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Abstract—Many studies have shown that load imbalanc-
ing causes significant performance degradation in High
Performance Computing (HPC) applications. Nowadays,
Multi-Threaded (MT') processors are widely used in HPC
for their good performance/energy consumption and per-
formance/cost ratios achieved sharing internal resources,
like the instruction window or the physical register. Some
of these processors provide the software hardware mecha-
nisms for controlling the allocation of processor’s internal
resources. In this paper, we show, for the first time, that
by appropriately using these mechanisms, we are able
to control the tasks speed, reducing the imbalance in
parallel applications transparently to the user and, hence,
reducing the total execution time. Our results show that
our proposal leads to a performance improvement up to
18% for one of the NAS benchmark. For a real HPC
application (much more dynamic than the benchmark)
the performance improvement is 8.1%. Our results also
show that, if resource allocation is not used properly, the
imbalance of applications is worsened causing performance
loss.

I. INTRODUCTION

High Performance Computing (HPC) applications are
usually Single Process-Multiple Data (SPMD) and are
implemented using an MPI or an OpenMP library. In
MPI applications, all the processes execute the same
code on different data sets and use synchronization
primitives (such as barriers or collective operations) to
coordinate their work. Since the processes execute the
same code, they are supposed to reach their synchroniza-
tion points roughly at the same time. However, this is not
always the case. Some applications among those running
on MareNostrum, the 13th supercomputer on the Top500
list, installed at the Barcelona Supercomputing Center
(BSC), suffer from imbalancing, i.e. the execution time
of the processes in the parallel application is not the same
(in Section II we will see some causes of applications’
imbalancing). Therefore, if a process runs for longer
than the others belonging to the same application, all the

In this paper the term MT processors refers to both multi-core
(CMP) and multi-thread (SMT) processors.
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other processes have to wait for that process to complete
its execution. During this time the CPUs of the waiting
processes are idle, thus, not performing any useful job.
As an example, let us assume that one process has to
complete its execution while all the other processes are
waiting for it to reach the synchronization point; then,
in MareNostrum, up to 10239 processor may be idle,
resulting in a significant loss of performance and waste
of resources.

The performance achievable by traditional super-
scalar processor designs has almost saturated due to
the limitation imposed by Instruction-Level Parallelism
(ILP). As a consequence, Thread-Level Parallelism
(TLP) has become a common strategy for improving
processor performance. Since it is difficult to extract
more Instruction-Level Parallelism from a single pro-
gram, Multi-Threaded (MT) processors obtain more
parallelism by simultaneously executing several tasks.
This strategy has led to a wide range of MT processor
architectures, from Simultaneous Multi-Threaded pro-
cessors (SMT) [22], [28], [33], in which most processor
resources are shared among threads, to Chip Multi-
Processors [5] (CMP), in which every thread has its
own dedicated processor resources, only sharing the
highest levels of the memory hierarchy (for example the
L2 cache), and a combination of both [30]. Resource
sharing makes multi-threaded processors have good per-
formance/cost and performance/power consumption ra-
tios [3], two desirable characteristics for a Supercom-
puter. As a consequence, most of the current Supercom-
puters already use processors with some multi-threaded
features [1].

Usually, software has no control over how processor
resources are distributed among running threads in multi-
threaded processors. For example, in an SMT processor
the instruction fetch policy, decides how instructions are
fetched from the threads, thereby implicitly determining
the way internal processor resources are allocated to the
threads. This is an undesirable characteristic that makes
the execution time of programs unpredictable [6]. In



order to alleviate this problem, recently, some processor
vendors have equipped their MT processors with mech-
anisms that allow the software to control processor’s
internals resource allocation, and thus, control applica-
tion’s speed. Our view is that these mechanisms open
new opportunities to improve applications performance
as they offer fine-grain ways to control the progress
of applications by allocating or deallocating processor
resources to them.

This paper is a first step towards that direction. We
show how re-assigning hardware resources in a multi-
threaded processor can reduce the imbalance in parallel
applications, and hence improving performance. In par-
ticular we propose a way to regain balance assigning
more hardware resources to processes that computes for
more time, reducing their execution time and, thus, the
waiting time of all the other processes belonging to the
same HPC application. This solution is transparent to
the users: since the solution is at Operating System
(OS)/hardware level, users do not need to know the
processor’s implementation details at compile time nor
to adapt their programming model in order to use our
proposed solution. To the best of our knowledge, this is
the first time that such a solution is implemented in a
real machine.

We explored this idea experimentally on a real system
with a MT processor, the IBM POWERS [30]. The
POWERS is a dual-core, 2-way SMT processor that
allows us to change the way hardware resources are
assigned to the core’s contexts by means of a thread
context priority (or hardware thread priority?) that con-
trols the number of resources each context receives. This
machine runs a Linux kernel that we had to modify
in order to allow the HPC application to exploit the
advantage of re-assigning the processor’s resources. We
performed several experiments with MPI applications:

1) We started from a micro-benchmark (MetBench),
developed at BSC, where we introduce some arti-
ficial imbalancing.

2) In the second experiment, we ran the widely used
the BT-MZ NAS [24] benchmark; this version
suffers of imbalance.

3) Finally, we used a real application running on
MareNostrum, SIESTA [29].

