
A Game Theoretical Data Replication Technique for Mobile Ad Hoc Networks

Samee Ullah Khan1, Anthony A. Maciejewski1, Howard Jay Siegel1,2

1Department of Electrical and Computer Engineering
2Department of Computer Science

Colorado State University
Fort Collins, CO 80523

{samee.khan, aam, hj}@colostate.edu

Ishfaq Ahmad
Department of Computer Science and Engineering

University of Texas
Arlington, TX 76019
iahmad@cse.uta.edu

Abstract

Adaptive replication of data items on servers of a mobile
ad hoc network can alleviate access delays. The selection
of data items and servers requires solving a constrained op-
timization problem, that is in general NP-complete. The
problem is further complicated by frequent partitions of the
ad hoc network. In this paper, a mathematical model for
data replication in ad hoc networks is formulated. We treat
the mobile servers in the ad hoc network as self-interested
entities, hence they have the capability to manipulate the
outcome of a resource allocation mechanism by misrepre-
senting their valuations. We design a game theoretic “truth-
ful” mechanism in which replicas are allocated to mobile
servers based on reported valuations. We sketch the exact
properties of the truthful mechanism and derive a payment
scheme that suppresses the selfish behavior of the mobile
servers. The proposed technique is extensively evaluated
against three ad hoc network replica allocation methods:
(a) extended static access frequency, (b) extended dynamic
access frequency and neighborhood, and (c) extended dy-
namic connectivity grouping. The experimental results re-
veal that the proposed approach outperforms the three tech-
niques in solution quality and has competitive execution
times.

This research was supported by the NSF under grant CNS-0615170 and by
the Colorado State University George T. Abell Endowment.

1 Introduction

Due to the continuous mobility of servers, an ad hoc
network suffers from frequent disconnections. This phe-
nomenon is undesirable when mobile servers must access
data from each other. Because one cannot control network
disconnections, an alternative solution to this problem is to
replicate data onto mobile servers so that when disconnec-
tions occur, mobile servers can still access data [14]. With
replication, data retrieval becomes faster because requests
are processed locally or from mobile servers in close prox-
imity. Replication also improves data reliability and fault
tolerance. Furthermore, replication also conserves energy
by traversing fewer radio links to access the closest repli-
cated data.

The ad hoc data replication problem (ADRP) was first in-
troduced by Hara [12], and further extended, e.g., [13–15],
to incorporate various consistency related issues. We build
on the above mentioned work and address the selfish be-
havior of mobile servers in our solution concept. In ad hoc
networks, resources may belong to different self-interested
servers [19]. These servers may manipulate the resource
(replica) allocation mechanism for their own benefit by mis-
representing their preferences, which may result in severe
performance degradation [10]. Such scenarios are often
modeled and studied using game theory (GT).

As indicated by Arrow’s impossibility theorem for sat-
isfactory voting systems [5], aggregating player valuations
(or preferences) to reach a collective decision is a difficult
problem. It is further complicated by the possibility that the
players might try to manipulate the mechanism. Nissan and

Ronen [29] were the first to consider discrete optimization
problems in the context of GT, where the correct valuation
is not directly available to the mechanism. Instead, play-
ers report some valuation to the mechanism, but they might
lie. Their contribution is significant in the sense that they
break the traditional barriers of GT by explicitly stating that
the mechanism’s objective function may have nothing to do
with social welfare, which is the crux of the theory of col-
lective decision making. Hence, many optimization prob-
lems can now be studied by relating player valuations to
the objective function of the mechanism because both rely
on the player’s valuation and both determine the player’s
strategies. Nissan and Ronen termed their framework as
Algorithmic Mechanism Design (AMD).

AMD can be used to force the players to always tell
the truth and follow the rules by laying out a set of incen-
tives and repercussions. In the literature, such mechanisms
are known as “truthful” mechanisms [3]. Each player in
AMD has some valuation function that quantifies its bene-
fit or loss. Every player reports the output of its valuation
function to a centralized mechanism, which chooses an out-
come that optimizes a given objective function and makes
payments to players. The design of payments is important
because side payments are used to provide incentives to the
players to report to the mechanism truthfully.

In this paper, we design a truthful mechanism for the
ADRP, called Data Replication Game (DRG), where each
player’s valuation is naturally expressed by a single posi-
tive real number. In DRG we restrict the form of valuations
but allow general objective functions. This is contrary to
Vickrey-Clarke-Groves (VCG) mechanisms, which allow
arbitrary valuation functions but apply only to utilitarian ob-
jective functions [10]. Thus, our results are also applicable
to optimization problems other than ADRP. The outcome of
the mechanism we consider will always define some set of
replica allocations at the player’s mobile server. A player’s
valuation will always be the cost it incurs per replica, and
this valuation will have some physical significance in terms
of the amount of traffic (read requests from servers that do
not hold replicas and are the closest to the player’s mobile
server plus updates) that it processes. The goal of a player
is to maximize its profit, which is payment minus cost. The
goal of the mechanism is to minimize the total data item
transfer cost in the network due to the read and update ac-
cesses. In DRG, we use side payments to encourage players
to tell the truth. It is known that for some output functions
no side payments can make the resulting mechanism truth-
ful [3,29]. However, Archer and Tardos [2] have shown that
output functions that can be used in truthful mechanisms
are those where the resource allocation made to a player de-
creases as the cost increases, where each player’s valuation
function is a composed of only one parameter. We build on
that result and show that the same outcome holds when each

player’s valuation function is composed of multiple param-
eters.
Our contributions: This paper is principally concerned
with designing an efficient and effective data replication
technique for ad hoc networks.

1. We derive a data access cost model for ADRP that
is general, flexible, and adaptable for various applica-
tions of ADRP.

2. We design a truthful mechanism to suppress the selfish
behavior of the servers and derive a payment scheme
where each player’s valuation function is a composi-
tion of multiple parameters.

3. It is known that even when we have a truthful mech-
anism and a payment scheme the problem to find an
optimal allocation algorithm is NP-complete [29]. We
derive a polynomial-time allocation algorithm that in
the worst case guarantees an allocation that is (2 + ε)-
optimal (twice the cost of an optimal allocation). The
worst case running time of the allocation algorithm is
O(mn2), where m and n are the total number of mo-
bile servers and data items, respectively.

4. The proposed GT technique is extensively evaluated
against three state-of-the-art ad hoc network replica
placement methods: (a) extended static access fre-
quency [13], (b) extended dynamic access frequency
and neighborhood [14], and (c) extended dynamic con-
nectivity grouping [15]. Experimental data is recorded
to measure the effects of: (a) relocation period, (b) read
access frequency, (c) update access frequency, and (d)
server storage capacity. The comparative studies re-
veal that the proposed approach outperforms the three
methods in solution quality and has competitive exe-
cution times.

