because there’s
no number of relay peers limitation in PROD-R, it can always
use more intermediate peers for relay traffic. Thus, PROD-R
is perfect for large-scale P2P overlay networks. One deficit of
this approach is, as more relay peers introduced, the peer fail-
ure problem becomes more severe. PROD-L also provides very
good performance. The retrieving delay is only about 40.5% to
58.7% of the delay in original Chord algorithm. However, as
the network size increases, due to the limitation on the maxi-
mum number of relay peers, the access delay increases. The de-
lay increases is much slower than the original Chord. Thus, for
large-scale P2P overlay networks, it is still a good alternative
of Chord. For both PROD-R and PROD-L algorithms, the re-
trieving delay is reduced significantly. If the overlay network is
very dynamic, which means the peers join and leave frequently,
PROD-L is the best choice.

Obviously, the original Chord algorithm has the worst perfor-
mance. In Chord-T, we added the topological information into
the file location table, the client can always download the file
from the peer with the lowest round trip delay, while in Chord,
the client only select a source peer randomly. Though it is not
as good as PROD, Chord-T can improve the retrieving perfor-
mance in Chord by 17.4% to 23.5%.

B. Effects of the maximal number of relay peers
From the above simulation results, we observer that the max-

imal number of relay peers allowed in PROD will affect its per-
formance. In relay peer searching algorithm, this number will
determine, to generate the circleid the next relay peer belongs to,
how many digits we have to change. Then, we also conduct the
experiment to evaluate its effect. This simulation is conducted
on a 6000-peer network, we vary the maximal number of relay
peers from 0 to 6 (PROD-L), and compare it with the result of
unlimited relay peers (PROD-R).

Figure 9 shows the result. From the figure, we can see that,
with more relay peers introduced, the propagation delay for the

0

50

100

150

200

0 1 2 3 4 5 6 max

The number of relay peers

Av
er

ag
e

re
tri

ev
in

g
de

la
y

(m
s)

Fig. 9. The Effect of the different number of relay peers in PROD

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10

Number of landmark nodes

Av
er

ag
e

ro
ut

in
g

la
te

nc
y

(m
s)

PROD-R

PROD-L

Fig. 10. The Effect of the different number of landmark nodes

file retrieving process reduces. When the number of relay peers
is 0 (the original direct link), we got the highest propagation
delay. As one relay peer introduced, the delay is reduced by
14.1%. As more relay peers introduced, we can reduce the over-
all retrieving delay even more. If the number is 6, the delay is
reduced by 50.5%. With the unlimited number of relay peers,
the propagation delay is cut by 56.5%. We can also observe, as
the number of relay peers increased from 0 to 3, the performance
improved sharply. But when we keep increase the number of
relay peers, although we can still gain some benefit, the per-
formance gain diminished. As we know, more relay peers will
increase the risk of peer failure problem, more peers may not
be a good choice. Thus, choosing the suitable number of relay
peers is of great importance. In this experiment, for a 6000-peer
TS network, 4 to 6 relay peers are the optimal configurations.

C. Effects of different number of landmark nodes
Landmark nodes also have great effect on the retrieving per-

formance of our PROD algorithms. With the different number of
landmark nodes, the peers’ ordering information will have dif-
ferent number of digits. This will affect the relay peer searching
algorithm. In the third experiment, we evaluate its effects. The
simulation is conducted on a 6000-peer TS network, the num-
ber of landmark nodes varies from 0 to 10. For PROD-L, the
maximal number of relay peers is 4. The results are shown in
Figure 10.

