
Efficient MPI Bcast across Different Process Arrival Patterns

Pitch Patarasuk Xin Yuan
Department of Computer Science, Florida State University

Tallahassee, FL 32306
{patarasu, xyuan}@cs.fsu.edu

Abstract

A Message Passing Interface (MPI) collective operation
such as broadcast involves multiple processes. The pro-
cess arrival pattern denotes the timing when each process
arrives at a collective operation. It can have a profound
impact on the performance since it decides the time when
each process can start participating in the operation. In
this paper, we investigate the broadcast operation with dif-
ferent process arrival patterns. We analyze commonly used
broadcast algorithms and show that they cannot guaran-
tee high performance for different process arrival patterns.
We develop two process arrival pattern aware algorithms
for broadcasting large messages. The performance of pro-
posed algorithms is theoretically within a constant factor of
the optimal for any given process arrival pattern. Our ex-
perimental evaluation confirms the analytical results: exist-
ing broadcast algorithms cannot achieve high performance
for many process arrival patterns while the proposed algo-
rithms are robust and efficient across different process ar-
rival patterns.

1 Introduction

A Message Passing Interface (MPI) collective operation
such as broadcast involves multiple processes. The process
arrival pattern denotes the timing when each process ar-
rives at a collective operation [?]. It can have a profound
impact on the performance because it decides the time when
each process can start participating in the operation. A pro-
cess arrival pattern is said to be balanced when all processes
arrive at the call site at the same time (and thus, start the
operation simultaneously). Otherwise, it is said to be im-
balanced.

It has been shown in [?] that (1) process arrival patterns
for collective operations in MPI applications are usually
sufficiently imbalanced to affect the communication perfor-
mance significantly; (2) it is virtually impossible for MPI
application developers to control the process arrival pat-

terns in their applications; and (3) the performance of col-
lective communication algorithms is sensitive to process ar-
rival patterns. Hence, for an MPI collective operation to
be efficient in practice, it must be able to achieve high per-
formance for both balanced and imbalanced process arrival
patterns. Process arrival pattern is one of the most impor-
tant factors that affect the performance of collective com-
munication operations. Unfortunately, this important factor
has been largely overlooked by the research and develop-
ment community. Almost all existing algorithms for MPI
collective operations were designed, analyzed, and evalu-
ated under an unrealistic assumption that all processes start
the operation at the same time (a balanced process arrival
pattern).

Broadcast operation is one of the most common collec-
tive operations. In this operation, a message from a pro-
cess, called root, is sent to all other processes. The MPI
routine that realizes this operation is MPI Bcast [?]. Ex-
isting broadcast algorithms that are commonly considered
as efficient include the binomial tree algorithm [?, ?], the
pipelined algorithms [?, ?, ?, ?], and the scatter followed
by all-gather algorithm [?]. These algorithms have been
adopted in widely used MPI libraries such as MPICH [?]
and OPEN MPI [?]. While all of these algorithms per-
form reasonably well with a balanced process arrival pat-
tern (they were designed under such an assumption), their
performance with more practical imbalanced process arrival
patterns has never been thoroughly studied.

This paper investigates the broadcast operation with dif-
ferent process arrival patterns. We analyze commonly used
broadcast algorithms including the flat-tree algorithm, the
binomial-tree algorithm, the pipelined algorithms, and the
scatter-allgather algorithm, and show that all of these al-
gorithms cannot guarantee high performance for different
process arrival patterns. Our analysis follows a competitive
analysis framework where the performance of an algorithm
relative to the best possible algorithm is given. The perfor-
mance of an algorithm under different process arrival pat-
terns is characterized by the competitive ratio that bounds
the ratio between the performance of the algorithm and the

performance of the optimal algorithm for any given process
arrival pattern. We show that the competitive ratios of the
commonly used broadcast algorithms are either unbounded
or Ω(n), where n is the number of processes in the opera-
tion. This indicates that all of these algorithms may perform
significantly worse than the optimal algorithms with some
process arrival patterns. We developed two process arrival
pattern aware algorithms for broadcasting large messages.
Both algorithms have constant competitive ratios: they per-
form within a constant factor of the optimal for any pro-
cess arrival pattern. We empirically evaluate the commonly
used and the proposed broadcast algorithms with different
process arrival patterns. The experimental evaluation con-
firms our analytical results: existing broadcast algorithms
cannot achieve high performance for many process arrival
patterns while the proposed algorithms are robust and effi-
cient across different process arrival patterns.

The rest of the paper is organized as follows. Section
2 formally describes the process arrival pattern and intro-
duces the performance metrics for measuring the perfor-
mance of broadcast algorithms with different process arrival
patterns. Section 3 presents the competitive analysis of ex-
isting broadcast algorithms. Section 4 details the proposed
process arrival pattern aware algorithms. Section 5 reports
the results of our experiments. Section 6 discusses the re-
lated work. Finally, Section 7 concludes the paper.

2 Background

2.1 Process arrival pattern

Let n processes, p0, p1, ..., pn−1, participate in a broad-
cast operation. Without loss generality, we will assume
that p0 is the root. Let ai be the time when process pi

arrives at the operation. The process arrival pattern can
be represented by the tuple PAP = (a0, a1, ..., an−1).
The average process arrival time is ā = a0+a1+...+an−1

n
.