The remainder of this paper is organized as follows. In
Section 2, we give a brief description of the related works
and discuss how our approach is different from previous
work in this field. We describe the system model and de-
rive a mathematical model for ADRP in Section 3. Section
4 explains the DRG technique for ADRP, followed by ex-
perimental evaluations in Section 5. Finally, in Section 6,
we summarize this paper.

2 Related Work

The ADRP can be considered as an extension of the clas-
sical file allocation problem (FAP) [6], but is more compli-
cated because of factors such as the mobility of servers and
potential network disconnections. Several extensions of the
FAP have been studied for static networks such as the data
allocation problem (DAP) [1], the data replication problem
(DRP) [27], the data staging problem (DSP) [35, 36], and
video allocation problem (VAP) [25]. All of the above men-
tioned methods and problem formulations are related to the

ADRP, because all address the improvement of data acces-
sibility by replicating data items. The current work differs
from the previous work in that different target systems are
considered with different communication and storage char-
acteristics. Furthermore, because server mobility is not an
issue in static networks, it is usually sufficient to create a
few replicas of a data item, and thus no special strategy is
required that addresses network disconnections.

Several strategies for caching data contents in mobile
computing environments have been proposed [17, 18], that
address the issue of keeping consistency between original
data and its caches. They are considered to be similar to
our approach, because both allocate data on mobile servers.
However, these strategies assume only one-hop wireless
communication. Thus, they are completely different from
our approach which allows multi-hop communication in ad
hoc networks.

Another closely related research topic is that of push-
based information systems in which a server repeatedly
broadcasts data to clients using a broadband channel [9,31].
In these strategies, clients are typically mobile servers and
cache replacement is determined based on several parame-
ters such as the access frequency from each mobile server to
each data item, the broadcast frequency of each data item,
and the time remaining until each item is broadcast next.
They are also considered to be similar to our approach.
However, when comparing the strategies for caching and
replication, both approaches are completely different be-
cause in push-based information systems the clients do not
cooperatively share cached data items.

Hara’s work [12–15], is the closest among all of the
related work on ADRP. However, our work differs from
Hara’s in: (a) deriving a mathematical problem formulation
for ADRP, (b) proposing an optimization technique that al-
locates replicas so as to minimize the network traffic under
storage constraints with “read from the nearest” and “push
based update through the primary mobile server” policies,
and (c) using a strict consistency model as opposed to an
opportunistic consistency model.

The game theory literature contains an enormous body
of work on mechanism design, also called implementation
theory. See [28] for an introduction to the field, or the
survey [16]. The Gibbard-Satterthwaite theorem [8] is the
main negative result. It states that, when the players’ do-
main of possible preferences is sufficiently rich, truthful
non-dictatorial mechanisms do not exist. In light of this,
it is common to specialize by allowing side payments to
the players, and assuming each player tries to maximize
the sum of its payment plus its intrinsic valuation of the
outcome. The celebrated Vickrey-Clarke-Groves (VCG)
mechanism [10] is the main general positive result here. It
handles arbitrary valuation functions, but only the utilitarian
objective function, that maximizes the sum of the players’

valuations. Nevertheless, this objective function captures
some interesting combinatorial problems, in addition to the
more usual social welfare functions [4]. For instance, the
shortest path in a graph with respect to edge costs maxi-
mizes social welfare because it minimizes the total cost in-
curred.

Recently, game theoretical analysis has gained a consid-
erable amount of popularity for the study of self-interested
entities in distributed computing systems [20–24,26]. These
studies are considered to be similar to our approach be-
cause they all use game theoretical VCG analysis; how-
ever, the above mentioned research solves the DRP, whereas
our focus is the ADRP. More specifically, there is a signif-
icant difference between the definition of truthfulness used
in [23, 24] and the one used in this paper. Indeed, the ran-
domized replica allocation technique in [23, 24] yields a
truthful dominant strategy for any possible random choice
of the algorithm, however, the mechanism is truthful in ex-
pectation, a weaker notion of truthfulness [28]. A random-
ized mechanism can be seen as a probability distribution
over deterministic mechanisms: an element x is selected
randomly and the corresponding mechanism is used. So, the
mechanism in [23, 24] is truthful for every fixed x. More-
over, in [20], the notion of utility is replaced by the ex-
pected utility one: even though the expected utility is max-
imized when telling the truth, for some x there might ex-
ist a better (untruthful) strategy. We distinguish ourselves
from the above mentioned work by deviating in the def-
inition of truthfulness, and say that the replica placement
mechanism is deterministic and truthful in implementation,
the strongest form of truthfulness [28].

The work reported in [26] is notable because it explicitly
chooses not to maximize the social welfare, but maximize
revenue instead. In their model, the cost of creating an extra
copy (replica) of data is assumed to be negligible. There-
fore, the socially optimal allocation is to allocate replicas
to everyone, but the replica placement technique does not
do this because it generates no revenue. Highlighting the
fact that revenue is a major concern, Ref. [23] suggests ex-
amining auctions (or mechanisms) that do not necessarily
maximize the social welfare, and characterizes all truthful
mechanisms for this problem. The characterization of [23]
is a special case of ours, for bounded (predefined number
of replicas in the system) replica allocations, and it also ap-
pears implicitly in [20–22]. In [24], the authors also ignore
the social welfare, instead they attempt to compute various
functions of the agents valuations (such as the order statis-
tics) using auctions of minimal communication complexity.
Our current paper differs from the above in considering a
game theoretical replica allocation mechanism that imple-
ments social welfare within which each players valuations
accurately describes their preferences and needs.

All of the above referenced papers ([20–24, 26]) are in-

Table 1. Notations and their meanings.
symbols meaning
m number of servers in the ad hoc network
n number of data items in the ad hoc network
Ok k-th data item
ok size of Ok

M i i-th mobile server
si storage capacity of M i

ri
k read frequency for Ok from M i

Ri
k aggregation of ri

k

ui
k update frequency for Ok from Pk

U i
k aggregation of ui

k

NN i
k nearest neighbor of M i holding Ok

c(i, j) communication cost between M i and M j

Pk primary mobile server of Ok

Rk replication scheme of Ok

NTC network transfer cost
D total NTC
DRG data replication game
M game theoretical mechanism
P i player i representing M i in DRG
ti true data of P i

bi bid reported by P i toM
rai replica allocation for P i

spired by the work reported in [2], where one-parameter
players are considered for the problem of combinatorial
auction. In our current work, truthfulness is achieved with
respect to the expected utility and with high probability (i.e.,
the probability that an untruthful declaration improves the
player utility is infinitesimally small). The game theoretical
results of our current paper make a considerable leap in ex-
tending the results of [2] by showing that the same outcome
holds when each player’s valuation function is composed of
multiple parameters. To the best of our knowledge, stud-
ies to replicate data items in ad hoc networks using game
theoretical techniques have never been made.