Our results show an improvement of 18% for the NAS
benchmark and 8.1% for SIESTA. In addition, our results
also show that this mechanism of controlling hardware
resources is a powerful tool that, if used incorrectly, may
lead to significant performance loss. Moreover, non-HPC
applications may benefit differently from re-assigning
hardware resources or not at all.

>The hardware thread priorities mentioned here are independent of
the operating systems concept of thread priority.

The rest of this paper is organized as follows: Sec-
tion II shows the imbalancing problem in HPC applica-
tions; Section III presents similar works in the same area;
Section IV introduces our solution based on smart allo-
cation of hardware resources; Section V introduces the
architecture details of the IBM POWERS processor that
allow us to implement and try our proposal; Section VI
describes the changes we applied to the Linux kernel;
Section VII shows our set of experiments on the IBM
POWERS system for our micro-benchmark, a standard
benchmark and a real application; finally Section VIII
provides our conclusion and future work.

II. IMBALANCE IN HPC APPLICATIONS

HPC applications are usually SPMD, which means
that every process executes the same code on different
data. For example, let us assume that an HPC appli-
cation is performing a matrix-vector multiplication and
that each process receives a sub-matrix and the part
of the vector required to compute the sub-matrix by
vector multiplication. If the matrix can be divided into
homogeneous parts (i.e., they require the same amount
of time to be processed), all the processes in the parallel
application would finish, ideally, at the same time.

However, the data set could be very different: let us
say that, in the previous example, the matrix is sparse
or triagonal, hence, the time required to process the
data sub-set could vary as well. In this scenario the
amount of time required to complete the sub-matrix by
vector multiplication depends on the number of non-zero
values present in the sub-matrix. In the extreme case, one
process could receive a full sub-matrix while another an
empty one. It is clear that the former process requires
much more time to reach the synchronization point than
the latter.

We classify the sources of imbalancing in two main
classes: intrinsic and extrinsic factors of imbalancing.

A. Intrinsic imbalancing

We refer to intrinsic imbalancing as the imbalancing
an application experiences because of data (for example
a sparse matrix) or algorithm (master-slave architecture)
imbalancing. The causes for the imbalancing are internal
to the application’s code, input set or both.

The intrinsic imbalancing could be caused by several
factors, here we point some of them out:

Input set: As we already said, this scenario happens
when a process has a small input set to work on while
another has a large amount of data to process.

Domain: Iterative methods approximate the solution
of a problem (for example, Partial Differential Equations,
PDE) with a function in some domain starting from



an initial condition. The domain is divided in several
sub-domains and each process computes its part of the
solution. At the end of every iteration, the error made in
the approximation is computed and, eventually, another
iteration is to be started. If the function in some part of
the domain is smooth, only few iterations are required
to converge to a good approximation. Conversely, if
the function has several picks in the sub-domain, more
iterations are necessary to find a good solution and/or
more points in the domain have to be considered during
the computing phase.

Data exchanging: During their execution, processes
may require to exchange data among themselves. If the
two peers are on the same node, the latency of the
communication is small; if a process needs to exchange
data with a neighbor on another node the latency is large,
even larger if the destination process is far away in the
network.

In all the previous cases, and the other ones that we
do not mention for lack of space, the application might
result to be imbalanced.

B. Extrinsic imbalancing

Even if both the application’s algorithm and the input
set are balanced, the execution of the parallel application
could still be imbalanced. This is caused by external
factors that slow some processes down (but not others).
For example, the Operating System (OS) might decide
to run another process (say a kernel daemon) in place of
the MPI process running on one CPU. Since that MPI
process is not able to run all the time while the others
are running, it takes more time to complete, making all
the other processes waiting for it.

Those external factors are the sources of extrinsic
imbalancing. Even in this case, there might be several
causes for the imbalancing:

OS noise: The CPU is used by the OS to perform
services such as handling interrupts, reclaiming memory,
assigning memory on demand, etc. The OS noise has
been recognized as one of the major source of extrinsic
imbalancing [11], [25], [32]. A classical example is the
interrupt annoyance problem present in Intel processors:
all the interrupts coming from external devices are routed
to CPUO, therefore, the OS noise caused by executing
the interrupt handlers on CPUO is higher than the noise
on the other CPUs.

User daemons: It is common that HPC systems also
run profile or statistic collectors together with the HPC
application. These activities could steal computing power
from one process, actually, delaying it.

Network topology: Exchanging data between pro-
cesses in the same sub-network is faster than exchanging
data between processes in different sub-network; the

same rule applies to processes communicating inside a
NUMA domain versus processes running in different
NUMA domains. In general, if the job scheduler has
placed processes that need to communicate “far away”,
their communication latency could increase so much that
the whole application will be affected.

An expert programmer could reduce the intrinsic im-
balance in the application. However, this is not an easy
task, for the imbalance could be caused by the input data
set, not only by the algorithm, and, therefore, it could
only appear with some input and be absent with others.
Even worse is the case of extrinsic imbalance: those fac-
tors are neither under the control of the application nor
of the programmer and there is no straightforward way
to solve this problem. Thus, it is clear that a mechanism
that aims to solve the imbalance of an application should
be transparent to the user, regardless of the programming
model, libraries or input set.