Let fi be the time when process pi finishes the operation.
The process exit pattern can be represented by the tuple
PEP = (f0, f1, ..., fn−1). Let δi be the time difference
between pi’s arrival time ai and the average arrival time ā,
δi = |ai − ā|. The imbalance in the process arrival pat-
tern can be characterized by the average case imbalance
time, δ̄ = δ0+δ1+...+δn−1

n
, and the worst case imbalance

time, ω = maxi{ai} − mini{ai}. Figure ?? depicts the
described parameters.

The different process arrival times at a broadcast opera-
tion can significantly affect the performance. For instance,
if a broadcast algorithm requires a process to forward mes-
sages to other processes (this occurs in all tree based broad-
cast algorithms), the forwarding can happen only after the
process arrives. The impacts of an imbalanced process ar-
rival pattern can be better characterized by the number of

exit time

1

δ 0
δ 2

e2
δ 1 δ 3

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���
���
���
���

�����
�����
�����

���
���
���	�	�	�	
�
�

���
���
���
���

���
���
���
���

1 2 3

e3

0

p
0

p p p

ω

e

average
arrival time

1a

a

a

f f
f

f

a0

2

3

0 1

2

3

arrival time

e

Figure 1. Process arrival pattern

messages that can be sent during the period when some pro-
cesses arrive while others do not. To capture this notion, the
worst case and average case imbalance times are normalized
by the time to communicate one message. The normalized
results are called the average/worst case imbalance factor.
Let T be the time to communicate the broadcast message
from one process to another process. The average case im-
balance factor equals to δ̄

T
and the worst case imbalance

factor equals to ω
T

. A worst case imbalance factor of 20
means that by the time the last process arrives at the oper-
ation, the first process may have sent 20 messages. It has
been shown in [?] that the worst case imbalance factors of
the process arrival patterns in MPI applications are in many
cases much larger than the number of processes involved in
the operations.

2.2 Performance metrics

Let the process arrival pattern PAP = (a0, ..., an−1)
and the process exit pattern PEP = (f0, ..., fn−1). The
elapsed time of each process pi, 0 ≤ i ≤ n − 1, is ei =
fi − ai. Thus, the total time for the operation is e0 + e1 +
... + en−1 and the average per node time for this operation
is ē = e0+e1+...+en−1

n
. The worst case per node time is

g = maxi{ei}.
In an application, the total time or the average per node

time accurately reflects the time that the program spends on
an operation. Hence, we will use the average per node time
(ē) as the performance metric to characterize the perfor-
mance of a broadcast algorithm with a given process arrival
pattern. The worst case per node time (g) is also interesting.
However, we consider it secondary since it does not reflect
the actual time that an application spends on the operation.
Note that the impact of load balancing in a broadcast oper-
ation, which is better reflected by the worst case per node
time, is not clear with imbalanced process arrival patterns.

In analyzing the performance of broadcast algorithms,
we assume an ideal platform such that the process exit pat-
tern (and thus the average per node time) is a function of the
broadcast algorithm and the process arrival pattern. We ig-
nore other deterministic and non-deterministic factors that

can affect the performance. Our assumptions will be de-
tailed in the next section. We denotes the performance (av-
erage per node time) of a broadcast algorithm r with a pro-
cess arrival pattern PAP = (a0, ..., an−1) as ē(r, PAP).

An optimal broadcast algorithm for a given process ar-
rival pattern PAP is an algorithm that minimizes the aver-
age per node time. Formally, the optimal average per node
time for a process arrival pattern PAP is given by

OPT (PAP) = min
r is a broadcast algorithm

{ē(r, PAP)}

The performance ratio of a given broadcast algorithm r

on a given process arrival pattern PAP measures how far
is r from being optimal for the process arrival pattern. It is
defined as the average per node time of r on PAP divided
by the minimum possible average per node time on PAP .

PERF (r, PAP) =
ē(r, PAP)

OPT (PAP)

The value for PERF (r, PAP) is at least 1. It is exactly
1 if and only if the broadcast algorithm is optimal for the
PAP . When a broadcast algorithm is optimized for a spe-
cific process arrival pattern, it does not provide any guaran-
tees for other process arrival patterns. The definition of the
performance ratio follows the competitive analysis frame-
work where performance guarantees of a certain solution
are provided relative to the best possible solution. The def-
inition of performance ratio of a broadcast algorithm can
be extended to be with respect to a set of process arrival
patterns. Let Γ be a set of process arrival patterns, the per-
formance ratio of a broadcast algorithm r on Γ is defined
as

PERF (r, Γ) = max
PAP∈Γ

{PERF (r, PAP)}

When Γ includes all possible process arrival patterns,
the performance ratio is referred to as the competitive ra-
tio. The competitive ratio of an algorithm r is denoted by
PERF (r). The competitive ratio is the worst performance
ratio that an algorithm obtains with respect to all process ar-
rival patterns. In our analysis, the performance of a broad-
cast algorithm with different process arrival patterns is char-
acterized by its competitive ratio.

3 Competitive ratios of existing broadcast al-
gorithms

3.1 System models

The performance of broadcast algorithms is affected
heavily by both the system architecture and the process ar-
rival pattern. To focus on analyzing the impact of process
arrival patterns, we make the following assumptions.