The results show that PROD-R can achieve better perfor-
mance than PROD-L. When there’s no landmark nodes used,
no relay peers can be chosen, our system becomes the original
Chord system. With one landmark nodes used, both PROD-R

10

0

100

200

300

400

2000 4000 6000 8000 1000

Number of peers

Av
er

ag
e

re
tri

ev
in

g
la

te
nc

y
(m

s)

Chord(1 copy) Chord(2 copies)

Chord(4 copies) Chord(8 copies)

Chord(16 copies) PROD-R

PROD-L

Fig. 11. The Performance Improvement for Different Files

and PROD-L improve the performance greatly. As more land-
mark numbers introduced, our PROD algorithms continue gain
the benefits. However, PROD-R is always better than PROD-L
because it has more relay peers. When selecting the circleid for
the next relay peer, it changes one digit only, thus it can always
pick the best candidate as the next relay peer. PROD-L perfor-
mance is limited by the maximal number of relay peers. When
deciding the next circle, it might have to change multiple dig-
its, thus it can only pick sub-optimal candidates. As we can see
from the Figure 10, with more landmark nodes are introduced,
the performance gap between PROD-R and PROD-L becomes
larger. Here, since the ordering information contains more dig-
its, when choosing the next circle, PROD-L has to increase the
number of digits it has to change each time, and this makes the
selection of best relay peer candidate more difficult. For PROD-
R, this problem does not exist, it can always choose the best
candidate by changing only 1 digit in the previous circleid.

Another phenomenon we can observer from Figure 10 is, as
more and more landmark nodes are introduced, the performance
improvement benefits diminishes or it may have negative effect.
We investigate this problem, we found that with the increased
number of landmark nodes, the number of lowest layer circles
also increases, and the average number of peers in each of these
circles reduces. Although the two way delay of a network link
within the lowest layer reduces, the delay on the higher layers
may increase, and it will cause the whole system performance
degradation. Thus, picking the right number of landmark nodes
is also important. For this 600-peer network, 6 or 7 is the op-
timal configuration. But this effect is not serious in PROD. For
PROD-L, the propagation delay with 10 landmark nodes is only
about 10.5% higher than the best configuration. For PROD-R,
this number is 6.3%.

D. Accessing files with different number of copies
In the forth experiment, we compare the performance of

PROD and Chord on the files with different number of copies
in the system. The results are shown in Figure 11.

As we can see from the result, although for the popular files,
the retrieving delay is not very high in Chord-T since it can al-
ways download from the nearest peer who has a copy. For those
files which have small number of copies in the system, Chord
failed to achieve satisfactory performance. Both PROD-L and
PROD-R have better performance than Chord. No matter how
man copies a file have, our algorithms can always find out an
optimal route to relay file retrieving traffic. This means, our
algorithm can benefit the clients who wants to access the files
which are not frequently used. For those popular files (files with

more copies), PROD algorithms still outperform Chord-T. Fur-
thermore, as the network becomes bigger, PROD algorithms can
achieve even more performance improvement over Chord. This
result proves PROD is a good alternative file retrieving algo-
rithm for current DHT based overlay networks.

VII. RELATED WORKS

Due to the deficits of routing architectures used in unstruc-
tured P2P systems, a lot of efforts have been made to improve
the routing performance in P2P applications. Chord [6] [7], Pas-
try [8], Tapestry [9] and CAN [10] are DHT based routing algo-
rithms. In these systems, an elegant and efficient routing data
structure is generated. However, the negligence of the peers’
topological information seriously hurts the routing and retrieval
performance. Although DHT algorithms can achieve the opti-
mal routing performance in terms of routing hops, they can not
achieve the minimal routing latency.

Furthermore, in these DHT overlay networks, the retrieving
problem is not well considered. For both unstructured and struc-
tured P2P systems, after locating the requested file, the client
will create a direct connection with the peer(s) who store that
file and start downloading process. If that peer is topologically
far away from the client, the system will suffer long access la-
tency.

Utilizing topological information to boost P2P system perfor-
mance is a hot topic in recent years [22]. In [17], we propose
a new P2P routing algorithm — HIERAS, it keeps scalability
property of current DHT algorithms and improves system rout-
ing performance by the introduction of hierarchical structure. In
HIERAS, we create several lower level P2P circles besides the
highest level P2P circle. A P2P circle is a subset of the overall
P2P overlay network. We create P2P circles in such a strat-
egy that the average link latency between two peers in lower
level circles is much smaller than higher level circles. Rout-
ing tasks are first executed in lower level circles before they go
up to higher level circles, a large portion of routing hops pre-
viously executed in the global P2P circle are now replaced by
hops in lower level circles, thus routing overheads can be re-
duced. However, HIERAS does not attack retrieving problem.