3 System Model and Problem Description

3.1 Ad Hoc Data Replication Problem
Formulation

Consider an ad hoc network comprising m mobile
servers, with each mobile server having its own process-
ing power and storage. Let M i be the i–th mobile server
and si the total storage capacity (in simple data units, e.g.,
blocks) of M i where 1 ≤ i ≤ m. The m mobile servers
can communicate with each other using a wireless commu-
nication network. A wireless channel between two mobile
servers M i and M j (if it exists) has a positive integer c(i, j)

associated with it, giving the communication cost for trans-
ferring a data unit between mobile servers M i and M j . If
the two mobile servers are not one-hop connected by a wire-
less channel, then the above cost is given as the sum of the
costs of all the wireless channels (multi-hop) in a chosen
path from server M i to server M j . Without loss of gener-
ality, we assume that c(i, j) = c(j, i). Such an assumption
can be relaxed when the upstream and downstream band-
widths vary for a wireless channel.

Let there be n data items, each identifiable by a unique
name Ok and size in simple data units ok where 1 ≤ k ≤ n.
Let ri

k be the total number of reads initiated from M i for
Ok during a given period of time. Our replication policy
assumes the existence of one primary copy for each data
item in the system. Let Pk be the mobile server that holds
the primary copy of Ok, i.e., the only copy in the network
that cannot be de-allocated, henceforth referred to as the
primary mobile server of the k-th object. Let uk be the total
number of updates initiated from Pk for Ok during a given
period of time. Each primary mobile server Pk, contains
information about the whole replication scheme Rk of Ok,
i.e., Rk is the set of mobile servers that hold a replica of Ok.

When a mobile server M i initiates a read request ri
k for

a data object Ok, the request is redirected to the nearest
neighbor mobile server NN i

k that holds either the original
or a copy of the data item Ok. That is, NN i

k is the mobile
server where reads from M i for Ok, if served there, would
incur the minimum possible communication cost. We as-
sume that only the mobile server Pk (that “owns” the data
item) can perform such operations. Pk updates a data object
Ok by sending broadcasts to the set of mobile servers that
hold the replicas of Ok, i.e., to all M i ∈ Rk.

For the ADRP under consideration, we are interested in
minimizing the total network transfer cost (NTC) due to
data movement, i.e., the data item movement due to the read
and update accesses. There are two components that affect
NTC. The first is due to the read requests. Let Ri

k denote
the NTC due to the read requests by M i for object Ok:

Ri
k = ri

kokc(i, NN i
k). (1)

The second component is the cost that occurs due to the
updates. Let Uk be the NTC due to the update requests from
Pk for object Ok:

Uk = ukok

∑
∀i∈Rk

c(i, Pk). (2)

The total NTC, denoted as D, due to reads and updates is
given by

D =
n∑

k=1

[
Uk +

m∑
i=1

Rk
i

]
. (3)

D is meaningful only when the entire ad hoc network is
connected. If we use the same cost model when consider-

ing disconnections, the cost represented by D would go to
infinity because c(i, j) =∞. To avoid such a phenomenon,
we replace the case when c(i, j) = ∞ with a very large
number N . N can be considered as the cost of using certain
connectivity related measures when an ad hoc network is
disconnected such as reconfiguration of the working area,
enlargement of the transmission radius, or temporary en-
hanced connection periods where an external entity is intro-
duced in the system to reconnect partitioned networks [15].

Let Xik = 1 if M i holds a replica of object Ok, and
0 otherwise. The Xiks define an m × n replication ma-
trix, named X , containing boolean elements. Using the
above formulation, the ADRP can be stated as: “Find the
assignment of 0/1 values in the X matrix that minimizes D;
subject to the storage capacity constraint,

∑n
k=1 Xikok ≤

si ∀(1 ≤ i ≤ m); and subject to the primary copies policy,
XPkk = 1 ∀(1 ≤ k ≤ n).”

Application scenario: In many military operations, ad hoc
networks are used as a communication medium to facilitate
mobility. One key condition for a successful operation is
to have a collaborative workspace with sufficient data ex-
changes so that collective decision making is possible. This
may be problematic when accesses must be made through
potentially expensive or slow connections. Data replication
can alleviate access delays. However, when an ad hoc net-
work is partitioned, access to the updated data may not be
possible. To ensure reliability, an external entity (e.g, an
unmanned aerial vehicle) can be used to reconnect the net-
work. Using the ADRP formulation, our goal is to find
a replica allocation technique that effectively address the
issues of (a) mobility, (b) accessibility, and (c) reliability,
while minimizing the NTC.

4 Game Theoretical Technique

4.1 Notations and Building Blocks

In DRG, the mechanism asks each player to report its
valuation for a data item, it then allocates replicas to the
players using some allocation algorithm and hands a pay-
ment to each player. The players know the mechanism and
the payment scheme in advance. We assume that the play-
ers are self-interested, hence each player chooses a strategy
that will maximize its profit (payment received by the mech-
anism minus cost incured to host the replica for entertaining
traffic).

Let P i be the i–th player representing the i–th mobile
server. Each P i has some private data ti ∈ �. In the lit-
erature, ti is commonly known as player’s true data, true
value, or simply type. Each P i reports to the mechanism
a value bi, called bid. Let t and b represent the vector
of true data and bids, respectively. It is sometimes con-

venient to write vectors such as t as t = (ti, t−i), where
t−i lists the types of the agents other than i, i.e., t−i =
(t1, · · · , ti−1, ti+1, · · · , tm).

The mechanism has the capability to select an outcome
o among O allowable outcomes using some algorithm that
computes an outcome function o(b) ∈ O. The mechanism
optimizes a given objective function f(o(b), t), but it does
not know t directly. Each P i incurs some monetary cost,
costi(ti, o(b)). To offset this cost, the mechanism makes
a payment payi(b) to P i. Each self-interested player al-
ways attempts to maximize its profit (hereafter referred to
as utility), U i(ti, b) = payi(b) − costi(ti, o(b)). To keep
things relatively simple, we will assume costi(ti, o(b)) =
ti · rai(b). Therefore, P i’s private data ti measures its cost
per replica allocation rai(b) in terms of the amount of traf-
fic that it processes (read requests from servers that do not
hold replicas and are the closest to P i plus updates).

We say that truth-telling is a dominating strategy for
P i if bidding ti always maximizes its profit, regard-
less of what other players bid, i.e., U i(ti, (b−i, ti)) ≥
U i(ti, (b−i, bi)),∀ bi∧b−i [32]. Our goal is to make the sys-
tem robust against incorrect dissemination of information
by the players. This is accomplished by designing mech-
anisms such that truth-telling is a dominating strategy for
every player.