• When both the sender and the receiver are ready, the time
to communicate a message of size msize between any pair
of processes is T (msize). Communications between mul-
tiple pairs of processes can happen simultaneously and do
not interfere with one another. This assumption holds when
each process runs on a different compute node and all com-
pute nodes are connected by a cross-bar switch.

• The communications follow the 1-port model. That is,
when a process is ready, it can send and receive simultane-
ously. Most contemporary networking technology such as
Ethernet, InfiniBand, and Myrinet supports this model when
each compute node is equipped with one network interface
card.

• When a process receives a message, it can start forward-
ing the message as soon as the first bit of the message is re-
ceived. Furthermore, the time to send a message is propor-
tional to the message size: T (a×msize) = a×T (msize).
These assumptions simplify the situation when a message
is forwarded in a pipelined fashion: the message can be
pipelined for each single bit. These assumptions under-
estimate the communication time by not counting the start-
up overheads.

We consider two communication models: the blocking
model and the non-blocking model. These two models dif-
ferentiate in how the system behaves when the sender tries
to send a message and the receiver is not ready for the mes-
sage (e.g. not arriving at the operation yet). In the blocking
model, the sender is blocked until the receiver is ready. The
actual communication takes place after the receiver is ready.
In the non-blocking model, the sender is not blocked even
when the receiver is not ready. The actual communication
takes place when the sender is ready to send the message.
The message is thus buffered at the receiving end. When the
receiver arrives, it can read the message from local memory.
We assume that reading a message from the local memory
does not take any time. Note that in both models, a process
must arrive at the operation before it can forward a message.

Both the blocking and non-blocking models have practi-
cal applications. In MPI implementations, small messages
are usually buffered at the receiving side and follow the
non-blocking model. Large messages are typically commu-
nicated using the rendezvous protocol, which follows the
blocking model.

Let a process arrival pattern PAP = (a0, a1, ..., an−1).
Since nothing can happen in the broadcast operation before
the root arrives at the operation, we will assume that a0 ≤
ai, 1 ≤ i ≤ n−1. Note that p0 is the root. In practice, when
ai < a0, we can treat it as if ai = a0, and add ai − a0 in
calculating the total communication time. We denote ∆ =
maxi{ai} − a0.

3.2 Optimal performance for a given process ar-
rival pattern

To perform the competitive analysis of the algorithms,
we will need to establish the optimal broadcast performance
for a process arrival pattern. The following lemmas bound
the optimal performance.

Lemma 1: Consider broadcasting a message of size msize

with a process arrival pattern PAP = (a0, ..., an−1). Un-
der the non-blocking model, OPT (PAP) ≤ T (msize).
Under the blocking model, OPT (PAP) ≤ ∆

n
+T (msize),

where ∆ = maxi{ai} − a0.
Proof: We prove by constructing an algorithm, called
nearopt, such that ē(nearopt, PAP) = T (msize) under
the non-blocking model and ē(nearopt, PAP) = ∆

n
+

T (msize) under the blocking model.
Let us sort the arrival times in ascending order and let the

sorted arrival times be (a0, a
′
1, a

′
2, ..., a

′
n−1) and the corre-

sponding processes be p0, p′1, ..., p′n−1. Algorithm nearopt,
depicted in Figure ??, works as follows: (1) p0 sends the
broadcast message to p′1 and then exits the operation; and
(2) p′i, 1 ≤ i ≤ n − 2, forwards the message it receives to
p′i+1 and then exits the operation.

���
�
���
�
���
�

��������������
	�	�		�	�	
�
�

�
�

����������

�

�
������

p0 p’ p’1
2

n−1p’

Figure 2. The near optimal broadcast algo-
rithm (nearopt)

Under the non-blocking model, since a′
i ≤ a′

i+1, each
process can start forwarding data as soon as it reaches the
operation. Hence, each process pi, 0 ≤ i ≤ n − 1, will exit
the operation at time fi = ai + T (msize). The total time
for this operation is n×T (msize) and ē(nearopt, PAP) =
n×T (msize)

n
= T (msize). Under the non-blocking model,

OPT (PAP) ≤ ē(nearopt, PAP) = T (msize).
Under the blocking model, p0 will need to wait un-

til p′1 arrives before it can start sending the data. Thus,
f0 = a′

1 + T (msize). A process p′i, 1 ≤ i ≤ n − 2,
will need to wait until p′i+1 before it can send the data:
f ′

i = a′
i+1 + T (msize). The last process p′n−1 will exit at

a′
n−1 + T (msize). The total time for this operation is thus,

f0−a0+f ′
1−a′

1 + ...+f ′
n−1−a′

n−1 = ∆+n×T (msize)

and ē(nearopt, PAP) = ∆
n

+ T (msize). Hence, under
the blocking model, OPT (PAP) ≤ ē(nearopt, PAP) =
∆
n

+ T (msize). 2

While the nearopt is not always optimal, it is very close
to optimal for any process arrival pattern under both models

as shown in the following lemma.

Lemma 2: Under the non-blocking communication model,
OPT (PAP) ≥ n−1

n
× T (msize). Under the blocking

model, OPT (PAP) ≥ ∆+(n−1)×T (msize)
n

. 2

The proof is omitted due to the space limitation. Ba-
sically, for the non-blocking case, the broadcast operation
must communication at least (n − 1) × msize messages
(each of the receivers must receive a msize sized mes-
sage) and the total time for this operation is at least T ((n−

1) × msize). Hence, OPT (PAP) ≥ T ((n−1)×msize)
n

=
n−1

n
× T (msize). The blocking case follows a similar ar-

gument.