III. RELATED WORK

Traditional solutions to attack the problem of load
imbalance in HPC applications typically use dynamic
data re-distribution. For OpenMP applications load bal-
ancing may be performed using some of the existing
loop scheduling algorithms that assigns iterations to
threads dynamically [4]. MPI applications are much
more complex because data communications are defined
explicitly in the algorithm by programmers. Static ap-
proaches for distributing data using sophisticated tools
have been proposed: for example, METIS [2] analyzes
data and tries to find the best data distribution. These
approach achieve good performance results but have the
drawback that they must be repeated for each input
data set and architecture. Dynamic approaches have also
been proposed in the literature (Schloegel et al. [27]
and Walshaw et al. [34]). The authors try to solve
the load-balancing problem of irregular applications by
proposing mesh repartitioning algorithms and evaluating
the convenience of repartitioning the mesh or adjust it.

Resource re-distribution is another approach that con-
sists of assigning more resources to those processes that
compute for more time. In the case of OpenMP, this
can be useful when using nested parallelism, assigning
more threads to those groups with high load [9]. The
case of MPI is much more complex because the number
of processes is statically determined when starting the
job (in case of malleable jobs), or when compiling the
application (in case of rigid jobs). This problem has been
also approached through hybrid programming models,
combining MPI and OpenMP. Huang and Tafti [12]
balance irregular applications by modifying the com-
putational power rather than using the typical mesh
redistribution. In their work, the application detects the



overloading of some of its processes and tries to solve
the problem by creating new threads at run time. They
observe that one of the difficulties of this method is that
they do not control the operating system decisions which
could oppose their own ones.

Concerning the use of SMT architectures for HPC
applications, several studies [8], [7] show that Hyper-
Threading (the SMT implementation of Intel Processors)
improve performance for some workloads. However, for
other workloads there are many conflicts when accessing
shared resources, creating a negative impact on the
performance. In [8] the study is performed for MPI ap-
plications while in [7] the study focuses in OpenMP ap-
plications. In [7] the authors propose a mechanism that,
given a multiprocessor machine with Hyper-Threading
processors, dynamically deactivates the Hyper Threading
in some processors in order to improve the performance
of the workload under study.

Our proposal is orthogonal to both the thread re-
distribution and the dynamically activating Hyper-
Threading. Let us assume that we want to run an HPC
application on a cluster having several IBM POWERS
processors. The proposal in [7] can be used to determine
in which cores SMT has to be deactivated. For those
cores with the SMT feature active, our proposal can
be used to select the appropriate hardware priority to
reduce imbalancing. Compared with thread-distribution,
our contribution can be seen as low level solution for
load balancing.

IV. OUR PROPOSAL

Balancing a HPC application by hand is a time-
consuming task and may require quite a lot of effort. In
fact, the programmer has to distribute the data among
the processes considering the way the algorithm has
been implemented and the correctness of the application.
Moreover, this work has to be done for each application
and, likely, every time the input changes. As we will
see later, our proposal is transparent to the user and
independent from the applications or the input set.

With the arrival of MT architectures, and in particular
those that allow the software to control processor’s
resource allocation, new opportunities arise to mitigate
the problem of imbalancing in HPC systems. This is
mainly due to the fact that the software is allowed to
exercise a fine control over the progress of tasks, by
allocating or deallocating processor resources to them.
Such a transparent, fine-grain control cannot be achieved
by previous solutions for load imbalancing; in fact, even
if a lot of processors with shared resources have been
introduced in the market since early 90s, very few of
them allow the software to control how internal resources
are shared. We think that allowing the software to control

how to assign shared resources is a key factor for HPC
systems. In this view, having MT processor able to
provide such mechanism will be essential for improving
the performance of HPC systems.

Our solution for balancing HPC applications con-
sists of assigning more hardware resources to the most
compute-intensive processes (the bottleneck). Giving this
process more hardware resource shall decrease its exe-
cution time and, since this process is the bottleneck of
the application, the execution time of the whole MPI
application.

Clearly the underlying processor has to support this
capability to re-assign processor resources among run-
ning threads. Currently, multi-threaded processors like
the IBM POWERS5 [30] and POWERG6 [21] or the Cell
processor [13], [14] provide such a capability with their
thread priority mechanisms: the higher the priority of one
context, the higher the amount of resources it receives.
In this paper, we focus on the IBM POWERS but our
idea is general and can be also applied to other MT pro-
cessors that allow the OS to the allocation of processor’s
resources (for example, partitioning a shared L2 cache
in a multi-core CPU [23], [26]). The IBM POWERS5
processor is used, among others, by ASC Purple, the
11th supercomputer in the Top500 list installed at the
Lawrence Livermore National Laboratory.

We should point out that increasing the performance
of one process by giving it more hardware resources,
does not come for free. In fact, at the same time, the
performance of the other process running on the same
core, therefore sharing the resources with the former
process, reduces. Figure 1 shows a synthetic example
that illustrates this case: in Figure 1(a) P1 shares re-
sources with P2, while P3 shares them with P4; P2,
P3 and P4 take the same amount of time to reach their
synchronization point but P1 takes much more time. As
a result P2, P3 and P4 are idle for a long time. In
Figure 1(b) P1 uses more hardware resources and its
execution time decreases; P2’s execution time, instead,
increases since it runs with less hardware resources. Still
P2 has enough “spare time” and its slowdown does not
affect the application’s performance because it is not
the bottleneck. On the other hand, the performance im-
provement of P1 directly translates into a performance
improvement for the whole application, as it is possible
to see confronting Figures 1(a) and 1(b).