Formally, a mechanismM = (o(b), pay) consists of an
outcome function o(b) and pay is the payment scheme, i.e.,
the vector of payment functions payi(b). We say that an
outcome function admits a truthful payment scheme if there
exist a pay such thatM = (o(b), pay) is truthful. In real-
ity not all outcome functions can admit a truthful payment
scheme [29]. We have to design an outcome function that:
(a) admits truthful payments, (b) achieves optimization for
f(o(b), t), and (c) converges in polynomial time.

Assume that M is truthful and each payment
payi(b−i, bi) and replica assignment rai(b−i, bi) is twice
differentiable with respect to bi, for all values of b−i. To
derive a payment for P i, we follow the same approach as
described in [2]. Fixing other players’ bids b−i, we can con-
sider the payment payi, replica assignment rai, and profit
to be functions of just bi. We start by deriving necessary
conditions for truthfulness, that also turn out to be suffi-
cient. Let us define U i(ti, (b−i, ti)) = payi(t)− ti · rai(t).
Truthfulness is equivalent to, for all b, t ≥ 0,

U i(ti, (b−i, ti)) ≥ payi(b)− ti · rai(b),

U i(ti, (b−i, ti)) ≥ payi(b)−bi·rai(b)+bi·rai(b)−ti·rai(b),

U i(ti, (b−i, ti)) ≥ U i(ti, (b−i, bi)) + (ti − bi)(−rai(b)).
(4)

Thus, U i(ti, (b−i, ti)) is a convex function, and −rai(t)
is a subgradient at ti. Standard results from analysis (as
reported in [2]) show that U i(ti, (b−i, ti)) is continuous

on [0,∞), differentiable almost everywhere, and is equal
to the integral of its derivative. Also, U i(ti, (b−i, ti))′ =
−rai(ti) wherever U i(ti, (b−i, ti)) is differentiable. Thus,

we have U i(ti, (b−i, ti)) = U i(0) − ∫ ti

0
rai(u)du. Writ-

ing U i(ti, (b−i, ti)) = payi(t)− ti · rai(t) and rearranging
gives,

payi(t) = payi(0) + ti · rai(t)−
∫ ti

0

rai(u)du. (5)

Because U i(ti, (b−i, ti)) is convex, its derivative is in-
creasing, which implies that rai(t) is decreasing. Thus, for
the mechanism to be truthful, it is necessary that rai(t) is
decreasing and payi(t) is given by Equation 5 [3]. Decreas-
ing allocation curves means nothing more than the notion
that the allocation of a resource is inversely proportional to
the reported true data. If a player bids higher than its true
data, then it is allocated a smaller resource but its cost to
host that resource increases. When it bids lower than its true
data, then it is allocated a larger resource but its cost to host
that resource increases considerably compared to the worth
of the allocated resource. The above results hold when we
know that players always report true data. For the case when
the mechanism is skeptical about the reported true data, the
following results are sufficient.

Theorem 4.1 ([2,10]) The outcome function o(b) admits a
truthful payment scheme if and only if it is decreasing and
the payments payi(b−i, bi) are of the form hi(b−i) + bi ·
rai(b−i, bi)− ∫ bi

0
ra−i(b−i, u)du, where hi is an arbitrary

function. �

Theorem 4.1 gives little flexibility in identifying a feasi-
ble payment scheme. Consider the profit of telling the truth
if we set hi to zero. The cost incured (ti ·rai(t)) by P i can-
cels out the second term and incurs a loss equal to the area
under the allocation curve from zero to bi. Since the players
cannot even hope for a profit under this scheme, they pre-
sumably would not participate in such a mechanism. Hence,
the following definition.

Definition 4.2 ([2,4])M = (o(b), pay) is a voluntary par-
ticipation mechanism if players who bid truthfully never in-
cur net loss, i.e., U i(ti, (b−i, ti)) ≥ 0, for all P is, tis, and
b−is.

Theorem 4.3 ([2, 10]) A decreasing o(b) admits a truthful
payment scheme for a voluntary participation mechanism if
and only if

∫∞
0

rai(b−i, u)du <∞ for all i and b−i; hence,
the payments become payi(b−i, bi) = bi · rai(b−i, bi) +∫∞

bi rai(b−i, u)du. �

The payment scheme described in Theorem 4.3 is equiv-
alent to the celebrated Vickrey payment scheme [10], where

the mechanism allocates a replica to the lowest bidder and
pays it the amount of the second lowest bid. In [33] the
authors have shown that the Vickrey payment scheme is ro-
bust against manipulative players. We will use the payment
scheme of Theorem 4.3 for our GT technique that is out-
lined in the following section.

4.2 Game Theoretical Methodology for
Ad Hoc Network (DRG)

Let Vi
k given as (Ri

k − ukokc(i, Pk))/ok represent the
valuation function of a self-interested player P i for a data
item Ok. Vi

k represents the expected benefit gained by P i

in terms of NTC when Ok is replicated at P i. This ben-
efit is computed by using the difference between the NTC
incured from read requests, which would be eliminated if
we made a replica, and the NTC arising due to updates to
that replica. Because we want to consider the benefit per
storage data unit, we divide the difference by the data item
size. Negative values of Vi

k mean that replicating the k-th
object is inefficient from the “local view” of P i. This does
not necessarily mean that we are unable to reduce the to-
tal NTC by creating such a replica, but that the local NTC
observed by P i will be increased.

When a replica is allocated at P i, it experiences
additional traffic atik that is given as

∑
j rj

kokc(i, j) +
ukokc(i, Pk), ∀j /∈ Rk ∧min c(i, j), i.e., the cost incured
due to read requests from servers that do not hold replicas
and are the closest to P i plus updates for Ok. We take the
true data to be ti = 1/Vi

k, hence P is’ cost becomes

costi(ti, o(b)) = ti · rai(b) =

ok

(∑
j rj

kc(i, j) + ukc(i, Pk)
ri
kc(i, NN i

k)− ukc(i, Pk)

)
,∀j /∈ Rk ∧min c(i, j).

(6)

The goal of a player is to maximize its profit defined as
payment minus cost. The goal of the mechanism is to min-
imize the total data transfer cost due to read and update ac-
cesses, i.e., min

∑m
i rai(b). Recall Theorem 4.1 states that

an outcome function admits a truthful payment scheme if
and only if it is decreasing. An outcome function would
result in an allocation vector (ra1, ra2, · · · , ram). We
say that this allocation vector is lexicographically smaller
than (r̄a1, r̄a2, · · · , r̄am) if for some i, rai < r̄ai and
rak = r̄ak,∀ k < i. Hence “our” outcome function o(b)
among all possible allocations should select an outcome in
which the allocation of data items (ra1, ra2, · · · , ram) is
lexicographically minimum. If such an outcome is selected,
then P i raising bi would not cause the allocation to change
unless P i is the bottleneck [3]. In that case, raising bi will
only cause P i to get a data item that is not beneficial for

replication. Thus, the outcome function o(b) is decreasing
and by Theorem 4.1 it admits a truthful payment scheme.
Also recall that in our analysis, we keep rai(b−i, ·) constant
(“·” could be replaced with either bi or ti), so the analysis
can be aggregated over all P is. This means that all of the
P is must participate in the mechanism, if they are to be
compensated. Therefore, we have the following result.