3.3 Competitive ratios of common broadcast al-
gorithms

We analyze common broadcast algorithms including the
flat tree algorithm (used in OPEN MPI [?]), the binomial
tree broadcast algorithm (used in OPEN MPI and MPICH
[?]), the linear-tree pipelined broadcast algorithm (used in
SCI-MPICH [?]), and the scatter-allgather broadcast algo-
rithm (used in MPICH). In the flat tree algorithm (Fig-
ure ?? (a)), the root sends the broadcast message to each
of the receivers one-by-one. In the binomial tree algorithm
(Figure ?? (b)), broadcast follows a hypercube communica-
tion pattern. There are lg(n) steps in this algorithm. In the
first step, p0 sends to p1; in the second step, p0 sends to p2

and p1 sends to p3; in the i-th step, processes p0 to p2i−1−1

have the data, each of the process pi, 0 ≤ i ≤ 2i−1 − 1,
sends the message to process pi⊕2i−1 , where ⊕ is the ex-
clusive or operator. In the linear tree pipelined algorithm,
the msize-byte message is partitioned into X segments of
size msize

X
. The communication is done by arranging the

processes into a linear array: pi, 0 ≤ i ≤ n − 2, sends to
pi+1, as shown in Figure ?? (c). Broadcasting the msize-
byte message is realized by X pipelined broadcasts of seg-
ments of size msize

X
. In the scatter followed by all-gather

algorithm, the msize-byte message is first distributed to
the n processes by a scatter operation (each machine gets
msize

n
-byte data). After that, an all-gather operation is per-

formed to combine messages to all processes. We denote
the flat tree algorithm as flat, the binomial algorithm as bi-
nomial, the linear tree pipelined algorithm as linear p, and
the scatter-allgather algorithm as sca-all.

0

1 2 3 4 5 6 7

0

1

2
3

4
5

6
7

���� �
�
�� ���
�

0 1 6 7

(a) flat tree (b) binomial tree (c) linear tree

Figure 3. Broadcast algorithms

Lemma 3: Under the non-blocking model, the competitive
ratio of any broadcast algorithm that requires a receiver to
forward a message is unbounded (can potentially be infi-
nite).
Proof: Let a broadcast algorithm r requires a process pi

to forward a message to pj in the operation. To show that
PERF (r) is unbounded, we must show that there exists
a process arrival pattern PAP such that ē(r,PAP)

OPT (PAP) is un-
bounded. Let us denote Λ as a very large number. We con-
struct the process arrival pattern where all processes except
pi arrive at the same time as p0. Process pi arrives at a
much later time a0 + Λ. PAP = (a0, a0, .., ai, .., a0 =
a0, a0, .., a0 + Λ, .., a0). Under this arrival pattern, pro-
cess pj can only finish the operation after it receives the
message forwarded by pi. Hence, fj ≥ a0 + Λ. Thus,
ē(r, PAP) = e0+e1+...en−1

n
≥

ej

n
≥ Λ

n
. From Lemma

1, OPT (PAP) ≤ T (msize). Hence, PERF (r) ≥
ē(r,PAP)

OPT (PAP) ≥
Λ

n

T (msize) = Λ
n×T (msize) . Since Λ is inde-

pendent of n or T (msize), Λ
n×T (msize) can potentially be

infinite and PERF (r) is unbounded. 2

We will use the notion PERF (r) = ∞ to denote that
PERF (r) is unbounded.

Theorem 1: In both the blocking and non-blocking models,
PERF(flat) = Ω(n).
Proof: Consider first the non-blocking model with a bal-
anced process arrival pattern PAP = (a0, a0, ..., a0). Since
the root sequentially sends the message to each of the re-
ceivers, f0 = a0 + (n − 1) × T (msize); f1 = a0 +
T (msize); f2 = a0 + 2 × T (msize); ...; fn−1 = a0 +
(n − 1) × T (msize). Thus, the total time for this opera-
tion is f0 − a0 + f1 − a0 + ... + fn−1 − a0 = (n − 1) ×

T (msize) +
∑n−1

i=1 i × T (msize) ≥ n(n−1)
2 × T (msize).

Hence, ē(flat, PAP) ≥ n−1
2 × T (msize). From Lemma

1, OPT (PAP) ≤ T (msize). We have PERF (flat) ≥

PERF (flat, PAP) = ē(flat,PAP)
OPT (PAP) ≥ n−1

2 . Hence,
PERF (flat) = Ω(n).

In the blocking model, consider the same PAP as the
non-blocking case. Since all processes arrive at the same
time, ∆ = 0. With the flat-tree algorithm, the total time
for both the blocking and non-blocking models are the
same. From Lemma 1: OPT (PAP) ≤ ∆

n
+ T (msize) =

T (msize). Hence, in the blocking model, PERF (flat) =
Ω(n). 2

Theorem 2: In the non-blocking model, PERF(binomial) =
∞. In the blocking model, PERF(binomial) = Ω(n).
Proof: In the non-blocking model, since the binomial tree
algorithm requires forwarding of messages, from Lemma 3,
PERF (binomial) = ∞.