Finally we would like to point out that we made
no assumption on what kind of application, the pro-
gramming model or the input set the programmer has
to use. Our only assumption regards the underlying
processor, which must provide a shared resource control
mechanism. Besides that, our solution is at OS level and
completely transparent to the users, who are free to use
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Fig. 1. Expected effect of the proposed solution

the MPI, OpenMP or whatever programming model or
library they wish. Moreover the approach is dynamic and
the amount of resources assigned to a process can change
according to the input set provided to the application.

V. THE IBM POWERS5 PROCESSOR

The IBM POWERS [15], [16], [17] processor is
a dual-core chip where each core is a 2-way multi-
thread [19] core. Each core has its own private first-level
data and instruction cache. The unified second- and third-
level caches are shared between cores.

The forms of Multi-Threading implemented in the
POWERS5 are Simultaneous Multi-threading and Chip-
Multiprocessing. The main characteristic of SMT pro-
cessors is their ability to issue instructions from the
different threads in the same cycle. As a result, SMTs
not only can switch to a different thread to use the idle
issue cycles in a long-latency operation, like coarse-grain
multi-threading, or in a short-latency operation, like in a
fine-grain multi-threaded, but also fill unused issue slots
in a given cycle.

What makes the IBM POWERS ideal for testing our
proposal is the capability that each core has to assign
some hardware resources to one context rather than to
the other. Each context in a core has a hardware thread
priority, an integer value in the range of 0 (the context is
off) to 7 (the other context is off and the core is running
in Single Thread (ST) mode), as illustrated in Table I.
As the hardware thread priority of a context increases
(keeping the other constant) the amount of hardware
resources assigned to that context increases too.

A. Thread priorities implementation

The way the core processor assigns resources to each
thread is by decoding more instructions from one context
than from the other. The number of decode cycles
assigned to each thread depends on its hardware priority.
In general, the higher the priority, the higher the number
of decode cycles assigned to the thread (and, therefore,
the higher the number of shared resources held by the
thread).
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TABLE I
HARDWARE THREAD PRIORITIES IN THE IBM POWERS
PROCESSOR
Priority | Priority level Privilege level | or-nop inst.
0 | Thread shut off | Hypervisor -
1 Very low Supervisor or 31,31,31
2 | Low User or 1,1,1
3 | Medium-Low User or 6,6,6
4 | Medium User or 2,2,2
5 | Medium-high Supervisor or 5,5,5
6 | High Supervisor or 3,3,3
7 | Very high Hypervisor or 7,7,7

Let us assume two threads (ThreadA and ThreadB)
are running on a POWERS core with priorities X and
Y, respectively. In POWERS the decode time is divided
in time-slices of R cycles: he lower priority thread
receives 1 of those cycles, while the higher priority
thread receives (R — 1) cycles. R is computed as:

R = olX=YI+1

Table II shows the possible values of R and how
many decode slots are assigned to the two threads as
the difference between ThreadA’s and ThreadB’s priority
moves from O to 4. In fact, the amount of resources
assigned to a thread is determined using the difference
between the thread priorities, X and Y. For example,
assuming that ThreadA has hardware priority 6 and
ThreadB has hardware priority 2 (the difference is 4),
then the core fetches 31 times from context) and once
from contextl (more details on the hardware imple-
mentation are provided in [10]). It is clear that the
performance of the process running on contextO shall
increase to the detriment of the one running on contextl.

When any of the threads has priority 0 or 1, the
behavior of the hardware prioritization mechanism is
different, as shown in Table III.

B. Hardware interface for priority management

In POWERS the hardware priority is assigned to
threads by software and can be changed at run-time. A
thread priority can range from 0 to 7, where O means the



TABLE II
DECODE CYCLES ALLOCATION IN THE IBM POWERS WITH
DIFFERENT PRIORITIES

Priority difference R | Decode cycles | Decode cycles
(X-Y) for A for B
0 2 1 1
1 4 3 1
2 8 7 1
3 16 15 1
4 32 31 1
TABLE III

RESOURCE ALLOCATION IN THE IBM POWERS WHEN THE
PRIORITY OF ANY OF THE THREADS IS 0 OR 1

Thr.A | Thr.B | Action

>1 >1 Decode cycles are given to the two threads as
according with the thread’s priorities

1 >1 ThreadB gets all the execution resources;
ThreadA takes what is left over

1 1 Power save mode; both ThreadA and ThreadB
receive 1 of 64 decode cycles

0 >1 Processor in ST mode. ThreadB receives
all the resources.

0 1 1 of 32 cycles are given to ThreadB

0 0 Processor is stopped

thread is switched off and 7 means the thread is running
in ST mode (i.e., the other thread is off). The supervisor
(OS) can set 6 of the 8 mentioned priorities, from 1 to 6;
user software can only set priority 2, 3, 4; the Hypervisor
can always span the whole range of priorities.

The IBM POWERS provides two different interfaces
to change the priority of a thread: issuing an or-nop
instruction or using the Thread Status Register (TSR).
We used the former interface, in which case a thread
has to execute an instruction like or X, X, X, where X
is a specific register number (see Table I). This oper-
ation does not do anything but changing the hardware
thread priority. Besides the priorities, Table I shows the
privilege level required to set each priority and how to
change priority using this interface. The second interface
consists of writing the hardware priority into the local
(i.e., the thread) TSR by means of an mt spr operation.
The actual thread priority can be read from the local
TSR using a mfspr instruction.