In [23], we utilize the topological information to boost re-
trieving performance. We introduce a new DHT based P2P al-
gorithm to solve these problems. We use distributed binning
scheme to figure out the topological information of each peer,
and add this information to the routing and retrieving data struc-
tures. Furthermore, by adding the peers’ topological character-
istics to the file location information, our algorithm can guaran-
tee the closest copy of a requested file to be found. The retriev-
ing problem in DHT algorithms is relieved.

However, both approaches did not use relay transmission to
further improve the performance. In [24], Wolf et al. have
introduced a transparent TCP acceleration technique that can
speedup TCP connections without end-system support. They
evaluate that a single acceleration node can speedup TCP con-
nection twofold on lossless and more on lossy links. Multiple
acceleration nodes can further increase the attainable through-
put. They have discussed how such an acceleration system can
be implemented on a network processor. However, their target
is at TCP layer, not the application layer.

In [14], Liu et al. explore the flexibility of control at the ap-
plication layer and propose various application level data relay
schemes to largely improve the data throughput by optimally in-
tegrating application level routing and transport layer control.
They formulate the problems that how to do the TCP pipelines
for overlay networks etc. Unfortunately, the authors did not give
the detailed instructions on how to build such a route.

11

In this paper, we also adapt the idea of creating multiple store-
forward links to improve P2P system performance. We also de-
sign an efficient, low overhead strategy to find the suitable relay
peers to build this application level connection chain.

VIII. CONCLUSIONS AND FUTURE WORK

The ultimate goal for P2P overlay networks is to share and
exchange files. Though the routing procedure is important, an
efficient and fast file retrieving mechanism is more critical. In
this paper, we present a novel algorithm — PROD to address
the file retrieving issue in DHT based overlay networks. PROD
views each peer’s topological information as its characteristic,
and incorporated this information with the routing and retrieving
data structures and algorithms. PROD inherits the hierarchical
routing in HIERAS, and extends the idea to solve the retrieving
problem. Unlike the current DHT algorithms which only cre-
ate a single connection between the client and the source peer,
a connection chain is established to relay the file download traf-
fic. An efficient relay peer searching algorithm is developed to
determine the appropriate set of relay peers by taking the topo-
logical information into consideration. We conduct extensive
simulation experiments and the results show PROD can greatly
improve the file retrieving throughput.

In the future, for comparison purpose, we plan to conduct
more simulation experiments by using other network models
such as Inept [25] and BRITE [26]. We plan work more on
relay peer selection mechanism. We are also considering to do
the real implementation and evaluate the efficiency of PROD on
Planet Lab [27], the real world testbed. Since most commer-
cial P2P applications belong to the unstructured category, it is
also worth considering on how to apply this idea to boost the
retrieving performance in unstructured P2P systems.

IX. ACKNOWLEDGEMENT

This research has been supported by NSF Grant CNS-
0509207, 0509440 and National Basic Research Program of
China (973 Program) under Grant No. 2004CB318202. We
gratefully acknowledges the support of K. C. Wong Education
Foundation, Hong Kong. We would also like to thank the anony-
mous reviewers for their valuable comments.

REFERENCES

[1] Napster, “http://www.napster.com.”
[2] Gnutella, “http://www.gnutella.wego.com.”
[3] KaZaA, “http://www.kazaa.com/.”
[4] Edonkey, “http://www.edonkey2000.net/.”
[5] BitTorrent, “http://www.bittorrent.com/.”
[6] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrish-

nan, “Chord: A scalable peer-to-peer lookup service for internet
applications.” Technical Report TR-819, MIT., Mar. 2001.

[7] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Morris,
I. Stoica, and H. Balakrishnan, “Building Peer-to-Peer Systems
With Chord, a Distributed Lookup Service,” in the 8th IEEE Work-
shop on Hot Topics in Operating Systems (HotOS), Schoss Elmau,
Germany, pp. 195–206, May 2001.