Theorem 4.4 For ADRP, we can always have a voluntary
participation mechanism with decreasing outcome function
that admits truthful payment scheme. �

Theorem 4.4 is a positive result; however, it does not
say if we can have a polynomial-time algorithm to solve the
ADRP. To obtain a polynomial-time algorithm, we observe
that the ADRP is equivalent to the Generalized Assignment
Problem [7].

Generalized Assignment Problem: Instance: A pair
(B,S) where B is a set of m bins and S is a set of n items.
Each bin i ∈ B has a capacity si, and for each item k and
bin i, we are given a size ok and a profit p(i, k). Objective:
Find a subset U ⊆ S that has a feasible packing in B and
maximizes the profit of packing.

This equivalence implicitly gives us a 2-optimal upper
bound on the optimality (for a formal proof see [34]). This
bound is tight since data items cannot be further sub-divided
into fractions. If fractional assignments were possible then
11
9 -optimal would have been our upper bound [7].

The allocation algorithm for DRG: Before the alloca-
tion algorithm is invoked, each mobile server broadcasts
its identifier to all other mobile servers. After all mobile
servers complete their broadcasts, every server knows its
connected mobile servers, from the received identifiers. If
the network is partitioned, then we make use of an external
entity (e.g., a drone or a satellite) so that the partitioned net-
work can be reconnected. Using such an entity will come
at a very high cost, but acceptable because we implement a
strict data consistency model for our system. For that pur-
pose, when M i and M j are disconnected, we take the the
communication cost c(i, j) to be equal to N , where N is a
very large number.

To present our algorithm, each P i maintains a list Li

containing all of the data items that can be replicated. A
data item Ok can be replicated at P i, only if the remain-
ing available storage capacity asi of P i is greater than its
size, i.e., asi ≥ ok and the valuation for a data item is pos-
itive. We also keep a list LP containing all of the P is that
have the “opportunity” to replicate a data item. More suc-
cinctly, P i ∈ LP if and only if Li 	= ∅. The DRG Al-
gorithm performs in steps. At each step all P is compute
their bids bi based on Vi

k. Each of these bids reflects the
highest benefit for the corresponding P i. Each P i sends

its own bid to the mechanismM, that selects from the list
MT the P i with the minimum bid. P i is compensated with
a payment and the data item is replicated. The lists LP and
Li together with the corresponding nearest neighbor value
NN i

k are updated correspondingly. The continuous nearest
neighbor updates ensure decrease allocation curves. The
selection of the lowest bid ensures that P i with the highest
possible benefit is allocated a replica. The second lowest
price selection warrants that no P i deviates from its true
data. The DRG Algorithm is outlined as follows:

Algorithm 4.1: DATA REPLICATION GAME (DRG)

while LP 	= ∅

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for each P i ∈ LP in parallel

do

⎧⎪⎪⎨
⎪⎪⎩

for each Ok ∈ Li

do compute Vi
k;

bi ← 1
max(Vi

k)
, ∀Vi

k ≥ 0;
Send bi toM;Receive MT ← bi atM;

K = argmink(MT);
payi = atiK ×min(MT − (min(MT)));
Send payi to P i;
Replicate OK;
asi ← asi − oK;
Li ← Li − {OK};
for each P i ∈ LP in parallel

do Update NN i
K;

if Li = ∅
then LP ← LP − {P i};

In the worst case where each server has enough capac-
ity to hold all the data items and the number of updates is
zero, there are m × n such iterations for the while loop.
The time complexity for each iteration is governed by the
two for loops executed in parallel. The first loop uses at
most n iterations, while the second loop performs the up-
date in constant time for each iteration. Hence, we conclude
that the worst case running time of the DRG Algorithm is
O(mn2).

Theorem 4.5 Given a instance of the DRG Algorithm: (a)
the profit obtained by the players is no less than the optimal
profit, (b) each data item Ok allocated to a player P i satis-
fies si ≤ ok, (c) if si is violated, then there exists a single
item that is allocated to P i whose removal ensures feasibil-
ity, (d) a 2-optimal result is always guaranteed, and (e) a
(2 + ε)-optimal is the worst case upper bound.

Proof (a) Follows from Theorem 4.3.
(b) and (c) List Li ensures that the constraint si ≤ ok is
satisfied and never violated.
(d) Consider the following greedy approach as reported
in [34]. For a player P i, let si be violated by the alloca-
tion of Ōk. If rai is obtained by accepting the allocation

of Ōk and rai is at least half the accumulated rai by P i,
then we retain Ōk and remove the rest of the data items of
P i. In the other case, we leave out Ōk. This results in a
feasible solution of at least half the optimal allocation — a
2-optimal result. (The results of [7] warrant that this is a
tight bound unless fractional assignments are possible.)
(e) Follows from (d) and the standard approximation algo-
rithms analysis [37]. �

5 Experimental Results and Discussion

Here, we present the results of our experiments carried
out on a 440MHz Ultra 10 machine with 512MB memory.
DRG was implemented using Ada and Ada GNAT’s dis-
tributed systems annex GLADE [30].

Four different types of experiments were conducted. The
purpose of the first experiment is to study the balance be-
tween how frequently we want to replicate data as opposed
to the savings in network traffic. In the next three, we study
the effects of increases in read accesses, increases in update
accesses, and the storage capacity of mobile servers. The
solution quality in all cases is measured according to the
NTC percentage that is saved under the replication scheme
found by the algorithms, compared to the initial one, i.e.,
when only primary copies exist.

5.1 Workload

We generate the structure of the ad hoc network in the
following manner. We define an enclosed polygonal region
in which the mobile servers exist. We choose this region to
be a square grid of size 1000× 1000 with distance between
two adjacent points in the grid equal to 1. We define the total
number of mobile servers and data items in the network. For
simplicity, we assume that each Pk holds only one data item
as the original. This of course is not always the case, as Pk

can hold multiple original data items or none. Modeling
such scenarios also can be done using our framework.