VI. THE LINUX KERNEL INTERFACE

Users can only set three priorities: MEDIUM (4),
MEDIUM-LOW (3) and LOW (2). This basically means
that users are only allowed to reduce their priority, since
the MEDIUM priority is the default case. If the user
reduces the thread priority when a process does not
require lot or resources (for example because the process
is waiting for a lock), the overall performance might
increase (because the other thread will receive more
resources and, therefore, might go faster). Thus, it is
recommended that the user reduces the thread priority

whenever the thread processor is executing a low-priority
operation (such as spinning for a lock, polling, etc.).

Modern Linux kernels running on IBM POWERS
processors make use of the hardware priority mechanism
the chip provides. In this Section we will first explore the
standard behavior of the Linux kernel when dealing with
hardware priorities, and then present how we modified
the standard kernel in order to solve our imbalancing
problem by means of the IBM POWERS hardware
prioritization mechanism.

A. Using priorities in the standard Linux kernel

The Linux kernel only exploits hardware priorities in
a limited number of cases: the general idea is to reduce
the priority of a process that is not performing any useful
operation and to give more resources to the process
running on the other context.

The standard Linux kernel makes use of the thread

priorities in three cases:

1) The processor is spinning for a lock in kernel
mode. In this case the priority of the spinning pro-
cess is reduced (the process is not really advancing
in its job).

2) The kernel is waiting for some operations to com-
plete. This happens, for example, when the kernel
wants a specific CPU to perform some operation
by means of a smp_call_function() (for
example, invalidating its TLB) and cannot proceed
until the operation has completed. In this case the
priority of the CPU is decreased until the operation
completes.

3) The kernel is running the idle process because
there is no other process ready to run. In this case
the kernel reduces the priority of the idle CPU
and, eventually, put the core in Single Thread (ST)
mode.

In all these cases the kernel reduces the priority of the
context, restoring the priority to MEDIUM when there is
some job to perform. The hardware thread priority is
also reset to MEDIUM as soon as the kernel executes an
interrupt or an exception handler as well as a system call.
In fact, since the kernel does not keep track of the actual
priority, it cannot restore the current priority. Therefore,
the kernel simply resets the priority to MEDIUM every
time it starts to execute an interrupt handler (or a system
call), so that it can be sure that those critical operations
will be performed with enough resources.

B. Modification on the Linux kernel

In order to check that our approach can be used for
balancing the HPC application, we had to modify the
original kernel code for two reasons:



1) every time the CPU receives an interrupt, the
interrupt handler sets the priority back to MEDIUM,
regardless of the current priority. We want to
maintain the given priority even after an interrupt
is received or during the interrupt handler itself;
thus, we removed the code that makes use of
the hardware thread priority capabilities from the
handlers.

2) only hardware priorities 2 (LOW), 3 (MEDIUM-
LOW) and 4 (MEDIUM) can be set by a user-level
program. Priorities 1 (VERY LOW), 5 (MEDIUM-
HIGH) and 6 (HIGH) can only be set by the
Operating System (OS). Priorities 0 (context off)
and 7 (VERY HIGH, ST mode) can only be set
by the Hypervisor. We developed an interface that
allows the user to set all the possible priorities
available in kernel mode. A user who wants to set
priority N to process <PID> shall simply write to
a proc file, like:
echo N > /proc/<PID>/hmt_priority

In this moment the patch only provides a mechanism

to set all the priorities (available at OS level) from user
applications. It is responsibility of the user applications
(or run time systems) to balance the system load using
this interface. This is the first step to prove that our
proposal is a good solution for the problem of imbal-
ancing in HPC. Our next step will be to have a system
which dynamically changes the priority of the running
processes so that more resources are assigned to the
most intensive processes automatically. We developed
the patch for the standard Linux 2.6.19.2 so that it is
not intrusive and has no impact on the performance of
our experiments.

VII. EXPERIMENTAL RESULTS

In order to validate our proposal we performed ex-
periments on an IBM OpenPower 710 server, which has
one POWERS processor.

Since MPI is the most common protocol, we tested
our proposal using MPI applications (in the experiments
we used the MPI-CH 1.0.4pl implementation of MPI
protocol).

We present our results for three different cases: Sec-
tion VII-A shows how the IBM POWERS priority mech-
anism works using our micro-benchmark (MetBench);
Section VII-B provides details on how we used the hard-
ware priorities to balance a widely used benchmark (BT-
MZ) and improve its performance. Finally Section VII-C
presents the results for a real application frequently
executed on MareNostrum (SIESTA).

In order to present experiments in a simple way, we
used two metrics: first, the percentage of imbalance
(computed as the maximum waiting time in percentage

of the processes in the MPI application); second, the
total execution time of the application. We used PAR-
AVER [20], a visualization and performance analysis
tool developed at CEPBA, to collect data and statistics
and to show the trace of each process during the tests.

A. MetBench

MetBench (Minimum Execution Time Benchmark) is
a suite of MPI micro-benchmarks developed at BSC
whose structure is representative of the real applica-
tions running on MareNostrum. MetBench consists of
a framework and several loads. The framework is com-
posed by a master process and several workers: each
worker executes its assigned load and then wait for
all the others to complete their task. The role of the
master is to maintain a strict synchronization between
the workers: once all the workers have finished their
tasks, the master eventually starts another iteration (the
number of iterations to perform is a run time parameter).
The master and the workers only exchange data during
the initialization phase and use an mpi_barrier () to
get synchronized.