[8] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer sys-
tems,” in Proceedings of the 18th IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware), (Heidel-
berg, Germany), pp. 329–350, Nov. 2001.

[9] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastruc-
ture for fault-tolerant widearea location and routing.” Technical
Report UCB/CSD-01-1141, U.C.Berkeley, CA, 2001.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content addressable network.” Technical Report, TR-
00-010, U.C.Berkeley, CA, 2000.

[11] F. I. P. S. Publication, “Secure hash standard,
http://www.itl.nist.gov/fipspubs/fip180-1.htm,” 1995.

[12] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S.
Levine, and D. Lewin, “Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the world
wide web,” in Proceedings of the 29th annual ACM symposium
on Theory of computing ACM Symposium on Theory of Comput-
ing (STOC), El Paso, TX, pp. 654–663, May. 1997.

[13] N. I. of Standards and Technology,
“http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf.”

[14] Y. Liu, Y. Gu, H. Zhang, W. Gong, and D. Towsley, “Applica-
tion Level Relay for High-bandwidth Data Transport,” in The First
Workshop on Networks for Grid Applications (GridNets’04), (San
Jose, CA), October 2004.

[15] C. Jin, D. Wei, and S. Low, “Fast tcp: Motivation, architecture,
algorithms, performance,” in Proceedings of IEEE INFOCOM,
(Hong Kong, China), Mar. 2004.

[16] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in SIGCOMM ’02: Proceed-
ings of the 2002 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, (New York,
NY, USA), pp. 89–102, ACM Press, 2002.

[17] Z. Xu, R. Min, and Y. Hu, “HIERAS: A DHT-Based Hierarchi-
cal Peer-to-Peer Routing Algorithm,” in the Proceedings of the
2003 International Conference on Parallel Processing (ICPP’03),
(Kaohsiung, Taiwan, ROC), October 2003.

[18] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe, “Modeling TCP
throughput: A simple model and its empirical validation,” Pro-
ceedings of the ACM SIGCOMM ’98 conference on Applications,
technologies, architectures, and protocols for computer communi-
cation, pp. 303–314, 1998.

[19] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
“Topologically-Aware Overlay Construction and Server Selec-
tion,” in Proceedings of IEEE INFOCOM’02, (New York, NY),
Jun. 2002.

[20] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model
an internetwork,” in Proceedings of the IEEE Conference on Com-
puter Communication, San Francisco, CA, pp. 594–602, Mar.
1996.

[21] A. Rowstron and P. Druschel, “Storage Management and Caching
in PAST, A Large-Scale, Persistent Peer-to-peer Storage Utility,”
in Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP), (Banff, Alberta, Canada), pp. 188–201, Oct.
2001.

[22] B. Zhao, Y. Duan, L. Huang, A. Joseph, and J. Kubiatowicz, “Bro-
cade:landmark routing on overlay networks,” in Proceedings of
the 1st International Workshop on Peer-to-Peer Systems (IPTPS),
Cambridge, MA, March 2002.

[23] Z. Xu, X. He, and L. Bhuyan, “Efficient File Sharing Strategy in
DHT-based P2P Systems,” in Proceedings of the 24th IEEE Inter-
national Performance, Computing, and Communications Confer-
ence(IPCCC’05), (Phoenix, AZ), April 2005.

[24] T. Wolf, S. You, and R. Ramaswamy, “Transparent TCP accelera-
tion through network processing,” in Proc. of IEEE Global Com-
munications Conference (GLOBECOM), (St. Louis, MO), Nov.
2005.

[25] C. Jin, Q. Chen, and S. Jamin, “Inet: Internet topology genera-
tor.” Report CSE-TR443-00, Department of EECS, University of
Michigan, 2000.

[26] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An ap-
proach to universal topology generation,” in Proceedings of the
International Workshop on Modeling, Analysis and Simulation
of Computer and Telecommunications Systems (MASCOTS’01),
Cincinnati, OH, Aug. 2001.

[27] “PlanetLab: An open platform for developing, deploying and ac-
cessing planetary-scale services.” ”http://www.planet-lab.org”.