Each mobile server randomly moves horizontally or ver-
tically and the movement speed is randomly determined
from a uniform distribution between 0 and a maximum
value d. The random movement of mobile devices will
make the ad hoc network disconnections more frequent than
the case when one could anticipate the movement of mo-
bile devices. If two mobile servers M i and M j are within
their radio communication range Rd, then there exists a bi-
directional link between them. The communication cost of
this link c(i, j) is equal to the distance between M i and M j

plus a processing overhead constant whose values are taken
from a uniform distribution between 1 and 10. When two
mobile servers M i and M j are not one-hop connected, then
the communication cost is given as the sum of the commu-
nication costs (distance plus the processing overhead con-

stant) of all the links in a chosen path from M i to M j . (This
is a very common link cost model used for simulating large-
scale networks. For an elaborate discussion see [11].) For
the case when M i and M j are disconnected, we take c(i, j)
to be equal to N = 1, 000, 000.

For a single simulation time unit the number of reads for
all (server, data item) pairs is either 0 or 1. The number
of updates generated by each Pk is determined in a similar
manner.

The initial size of each data item is generated using a
uniform distribution between 10 and 60. Changes in the
size of data items due to updates is simulated by adding to
the current size a value from a random distribution between
−5 and 5. For the case when the current size of a data item
is less than 6, the added size is selected using a random
distribution between 1 and 5.

In all of the experiments, the capacity of mobile servers
is proportional to the total size of data items (TS). The ca-
pacity of a mobile server is generated using a uniform dis-
tribution from (1

2TS)C and (3
2TS)C, where 0 ≤ C ≤ 1 is

a parameter that reflects the storage capacities of the mobile
servers. For example, when TS = 100 and C = 0.30 the
capacities of the mobile servers are uniformly distributed
between (1

2 × 100× 0.30 =)15 and (3
2 × 100× 0.30 =)45.

For all methods, the replicas are periodically allocated
after a specific period of time, called the relocation period
T [12]. In all experiments, we examine the average per-
centage NTC savings ((Dno replicas−Dreplicas

Dno replicas
)×100, where

Dno replicas is the NTC of the ad hoc network when there
are only primary copies of the data ietms and Dreplicas is
the NTC when the ad hoc network has replicas placed by an
algorithm) of each of the four methods during 10,000 units
of simulation time.

Table 2 shows the parameters and their values used in the
simulation experiments. We want to clarify that the relative
effect of changing C is similar to changing the number of
mobile servers and data items. Therefore, we keep both m
and n constant during our experimental studies. Moreover,
authors in [15] have shown that the change in the movement
speed d has a similar impact on the system as the change in
the relocation period T . Therefore, d is also not altered for
the simulation study.

5.2 Comparative Techniques

For comparisons, we selected three state-of-the-art ad
hoc replica placement techniques. To provide a fair eval-
uation, the assumptions and system parameters were kept
the same in all the approaches. Due to space limitations,
we will only give a brief overview of the comparative tech-
niques. Details for a specific technique can be obtained
from the referenced papers.

Extended Access Static Frequency method (ESAF) [13]:

Table 2. Parameter variance intervals for sim-
ulations.

parameter value [range]
m 200
n 200
d 1
Rd 7
ok uniform distribution [10, 60]
TS

∑n
k=1 ok

C [0.10, 0.40]
si uniform distribution [(1

2TS)C,(3
2TS)C]

T 256 [1, 8192]
N 1,000,000

Each mobile server is allocated replicas based on the de-
scending order of the prefetching technique PT values. PT

is given as pi
k · τk = pi

k · (Tk − tk), where pi
k denotes the

probability that an access request for data item Ok from mo-
bile server M i is issued at a unit of time, τk denotes the time
remaining until Ok is updated next, Tk denotes the update
period of Ok, and tk denotes the time that has passed since
Ok has been updated at the most recent update period. The
PT value represents the average number of access requests
that are issued for Ok, until Ok is updated next, and it takes
the maximum value pi

k × Tk when Ok is updated.

Extended Dynamic Access Frequency and Neighbor-
hood method (EDAFN) [14]: Each mobile server deter-
mines the preliminary allocation of replicas based on the
ESAF method. In each set of mobile servers that are con-
nected to each other, starting from the mobile server with
the lowest suffix (i), the following procedure is repeated
in the order of the breadth first search. When there is du-
plication of a data item between two neighboring mobile
servers, and if one of them is the original, then the server
which holds the replica replaces it with a different replica.
If both of them are replicas, then the server whose PT value
for the data item is lower replaces the replica with a differ-
ent replica. The replacement replica is chosen from among
data items whose replicas are not allocated at either of the
two servers and whose PT value is the highest.

Extended Dynamic Connectivity based Grouping
method (EDCG) [15]: In each set of mobile servers
that are connected to each other, an algorithm to find
bi-connected components is executed. Then, each bi-
connected component is put in a group. In each group, a
group access frequency to each data item is calculated as a
summation of access frequencies of mobile servers in the
group. Then, the PT value of the group for each data item
is calculated. The rest of the procedure is exactly the same

as EDAFN.

We select the above mentioned techniques for our com-
parisons because the results reported in the referenced pa-
pers show that the three methods work very well in environ-
ments when: (a) updates follow no fixed pattern, (b) reads
are more predominate than updates, and (c) the relocation
period is comparable to that assumed in this study. The per-
formance metrics used by the three methods were (a) the
maximization of data accessibility and (b) the minimization
of traffic in the system. Comparisons among DRG, ESAF,
EDAFN, and EDCG are appropriate because data accessi-
bility can always be guaranteed in our problem formulation
and reduction of traffic is equivalent to the NTC.

5.3 Results and Discussion

We assess the effects of the relocation period on each of
the four methods. Figure 1 summarizes the results. The
horizontal axis indicates the relocation period T and the
vertical axis indicates the NTC savings. From the plot, we
can see that DRG gives the highest NTC savings followed
by EDCG. DRG and EDCG give a significant improvement
over ESAF because they selectively replicate data items. In
ESAF, replicas are allocated based on local benefits; thus
ESAF is equivalent to the Least Frequently Used (LFU)
cache replacement technique. We observe that the savings
in NTC obtained by the methods decreases as the relocation
period increases. This is because a shorter relocation period
can detect the changes of network topology. However, the
difference in the NTC savings by having a smaller reloca-
tion period as opposed to larger relocation period is not that
large. For the rest of the simulations, we choose T = 256,
as done in [13–15].

To illustrate the main merits of DRG, we consider the
case when either reads, updates, or storage capacities in-
crease. Let Ch denote the percentage of increase in ei-
ther reads or updates for a data item. Let OCh represent
the percentage of data items in the network with changing
read or update patterns. Let R and U represent the per-
centage of changes being performed toward a read or up-
date increase, respectively. For example, the network with
parameters Ch = 600%, OCh = 30%, R = 80%, and
U = 20% would mean that among the 200 total objects
(200× 30

100 × 80
100 =)48 experience an increase by 600% in

their reads, while (200 × 30
100 × 20

100 =)12 a same increase
in their updates.