One of the goals of MetBench is to allow researchers
at BSC to understand the performance and capabilities of
a processor or a cluster. In order to do that, we developed
several loads, each one stressing a different processor
resource (the Floating Point Unit, the L2 cache, the
branch predictor, etc) for a given amount of time.

In this experiment we introduce imbalancing in the
MPI application by assigning to a worker a larger load
than the one assigned to the worker on the same core. In
this way, the faster worker will spend most of its time
waiting for the slower worker to process its load. As we
will see in Section VII-B and Section VII-C this scenario
is quite common for both standard benchmarks and real
applications. Figure 2 shows the effect of the proposed
solution on MetBench. Each horizontal line represents
the activity of a process and each color represents a dif-
ferent state: dark-grey bars show computing time while
light-grey bars show waiting time (at the end of each
computation phase there is a black bar that represents
statistical operations). In this example, processes P1 (the
master), P2, and P3 are mapped to the first core of the
POWERS, while processes P4 and P5 are mapped to
the other core. The x-axis represents time.

Case A: Figure 2(a) represents our reference case,
i.e., the MPI application is running with default priorities
(4). As we can see from figure 2(a) MetBench shows a
great imbalance (75.69%, as reported in table IV): more
specifically, processes P1 and P3 spend most of their
time waiting for processes P2 and P4 to complete their
computing phase.
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Fig. 2. Effect of the proposed solution on MetBench. Each trace represents only some iterations of the application.

Case B: Using our solution we increased the priority
of P2 and P4 (the most computing intensive processes)
up to 6, while the priority of P1 and P3 are set to 5
(remember from Section V-A that what really matters
is the difference between the thread priorities, here P1
and P3 are running with less priority than in Case A).
Figure 2(b) shows how the imbalance has been reduced
from 75.69% to 48.82%; this improvement translates to
a shorter total execution time (from 81.64 sec to 76.98
sec, 5.71% of improvement).

Case C: Then we tried to reduce again the amount
of hardware resources assigned to P1 and P3, hoping
to speed P2 and P4 up. Indeed, we obtained an even
more balanced situation where all the processes compute
for (roughly) the same amount of time (the imbalance is
1.96%). The total execution time reduces to 74.90 sec
(8.26% of improvement over Case A).

Case D: Next, we reduced again the amount of
resources given to P1 and P3. As we can see from
Figure 2(d) we reversed the imbalance, i.e., now P2
and P4 are so much faster than P1 and P3 that they
spend most of their time waiting. As a result both the
imbalance (26.62%) and the execution time (95.71 sec)
increase.

Case D shows an interesting properties of the IBM
POWERS hardware priority mechanism: the hardware
thread priority implementation is a powerful tool but the
performance of the penalized process can be reduced
much more than linearly (in fact, exponentially), thus, it
could become the new bottleneck.

B. BT-MZ

Block Tri-diagonal (BT) is one of the NAS Parallel
Benchmarks (NPB) suite. BT solves discretized versions

TABLE IV
METBENCH BALANCED AND IMBALANCED CHARACTERIZATION

Test | Proc | Core | P | Comp | Sync Imb Exec.
% % % Time
A Pl 1 4 2432 | 75.67 | 75.69 | 81.64s
P2 1 4 98.99 1.00
P3 2 4 24.31 | 75.69
P4 2 4 99.99 0.00
B P1 1 5 51.16 | 48.83 | 48.82 | 76.98s
P2 1 6 99.82 0.18
P3 2 5 51.18 | 48.81
P4 2 6 99.98 0.01
C P1 1 4 98.96 1.03 1.96 | 74.90s
P2 1 6 98.56 1.43
P3 2 4 97.01 2.99
P4 2 6 98.37 1.63
D P1 1 3 99.87 0.12 | 26.62 | 95.71s
P2 1 6 73.25 | 26.74
P3 2 3 99.72 0.27
P4 2 6 73.25 | 26.74

of the unsteady, compressible Navier-Stokes equations
in three spatial dimensions, operating on a structured
discretization mesh. BT Multi-Zone (BT-MZ) [18] is a
variation of the BT benchmark which uses several mesh
(named zone) for, in realistic applications, a single mesh
is not enough to describe a complex domain.

Besides the complexity of the algorithm, BT-MZ
shows a behavior very similar to our MetBench bench-
mark: every process in the MPI application performs
some computation on its part of the data set and then
exchanges data with its neighbors asynchronously (us-
ing mpi_isend () and mpi_irecv ()); after this
communication phase (which lasts for a very short
time, around 0.10% of the total execution time) each
process waits (with a mpi_waitall () function) for
its neighbors to complete their communication phases.
In this way, each process gets synchronized with its
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Fig. 3.

neighbors (note that this does not mean that each process
gets synchronized with all the other processes). Once a
process has exchanged all the data it had to exchange, a
new iteration can start and the previous behavior repeats
again till the end of the application (in our experiments
we used BT-MZ with default values: class A with 200
iterations).

Case A: Figure 3(a) shows the BT behavior in the
reference case, i.e. when process P; is assigned to C' PU;
and the priority of all the processes is 4. After an
initialization phase (white bars at the beginning of the
execution of each thread), all the processes reach a
barrier (synchronization point). From this point on, the
real algorithm starts: during every iteration, each process
alternate computing phases (dark grey) with synchro-
nization phases (light grey) at the end of communication
phases (black).