In the blocking model, consider the arrival pattern PAP

where the lg(n) direct children of the root arrive at a0 +

Λ and all other processes arrive at a0. Let us assume
Λ
n

≥ T (msize). From Lemma 1, OPT (PAP) ≤ Λ
n

+

T (msize) ≤ 2Λ
n

. Clearly, in this operation, all pro-
cesses will exit the operation after a0 + Λ. Hence, the to-
tal time for this operation is larger than (n − lg(n))Λ ≥
n
2 Λ. The average per node time ē(binomial, PAP) ≥
Λ
2 . PERF (binomial) ≥ PERF (binomial, PAP) =
ē(binomial,PAP)

OPT (PAP) ≥ n
4 . Hence, PERF (binomial) = Ω(n).

Theorem 3: In the non-blocking model, PERF(linear p) =
∞. In the blocking model, PERF(linear p) = Ω(n).
Proof: The linear tree pipelined algorithm requires the in-
termediate processes to forward messages. From Lemma 3,
in the non-blocking model, PERF (linear p) = ∞.

In the blocking model, consider the process arrival pat-
tern where process p1 arrives much later than all other
nodes: PAP = (a0, a0 + Λ, a0, ..., a0). Let Λ be much
larger than T (msize). Following the linear tree, all pro-
cesses can receive the broadcast message after a0 + Λ.
Hence, the total time is at least (n − 1)Λ ≥ n

2 Λ. Fol-
lowing the similar argument as that in the binomial tree,
PERF (linear p) = Ω(n). 2

Theorem 4: In the non-blocking model, PERF(sca-all) =
∞. In the blocking model, PERF(sca-all) = Ω(n).
Proof: In the scatter-allgather algorithm, there is an im-
plicit synchronization: in order for any process to finish
the all-gather operation, all process must arrive at the op-
eration. This implicit synchronization applies to both the
blocking and non-blocking models. Consider arrival pat-
tern when p1 arrives late: PAP = (a0, a0 + Λ, a0, ..., a0).
For both blocking and non-blocking models, due to the im-
plicit synchronization, the total time for this algorithm is at
least (n− 1)Λ ≥ n

2 ×Λ and the per node time is at least Λ
2 .

In the non-blocking model: since OPT (PAP) ≤
T (msize), PERF(sca-all, PAP) ≥ Λ

2T (msize) , which is un-
bounded. Hence, PERF(sca-all) ≥ PERF(sca-all, PAP)
= ∞. In the blocking model, when Λ

n
≥ T (msize),

OPT (PAP) ≤ Λ
n

+T (msize) ≤ 2Λ
n

. PERF(sca-all, PAP)
≥ n

4 . Hence, PERF(sca-all) = Ω(n). 2

Theorems 1 to 4 show that the competitive ratios of all
of these commonly used algorithms are either unbounded or
Ω(n) for both the blocking or non-blocking models, which
indicates that these algorithms cannot guarantee high per-
formance for different process arrival patterns: all of these
algorithms can potentially perform much worse than the op-
timal algorithm for some process arrival patterns.

4 Process arrival pattern aware algorithms

We present two new broadcast algorithms, one for each
communication model, with constant competitive ratios:

these algorithms guarantee high performance for any pro-
cess arrival patterns. The new algorithms are designed for
broadcasting large messages. The idea is to add control
messages to make the processes aware of and adapt to the
process arrival pattern. Note that any efficient algorithm
will not wait until all processes arrive before taking any
action. Such an algorithm must make on-line decisions as
processes arrive: hence, the nearopt algorithm in Figure ??
cannot be used.

Since the algorithms are designed for broadcasting large
messages, we will assume that sending and receiving a
small control message do not take time. Moreover, under
the assumption in Section 3.1, broadcasting to a group of
processes when all receivers are ready will take T (msize)
time (e.g. using the nearopt algorithm). In practice, the
linear tree pipelined broadcast algorithm can have a com-
munication time very close to T (msize) when the message
size is sufficiently large [?]. We will call the broadcast to
a sub-group of processes sub-group broadcast. In a sub-
group broadcast, only the root knows the group members.
Hence, the root will need to initiate the operation. In prac-
tice, this can be done efficiently. Consider for example us-
ing the linear tree pipelined broadcast algorithm for a sub-
group broadcast. The root can send a header that contains
the list of receivers in the sub-group before the broadcast
message. When a receiver receives the headers, it will know
how to form the linear tree by using the information in the
header.

The algorithm for the non-blocking model, called ar-
rival nb, is shown in Figure ??. When a receiver arrives at
the operation, it checks to see whether the broadcast mes-
sage has been received. If the message has been received,
it copies the message from the local memory to the out-
put buffer and the operation is completed. If the message
has not been received, the receiver sends a control message
ARRIVED to the root and waits for the sub-group broad-
cast initiated by the root to receive the message. The root
repeatedly checks whether some process arrives. If some
processes arrive, it initiates a sub-group broadcast among
the processes. If no process arrives, the root picks a receiver
that have not been sent the broadcast message and sends the
message to the receiver.

Theorem 5: Under the assumptions in Section 3.1, ignoring
the control message overheads, PERF(arrival nb) ≤ 3.
Proof: In arrival nb, the algorithm works in rounds, in
each round, the root either sends a message to one node, or
performs a sub-group broadcast. In both case, T (msize)
will be incurred in each round. Since at most n − 1 rounds
are performed by the root, f0 ≤ a0 + (n − 1)T (msize).