Increase in the number of reads in the system means that
there is a need to replicate as many data items as possible.
However, an increase in the number of updates means that
the number of replica placements have to be controlled in
the system and the replicas have to be placed closer to the
primary mobile server. Because changes in both the read
and update parameters have a complementary effect on the

relocation period (T)

N
T

C
 s

a
v

in
g

s
 (

%
)

effects of relocation period
m=200, n=200, C=0.30

d=1, and Rd=7

0 1024 2048 3072 4096 5120 6144 7168 8192
20%

25%

30%

35%

40%

45%

legend
ESAF
EDAFN
EDCG
DRG

Figure 1. Measuring the effects of the reloca-
tion period.

system, we describe them together. Figures 2 and 3 sum-
marize the results for the change in the read and update fre-
quencies, respectively. In both figures, the horizontal axis
indicates the change in the number of objects that had their
reads or updates increased. The vertical axis indicates the
NTC savings.

From the plots, a clear classification can be made be-
tween the algorithms. DRG incorporates the effect of in-
crease in the number of reads by replicating more inten-
sively in the beginning to exploit the available storage ca-
pacity to the maximum. After a certain point, further repli-
cation is constrained due to the storage limitations, thus,
savings tend to increase less rapidly. EDAFN and EDCG
also a give competitive increase in NTC savings, while
ESAF does not seem to that receptive to the changes. To
understand why there is such a gap in the performance
between ESAF and the rest of the algorithms, recall that
the degree of data duplication is extremely high in ESAF.
Hence, ESAF replicates data items that are actually not ben-
eficial from the system point of view.

An increase in the frequency of updates results in data
items having a decreased local significance unless the mo-
bile server under consideration is in close vicinity to the pri-
mary mobile server. This forces ESAF, EDAFN, and EDCG
that rely on the PT values to discard data items that have
a shorter update time. In contrast, DRG with its decreas-
ing allocation mechanism is able to select better replication
schemes and maintains a good bound on the number of ben-
eficial replicas.

An increase in the storage capacity means that a large
number of data items can be replicated. Replicating a data

changing data items (OCh(%))

N
T

C
 s

a
v

in
g

s
 (

%
)

effects of increase in the number of reads
m=200, n=200, T=256, C=0.40, d=1, Rd=7

R=100%, U=0%, and Ch=600%

10% 15% 20% 25% 30% 35% 40%
0

20%

40%

60%

80%

legend
ESAF
EDAFN
EDCG
DRG

Figure 2. Measuring the effects of the in-
crease in the number of reads.

item that is already extensively replicated, is unlikely to re-
sult in significant traffic savings as only a small portion of
the mobile servers will be affected overall. Moreover, since
data items are not equally read intensive, increase in the
storage capacity would have a great impact at the begin-
ning (initial increase in capacity), but has little effect after
a certain point, where the most beneficial ones are already
replicated. This phenomenon is observable in Figure 4. All
techniques showed an immediate initial increase (the point
after which further replication is inefficient) in its NTC sav-
ings, but afterward showed a near constant performance.
EDAFN, although did not perform that well compared to
DRG, observably gained the most NTC savings of 50% fol-
lowed by ESAF with 43%.

Finally, Table 3 shows the average execution times of
the algorithms. It is observable that ESAF terminated faster
than all of the other techniques, followed by EDAFN, DRG,
and EDCG.

Summarizing the above, DRG achieves more traffic
savings (in many cases even 80%), than the rest of the
techniques and responds better to changes in the network
toplogy, the reads and update changes, and the servers’ stor-
age capacities. The ESAF method apart from achieving
mediocre solution quality, runs in about 2 orders of mag-
nitude less time than the DRG method.

6 Concluding Remarks

In this paper, we addressed the data replication problem
in ad hoc networks by developing a cost model that mini-
mizes the total data item transfers due to reads and updates.

changing data items (OCh(%))

N
T

C
 s

a
v

in
g

s
 (

%
)

effects of increase in the number of updates
m=200, n=200, T=256, C=0.15, d=1, Rd=7

R=0%, U=100%, and Ch=600%

10% 15% 20% 25% 30% 35% 40%
20%

25%

30%

35%

40%

45%

legend
ESAF
EDAFN
EDCG
DRG

Figure 3. Measuring the effects of the in-
crease in the number of updates.

Table 3. Average execution times, in seconds,
of a relocation period for the studied tech-
niques

technique average execution time (sec.)
DRG 18.63
ESAF 6.98
EDAFN 18.46
EDCG 23.41

We developed a replica allocation mechanism based on a
game theoretic approach (DRG) to solve the problem in the
presence of self-interested mobile servers. Such techniques
are meaningful to develop when servers have the capabil-
ity to manipulate the mechanism for their own benefit by
misrepresenting their preferences, which may result in se-
vere performance degradation. We demonstrated the effec-
tiveness of our proposed technique by deriving a payment
scheme that suppresses the selfish behavior of the partic-
ipating servers. Moreover, we guarantee that all mobile
servers are better off participating in the mechanism as op-
posed to operating in isolation in a greedy local manner.
This keeps the essence of the data replication problem in
tact, which is the minimization of the total data item trans-
fer cost.

We compared DRG with three state-of-the-art ad hoc
replica placement techniques: (a) extended static access fre-
quency, (b) extended dynamic access frequency, and (c)
neighborhood and extended dynamic connectivity group.
The experimental results revealed that DRG outperformed

increase in server capacity (C)

N
T

C
 s

a
v

in
g

s
 (

%
)

effects of increase in server capacity
m=200, n=200, T=256, d=1, Rd=7

R=80%, U=20%, OCh=15%, and Ch=600%

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

legend
ESAF
EDAFN
EDCG
DRG

Figure 4. Measuring the effects of the in-
crease in the storage capacities.

the techniques in solution quality and had competitive exe-
cution times.

Throughout this paper, we assumed that when the ad hoc
network is disconnected, we have the flexibility to make use
of an external entity (if needed) to reconnect the network. In
future work, we will relax this assumption and incorporate
the phenomenon of unstable radio links, i.e., to study an
environment where obstacles to radio waves may exist, e.g.,
buildings and mountains.

Associated with the mobile ad hoc networks is the key is-
sue of energy consumption. Data replication implicitly con-
serves energy because requests traverse fewer communica-
tion links to access the closest replicated data. It is our plan
to extend this work to study the effect of replica schemes
on energy consumption. We also would improve our simu-
lation model by incorporating various mobility models and
the usage of real-world access traffic patterns.

Acknowledgments: The authors would like to thank Luis
Diego Briceño and Jay Smith for their valuable comments.

References

[1] I. Ahmad, K. Karlapalem, Y.-K. Kwok, and S.-K. So. Evolu-
tionary algorithms for allocating data in distributed database
systems. Distributed and Parallel Databases, 11(1):5–32,
January 2000.