It is easy to see from figure 3(a) that BT-MZ shows
a great imbalance (82.23%), as it is also reported in
table V3.

The imbalance is caused by the fact that some pro-
cesses (for example process P1) have a small part of
the data to work on, while other processes (for example,
processes P4) have a large amount of data to take care
of. It is also clear that process P4 is the bottleneck of
the application and that speeding up this process will
improve overall performance.

In order to solve the imbalance introduced by data
repartition in BT-MZ, we ran process P1 and P4 on
the same core and assigned more hardware resources to
the latter, improving its performance while decreasing
P1’s performance. This mapping should allow us to
give a large amount of resources to process P4 without

3Even if the goal of this paper is not to show whether SMT
processors are useful in HPC or not, the table also shows the ST mode
performance (only one process per core) of the application.

(d) BT-MZ Case D

Effect of the proposed solution on BT-MZ. Each trace represents only some iterations of the application.

TABLE V
BT-MZ BALANCED AND IMBALANCED CHARACTERIZATION

Test | Proc | Core | P | Comp | Sync Imb Exec.
% % % Time
ST P1 1 7 49.33 | 50.59 | 50.27 | 108.32s
P2 2 7 99.46 0.32
A Pl 1 4 17.63 | 82.32 | 82.23 81.64s
P2 1 4 2891 | 71.02
P3 2 4 66.47 334
P4 2 4 99.72 0.09
B P1 1 3 52.33 | 4749 | 7093 | 12791s
P2 2 3 99.64 0.14
P3 2 6 28.87 | 71.07
P4 1 6 46.26 | 53.65
C P1 1 4 65.32 | 34.48 | 45.99 75.62s
P2 2 4 99.68 0.12
P3 2 6 53.78 | 46.11
P4 1 6 85.88 | 14.44
D P1 1 4 82.73 | 17.10 | 33.38 66.88s
P2 2 4 73.68 | 26.17
P3 2 5 66.40 | 33.47
P4 1 6 99.72 0.09

reversing the imbalance, i.e., without making process
P1 slower than P4 like it was the case for MetBench
(Case D). In fact, this mapping seems reasonable, for
our goal is to increase the performance of P4 (the most
computing intensive process) and we know that, with this
operation, we will reduce the performance of the process
running on the same core with P4. We chose P1 because
it is the process with the shortest computation phase.
Case B: In our first attempt to reduce the imbalance
we assigned priority 3 to processes Pl and P2 and
priority 6 to processes P3 and P4. Figure 3(b) shows
how 1) the imbalance has been inverted (process P1
now takes longer than P4 and 2) the new bottleneck is
now process P2, which is also running with priority 3.
Even if the imbalance has been reduced (from 82.23%
to 70.93%), the total execution time now takes longer
(127.91 sec instead of 81.62 sec), which means the new



bottleneck runs for much more than the previous one.

Case C: In order to restore the original relative
behavior between process P1 and P4 we incremented
the resources assigned to process P1. Figure 3(c) shows
that P1 now runs for less time than P4, as in Case A.
The imbalanced has been reduced from 70.93% of Case
B to 45.99% in Case C and giving more resource to P2
(which is again the bottleneck) reduced the total execu-
tion time to 75.62 sec, with a 7.37% of improvement
with respect to Case A.

Case D: Finally, we can argue that P2 and P3 execute
their operation on a similar amount of data, therefore the
amount of resources given to each process should not be
as different as for P1 and P4. In our last test, we still
assigned priority 4 to P1 and 6 to P4, as in the previous
case, but we assigned priority 5 to P2 and 6 to P3,
sharing resources between these two processes running
on the same core more equally. Figure 3(d) shows that
the imbalance has been reduced again with respect to
Case C, in fact, now P2 and P3 compute more or less
for the same amount of time. Also the new bottleneck
is P4, which takes much shorter than P2 in Case C.
Table V shows how the total execution time has also been
reduced to 66.88 sec, with a 18.08% of improvement
over the reference Case A.

C. Siesta

Our last experiment consists of running SIESTA as an
example of real application. SIESTA [31] is a method
for ab initio order-N materials simulation, specifically
it is a self-consistent density functional method that
uses standard norm-conserving pseudo-potentials and a
flexible, numerical linear combination of atomic orbitals
basis set, which includes multiple-zeta and polarization
orbitals.

The application presents an imbalance caused by both
the algorithm and the input set. SIESTA behavior, how-
ever, is not constant during each iteration, as can be seen
in Figure 4(a); this makes our static balancing solution
not as good as for the BT-MZ case. Yet, we achieved a
improvement of 8.1% with respect to the reference case
(Case A).

Case A: Like for BT-MZ, Case A is the reference
case, i.e., where process P; is assigned to C'PU; and the
priority of all the processes is set to 4. Figure 4(a) shows
the trace for this reference case. The program starts
with an initialization phase (11.99% of the total time)
at the end of which each process in the application must
reach a barrier. The initialization phase already presents
some little imbalance, which evidences how the input set
makes SIESTA not balanced. In the internal parts, each
process exchanges data only with a subset of the other
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processes in the application, and then reaches a synchro-
nization point (WaitAll () ), waiting for all the others
to complete their jobs. In the last part, the processes
finalize their work (13.41% of the total time): after the
last barrier, each process computes its function on its
sub-set of data and then ends. A complete execution of
the program in this configuration takes 858.57 secs.