Consider a receiving process, pi, 1 ≤ i ≤ n − 1.
In the worst case, pi must wait one full round before it
starts participating in the sub-group broadcast. It takes

Receiving process:
(1) Check if the message has been buffered locally
(2) If yes, copy the message and exit;
(3) Else, send control message ARRIVED to the root.
(4) Participate in the sub-group broadcast initiated by

the root to receive the broadcast message.

Root process:
(1) While (some receivers have not been sent the message)
(2) Check if any ARRIVED messages have arrived
(3) Discard the ARRIVED messages from receivers who

have been sent the broadcast message
(4) if (a group of receivers have arrived)
(5) Initiate a sub-group broadcast
(6) else
(7) Select a process pi that has not been sent the

message and send the broadcast message to pi

Figure 4. Broadcast algorithm for the non-
blocking model (arrival nb)

pi at most 2T (msize) to complete the operation: fi ≤
ai +2T (msize). Hence, the total time among all processes
in the operation is no more than (n− 1)T (msize) + 2(n−
1)T (msize) and the average per node time is no more than
3(n−1)

n
×T (msize). This applies to any process arrival pat-

tern, PAP. From Lemma 2, OPT (PAP) ≥ n−1
n

T (msize).
PERF (arrival nb) ≤ 3. 2

The algorithm for the blocking model, called arrival b is
shown in Figure ??. When a receiver arrives at the opera-
tion, it sends a control message ARRIVED to the root and
waits for the sub-group broadcast initiated by the root to
receive the broadcast message. The root repeatedly checks
whether some process arrives. If some processes arrive, it
initiates a sub-group broadcast among the processes. Oth-
erwise, it just waits until some processes arrive.

Receiving process:
(1) Send control message ARRIVED to the root.
(2) Participate in the sub-group broadcast initiated by

root to receive the broadcast message.

Root process:
(1) While (some receivers have not been sent the message)
(2) Check if any ARRIVED messages have arrived
(3) if (a group of receivers have arrived)
(4) Initiate a sub-group broadcast

Figure 5. Broadcast algorithm for the blocking
model (arrival b)

Theorem 6: Under the assumptions in Section 3.1, ignoring
the control message overheads, PERF(arrival b) ≤ 3.
Proof: In arrival b, the algorithm works in rounds. In each
round, the root waits for some processes to arrive and per-
forms the sub-group broadcast. Consider a receiving pro-
cess, pi, 1 ≤ i ≤ n − 1. In the worst case, after pi ar-
rives at the operation, it must wait T (msize) time before
it starts participating in the sub-group broadcast. Hence,
it takes pi at most 2T (msize) to complete the operation:
fi ≤ ai + 2T (msize).

The root exits the operation only after the last pro-
cess receives the broadcast message. After the last pro-
cess arrives, it will wait at most 2T (msize) to receive the
message. Hence, f0 ≤ a0 + ∆ + 2T (msize). Hence,
the total time among all processes in the operation is no
more than ∆ + 2T (msize) + 2(n − 1)T (msize) and the
average per node time is no more than ∆+2n×T (msize)

n
.

This applies to any process arrival pattern PAP. From
Lemma 2, OPT (PAP) ≥ ∆+(n−1)×T (msize)

n
. Hence,

PERF (arrival b) ≤ ∆+2n×T (msize)
∆+(n−1)×T (msize) ≤ 3. 2

5 Performance study

The study is performed on two clusters: Draco and Ce-
tus. The Draco cluster has 16 compute nodes with a total
of 128 cores. Each node is a Dell PowerEdge 1950 with
two 2.33GHz Quad-core Xeon E5345’s (8 cores per node)
and 8GB memory. The compute nodes are connected by a
20Gbps InfiniBand DDR switch. The MPI library in this
cluster is mvapich-0.9.9. The Cetus cluster is a 16-node
Ethernet switched cluster. Each node is a Dell Dimen-
sion 2400 with a 2.8GHz P4 processor and 640MB mem-
ory. All nodes run Linux (Fedora) with 2.6.5-1.358 kernel.
The Ethernet card in each machine is Broadcom BCM 5705
1Gbps/100Mbps/10Mbps card with the driver from Broad-
com. The Ethernet switch connecting all nodes is a Dell
Powerconnect 2724 (24-port, 1Gbps switch). The MPI li-
brary in this cluster is MPICH2-1.0.4.

To evaluate the performance of the existing and pro-
posed broadcast algorithms, we implemented these algo-
rithms over MPI point-to-point routines. Since we con-
sider broadcasting large messages and almost all existing
implementations for broadcasting large messages follow the
blocking model, our evaluation also focuses on the blocking
model. We implemented the flat tree algorithm (flat), the
linear-tree pipelined algorithm (linear p), the binomial tree
algorithm (binomial), and the proposed process arrival pat-
tern aware algorithm (arrival b). In addition, we also con-
sider the native algorithm from the MPI library (denoted
as native). In the implementation of arrival b, there can
be multiple methods to perform the sub-group broadcast.
We choose the most efficient scheme for each platform:

the linear p with a segment size of 8KB on Cetus and
the scatter-allgather algorithm for Draco. Besides studying
the blocking model, we also implemented two algorithms
that follow the non-blocking model on Draco when each
node runs one process: the non-blocking flat tree algorithm
(denoted as flat nb) and the process arrival pattern aware
non-blocking algorithm (denoted as arrival nb). The non-
blocking communication is achieved by chopping a large
point-to-point message into a set of small messages to avoid
the rendezvous protocol in MPI and other factors that cause
communications to block. Note that using the MPI Rsend
routine can avoid the rendezvous protocol. However, for
some reason, this routine is still blocking in the broadcast
operation.