[2] A. Archer and Éva Tardos. Truthful mechanisms for one-
parameter agents. In 42nd Annual Symposium on Foun-
dations of Computer Science (FOCS ’01), pages 482–491,
2001.

[3] A. Archer and Éva Tardos. Frugal path mechanisms. In
13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’02), pages 991–999, 2002.

[4] A. Archer, C. Papadimitriou, K. Talwar, and Éva Tardos. An
approximate truthful mechanism for combinatorial auctions
with single parameter agents. In 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’03), pages 205–
214, 2003.

[5] K. Arrow. A difficulty in the concept of social welfare. Jour-
nal of Political Economy, 58(4):328–346, April 1950.

[6] W. W. Chu. Optimal file allocation in a multiple computer
system. IEEE Transactions on Computers, 18(10):885–889,
October 1969.

[7] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-completeness. W. H. Free-
man & Co., New York, NY, USA, 1990.

[8] A. Gibbard. Manipulation of voting schemes: A general
result. Econometrica, 41(4):587–601, September 1972.

[9] V. Grassi. Prefetching policies for energy saving and la-
tency reduction in a wireless broadcast data delivery system.
In 3rd ACM International Workshop on Modeling, Analy-
sis and Simulation of Wireless and Mobile Systems (MSWiM
’00), pages 77–84, 2000.

[10] D. Grosu and A. T. Chronopoulos. Algorithmic mecha-
nism design for load balancing in distributed systems. IEEE
Transactions on Systems, Man, and Cybernetics, Part B,
34(1):77–84, January 2004.

[11] J. S. Gwertzman and M. Seltzer. The case for geographical
push-caching. In 5th International Workshop on Hot Topics
in Operating Systems (HotOS ’95), pages 51–55, 1995.

[12] T. Hara. Effective replica allocation in ad hoc networks for
improving data accessibility. In 20th IEEE Conference on
Computer Communications (INFOCOM ’01), pages 1568–
1576, 2001.

[13] T. Hara. Replica allocation methods in ad hoc networks with
data update. Mobile Networks and Applications, 8(4):343–
354, August 2003.

[14] T. Hara and S. K. Madria. Dynamic data replication using
aperiodic updates in mobile ad hoc networks. In 9th Inter-
national Conference Database Systems for Advances Appli-
cations (DASFAA ’04), pages 869–881, 2004.

[15] T. Hara and S. K. Madria. Data replication for improving
data accessibility in ad hoc networks. IEEE Transactions on
Mobile Computing, 5(11):1515–1532, November 2006.

[16] W. Hildenbrand. Advances in Economic Theory. Oxford
University Press, Liverpool, UK, 1982.

[17] Y. Huang, A. P. Sistla, and O. Wolfson. Data replication
for mobile computers. In ACM International Conference on
Management of Data (SIGMOD ’94), pages 13–24, 1994.

[18] J. Jing, A. K. Elmagarmid, A. Helal, and R. Alonso. Bit-
sequences: An adaptive cache invalidation method in mobile
client/server environments. Mobile Networks and Applica-
tions, 2(2):115–127, April 1997.

[19] D. Johnson. Routing in ad hoc networks of mobile hosts. In
Workshop on Mobile Computing Systems and Applications
(HotMobile ’94), pages 158–163, 1994.

[20] S. U. Khan and I. Ahmad. A powerful direct mechanism for
optimal www content replication. In 19th International Par-
allel and Distributed Processing Symposium (IPDPS ’05),
2005.

[21] S. U. Khan and I. Ahmad. A pure nash equilibrium guar-
anteeing game theoretical replica allocation method for re-
ducing web access time. In 12th International Conference
on Parallel and Distributed Systems (ICPADS ’06), pages
169–176, 2006.

[22] S. U. Khan and I. Ahmad. Replicating data objects in large-
scale distributed computing systems using extended vick-
rey auction. International Journal of Computational Intelli-
gence, 3(1):14–22, January 2006.

[23] S. U. Khan and I. Ahmad. Discriminatory algorithmic mech-
anism design based www content replication. Informatica,
31(1):105–119, January 2007.

[24] S. U. Khan and I. Ahmad. A semi-distributed axiomatic
game theoretical mechanism for replicating data objects in
large distributed computing systems. In 21st International
Parallel and Distributed Processing Symposium (IPDPS
’07), 2007.

[25] Y. Kwok, K. Karlapalem, I. Ahmad, and N. M. Pun. Design
and evaluation of data allocation algorithms for distributed
multimedia database systems. IEEE Journal on Selected Ar-
eas in Communications, 14(7):1332–1348, July 1996.

[26] N. Laoutaris, O. Telelis, V. Zissimopoulos, and
I. Stavrakakis. Distributed selfish replication. IEEE
Transactions on Parallel and Distributed Systems,
17(12):1401–1413, December 2006.

[27] T. Loukopoulos and I. Ahmad. Optimizing download
time of embedded multimedia objects for web browsing.
IEEE Transactions on Parallel and Distributed Systems,
15(10):934–945, October 2004.

[28] A. Mas-Collel, M. Whinston, and J. Green. Microeconomic
Theory. Oxford University Press, Liverpool, UK, 1995.

[29] N. Nisan and A. Ronen. Algorithmic mechanism design.
In 31st Annual ACM Symposium on Theory of Computing
(STOC ’99), pages 129–140, 1999.

[30] L. Pautet and S. Tardieu. Glade: A framework for build-
ing large object-oriented real-time distributed systems. In
3rd International Symposium on Object-Oriented Real-Time
Distributed Systems (ISORC ’00), pages 244–251, 2000.

[31] T. Rappaport. Wireless Communications: Principles and
Practice. Prentice Hall, Upper Saddle River, NJ, USA, 2001.

[32] T. Roughgarden and É. Tardos. How bad is selfish routing?
Journal of the ACM, 49(2):236–259, February 2004.

[33] S. Sanghvi and D. C. Parkes. Hard to manipulate combi-
natorial auctions. Technical report, Division of Engineering
and Applied Sciences, Harvard University, 2004.

[34] D. B. Shmoys and É. Tardos. An approximate algorithm
for the generalized assignment problem. Mathematical Pro-
gramming, Part A, 62:461–474, February 1993.

[35] M. D. Theys, N. Beck, H. J. Siegel, and M. Jurczyk. An
analysis of procedures and objective functions for heuristics
to perform data staging in distributed systems. Journal of
Interconnection Networks, 7(2):257–293, June 2006.

[36] M. D. Theys, H. J. Siegel, and E. K. P. Chong. Heuristics for
scheduling data requests using collective communications in
a distributed communication network. Journal of Parallel
Distributed Computing, 61(9):1337–1366, September 2001.

[37] V. V. Vazirani. Approximation Algorithms. Springer-Verlag,
Berlin, Germany, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