TABLE VI
SIESTA BALANCED AND IMBALANCED CHARACTERIZATION
Test | Proc | Core | P | Comp | Sync Imb Exec.
% % % Time
ST P1 1 7 81.79 | 14.22 8.88 | 1236.05s
P2 2 7 93.72 5.34
A P1 1 4 7594 | 1542 | 1443 858.57s
P2 1 4 75.24 | 18.11
P3 2 4 82.08 | 10.71
P4 2 4 93.47 3.18
B P1 2 4 79.57 | 14.67 5.99 84791s
P2 1 4 87.06 | 10.15
P3 1 5 72.04 | 12.69
P4 2 5 77.73 8.68
C P1 2 4 83.04 | 10.59 1.46 789.20s
P2 1 4 79.66 | 10.52
P3 1 4 80.78 9.41
P4 2 5 78.74 9.13
D P1 2 4 90.76 5.60 | 16.64 976.35s
P2 1 4 65.74 | 22.25
P3 1 4 68.08 | 19.36
P4 2 6 63.95 | 18.10

Case B: As we can see from the trace in Figure 4(a)
is not easy to understand how to balance the application
and whether our balancing approach is worth. However,
Table VI shows some more information about SIESTA
(hard to retrieve from the trace): processes P1 and P2
spend a considerable amount of time waiting for P3 and
P4 to reach the barrier. Thus, the first hint would be to
put P1 and P3 on one core and P2 and P4 on the
other and then play with priority. We tried this case but
then we realized that P2 and P3 have almost the same
amount of data to work on. Thus, in Case B we put P2
and P3 on the first core and P1 and P4 on the second
one and increased the priority of P3 and P4 to 5. In this
case we achieved a little improvement of 1.24% (the total
execution time is 847.91 sec). Figure 4(b) shows that, in
this new configuration, P2 is the new bottleneck of the
finalization part.

Case C: In the previous case we obtained a little
improvement, still the application results quite imbal-
anced. We realized that, since P2 and P3 work, more
or less, on the same amount of data, using a different
priority for these two processes may introduce even
more imbalance. Figure 4(b) shows that, indeed, this
is the case. In Case C we restored the original relative
behavior between process P2 and P3 setting both their
priority to 4 (i.e., the difference is 0). Figure 4(c)
shows how the application is now more balanced. For
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Fig. 4. Effect of the proposed solution on SIESTA.

example, looking at the initialization and the finalization
part, it is possible to see that the processes are much
more balanced than in Case A and Case B. In fact, re-
balancing SIESTA reduces the total execution time to
798.20 sec, an improvement of 8.1% with respect to the
reference case.

Case D: Following the same idea of the previous case
(i.e., leave P2 and P3 with the same priority and play
with P1 and P4), we increased the amount of resources
assigned to P4, penalizing P1. Figure 4(d) shows how
we reverse the imbalance: SIESTA is again imbalanced,
though in a different way than in the reference case. In
Case D, P1 (the process with less hardware resources)
is the bottleneck (in the initialization, finalization and
most of the internal phases) and the total execution time
increases to 976.35 sec, with a loss of 13.72%.

BT-MZ and SIESTA are two cases of non-balanced
HPC applications, though their imbalance is quite dif-
ferent. BT-MZ executes several iterations, all of them
similar from the execution time, CPU utilization and
imbalance point of view. SIESTA also executes several
iterations but each iteration is not necessarily similar to
the previous or the next one. In particular, the process
that computes the most is not the same across all the
iterations. For example, in the i-th iteration P1 could be
the bottleneck while in the (i+/)-th the most computing
process could be P4. This behavior suggests that a good
balancing mechanism would prioritize P1 in the i-th and
P4 in the i+1-th iteration. Our static approach does not
allow us to play in this way as we assign the priority
at the beginning of the execution and never change
them during the execution. We argue that a dynamic
mechanism is required to correctly set priorities for
applications that change their behavior throughout their
execution. Since real applications are likely to behave
like SIESTA rather than like BT-MZ, we intend to

(d) SIESTA Case D

extend our balancing mechanism as part of the Operating
System, so that the OS can dynamically set the priority
of each process according to actual application behavior.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we showed how allowing software to
control the amount of shared resources assigned to each
thread in a MT processor may improve the performance
of HPC applications. In fact, some applications show
an imbalanced behavior, i.e., some processes require
more time to complete their computing phase while all
the other processes are waiting at some synchronization
point and cannot move forward. While the imbalancing
can be caused by either external or internal factors (most
likely both), it is clear that it may reduce the performance
of an HPC application, resulting in a significant waste
of resources in Supercomputers. Our results show how
using our modified Linux kernel to control a processor
capable to dynamically assign processor resources to
running threads (the IBM POWERS in our case), reduces
the application imbalancing and, therefore, improves
overall performance. The experiments we performed
show an improvement up to 18% for a widely used BT-
MZ benchmark and up to 8.1% for a real application.
We achieved these results without putting the burden
of balancing the application on the programmer and
regardless of the used programming model.

Our results suggest that an automatic mechanism
could even increase the actual improvement, thus, moti-
vating the use of MT processors with the capability to
re-assign hardware resources between threads in future
Supercomputers. We plan to extend our OS by intro-
ducing an algorithm that will automatically detect if
a process deserves an higher amount of resources and
which process should be deprived of those resources so
that imbalancing can be reduced.
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