(1) r = rand() % MAX IF;
(2) for (i=0; i<ITER; i++) {
(3) MPI Barrier (...);
(4) for (j=0; j<r; j++) {
(5) /* computation time equals to one message time */
(6) }
(7) t0 = MPI Wtime();
(8) MPI Bcast(...);
(9) elapse += MPI Wtime() - t0;
(10)}

Figure 6. Code segment for studying con-
trolled random process arrival patterns

We perform extensive experiments to study the broadcast
algorithms with many different process arrival patterns. We
will present two representative experiments. The first study
investigates the performance of the algorithms with random
process arrival patterns. The second study investigates the
performance when a small subset of processes arrive at the
operation later than other processes. The code segment in
the benchmark to study random process arrival patterns is
shown in Figure ??. In this benchmark, a random value that
is bounded by a constant MAX IF is generated and stored
in r. For different processes, r is different since different
processes have different seeds. The controlled random pro-
cess arrival pattern is created by first calling an MPI Barrier
and then executing the computation in the loop in lines (4)
to (6) whose duration is controlled by the value of r. The
loop body in line (5) executes roughly the time to send one
broadcast message between two nodes. Hence, the max-
imum imbalance factor (defined in Section 2) is at most
MAX IF in this experiment. The code to investigate the ef-
fect with a few late arriving processes is similar except that
the loop in lines (4)-(6) is always executed MAX IF times
and that each process (except the root) has a probability to
run this loop.

In reporting the results, we fix either the broadcast mes-

 0
 20
 40
 60
 80

 100
 120
 140
 160

1286432168421A
ve

ra
ge

 p
er

 n
od

e
tim

e
(m

s)

MAX_IF

Native
Arrival_b

Flat
Linear_pl
Binomial

(a) Draco (2MB)

 0

 50

 100

 150

 200

 250

 300

1286432168421A
ve

ra
ge

 p
er

 n
od

e
tim

e
(m

s)

MAX_IF

Native
Arrival_b

Flat
Linear_p
Binomial

(b) Cetus (256KB)

Figure 7. Performance with controlled ran-
dom process arrival patterns

sage size or the MAX IF value. Each data point in our
results is an average of twenty random samples (twenty
random process arrival patterns). In studying the block-
ing model, n = 128 on Draco (8 processes per node) and
n = 16 on Cetus. In studying the non-blocking model,
n = 16 on Draco.

Figure ?? shows the performance of different algorithms
with controlled random process arrival patterns. The broad-
cast message size is 2MB on Draco and 256KB on Ce-
tus. On both clusters, when the imbalanced factor is
small (MAX IF is small), arrival b performs slightly worse
than the best performing algorithms. Even in such cases,
arrival b is competitive: the performance is only slightly
worse than the best performing algorithm mainly due to the
overheads introduced. When the process arrival pattern be-
comes more imbalanced (MAX IF is larger), the arrival b

significantly out-performs all other algorithms. The perfor-
mance difference is large when MAX IF is large.

 0
 20
 40
 60
 80

 100
 120
 140
 160

2M1M512K256K128KA
ve

ra
ge

 p
er

 n
od

e
tim

e
(m

s)

Message Size (bytes)

Native
Arrival_b

Flat
Linear_pl
Binomial

(a) Draco

 0
 50

 100
 150
 200
 250
 300
 350
 400

2M1M512K256K128KA
ve

ra
ge

 p
er

 n
od

e
tim

e
(m

s)

Message Size (bytes)

Native
Arrival_b

Flat
Linear_p
Binomial

(b) Cetus

Figure 8. Broadcast with different message
size with MAX IF = n

Figure ?? shows the performance with different message
sizes. We fixed MAX IF = n. On Draco, n = 128 and
on Cetus, n = 16. As can be seen in the figure, on both
clusters, arrival b maintains its advantage for a wide range
of message sizes. When the message size is not sufficiently
large, arrival b may not achieve a good performance due
to the control message overheads it introduces. This can be
seen in the 128KB case on Draco.

 0

 20

 40

 60

 80

 100

 120

 140

1286432168421A
ve

ra
ge

 p
er

 n
od

e
tim

e
(m

s)

MAX_IF

Native
Arrival_b

Flat
Linear_p
Binomial

(a) Draco (1MB)

 0

 50

 100

 150

 200

 250

 300

1286432168421A
ve

ra
ge

 p
er

 n
od

e
tim

e
(m

s)

MAX_IF

Native
Arrival_b

Flat
Linear_p
Binomial

(b) Cetus (512KB)

Figure 9. Performance when 20% of pro-
cesses arrive late

Figure ?? shows the performance when a small subset of
processes arrive late. In this experiment, the sender always
arrives early and each of the receiving process has a 20%
probability to arrive late. The time for late arrival is roughly
equal to the time to send MAX IF messages. The broadcast
message size is 1MB on Draco and 512KB on Cetus. As can
be seen in the figure, binomial, linear p, and native behave
similarly and perform worse than arrival b when MAX IF
is large. The flat and arrival b have similar characteristics
with arrival b performing much better. Figure ?? shows

the performance on different message sizes with the same
settings. MAX IF = n (the number of processes) and the
broadcast message size varies. Arrival b is efficient for a
wide range of message sizes.

 0

 20

 40

 60

 80

 100

 120

 140

2M1M512K256K128KA
ve

ra
ge

 p
er

 n
od

e
tim

e
(m

s)

Message Size (bytes)

Native
Arrival_b

Flat
Linear_p
Binomial

(a) Draco

 0

 50

 100

 150

 200

 250

 300

2M1M512K256K128KA
ve

ra
ge

 p
er

 n
od

e
tim

e
(m

s)

Message Size (bytes)

Native
Arrival_b

Flat
Linear_p
Binomial

(b) Cetus

Figure 10. Performance when 20% of pro-
cesses arrive late (MAX IF = n)

Figure ?? shows the performance of the non-blocking
algorithms. This figure shows the cases when 20% of pro-
cesses arrive late. There are two trends in the figure. First,
the non-blocking algorithm performs better than the corre-
sponding blocking algorithm. This is because the reduction
of the waiting time in a non-blocking algorithm. Second,
with a non-blocking algorithm, the average per node time is
not very sensitive to the process arrival pattern: see the flat
line in Figure ?? (a), which indicates that the non-blocking
model is more efficient than the blocking model. Unfortu-
nately, making point-to-point communications with a large
amount of data non-blocking is very difficult: many factors
such as the limited system buffers in various levels of soft-

ware can make the communication blocking.

 0

 5

 10

 15

 20

1286432168421A
ve

ra
ge

 p
er

 n
od

e
tim

e
(m

s)

MAX_IF

Arrival_b
Arrival_nb

Flat
Flat_nb

(a) 1MB

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

2M1M512K256K128KA
ve

ra
ge

 p
er

 n
od

e
tim

e
(m

s)

Message Size (bytes)

Arrival_b
Arrival_nb

Flat
Flat_nb

(b) MAX IF = 16

Figure 11. Non-blocking case (Draco with
each node running one process (n = 16))

Our experimental results confirm the analytical findings.
The commonly used algorithms perform poorly when the
process arrival pattern has a large imbalance factor. On the
other hand, the proposed process arrival pattern aware algo-
rithms react much better to imbalanced process arrival pat-
terns. Moreover, when the imbalance factor is large, using
our algorithms improves the performance very significantly.

6 Related Work

The broadcast operation in different environments has
been extensively studied. Many algorithms were developed
for topologies used in parallel computers such as meshes
and hypercubes [?, ?]. Generic broadcast algorithms includ-
ing the binomial tree algorithms [?, ?], the pipelined broad-
cast algorithms [?, ?, ?], the scatter-allgather algorithm [?],

have been developed and adopted in common MPI libraries.
These algorithms achieve high performance with a balanced
process arrival pattern. However, their performance with
imbalanced process arrival patterns has not been thoroughly
studied.

The characteristics and impacts of process arrival pat-
terns in MPI applications were studied in [?]. Our work is
motivated by the results in [?]. While process arrival pat-
tern is an important factor, few collective communication
algorithms have been developed to deal with imbalanced
process arrival patterns. The only algorithms that can adapt
to different process arrival patterns (known to us) were pub-
lished in [?], where algorithms for all-reduce and barrier
can automatically change their logical topologies based on
the process arrival pattern. We formally analyze the perfor-
mance of existing broadcast algorithms with different pro-
cess arrival patterns. This is the first time such analysis is
performed on any collective algorithms.

7 Conclusion

We study efficient broadcast schemes with different pro-
cess arrival patterns. We show that existing algorithms can-
not guarantee high performance with different process ar-
rival patterns, and develop new broadcast algorithms that
achieve constant competitive ratios for the blocking and
non-blocking models. The experiment results show that the
proposed algorithms are robust and efficient for different
process arrival patterns.

Acknowledgement

This work is supported in part by National Science Foun-
dation (NSF) grants: CCF-0342540, CCF-0541096, and
CCF-0551555.

References

[1] A. Faraj, P. Patarasuk, and X. Yuan, “A Study of Process Ar-
rival Patterns for MPI Collective Operations,” the 21th ACM
ICS, pages 168-179, June 2007.

[2] S. L. Johnsson and C. T. Ho, “Optimum Broadcasting and
Personalized Communication in Hypercube.” IEEE Trans.
on Computers, 38(9):1249-1268, 1989.

[3] R. Kesavan, K. Bondalapati, and D.K. Panda, “Multicast on
Irregular Switch-based Networks with Wormhole Routing.”
IEEE HPCA, Feb. 1997.

[4] H. Ko, S. Latifi, and P. Srimani, “Near-Optimal Broadcast in
All-port Wormhole-routed Hypercubes using Error Correct-
ing Codes.” IEEE TPDS, 11(3):247-260, 2000.

[5] A. Mamidala, J. Liu, D. Panda. “Efficient Barrier and Allre-
duce on InfiniBand Clusters using Hardware Multicast and

Adaptive Algorithms.” IEEE Cluster, pages 135-144, Sept.
2004.

[6] P.K. McKinley, H. Xu, A. Esfahanian and L.M. Ni,
“Unicast-Based Multicast Communication in Wormhole-
Routed Networks.” IEEE TPDS, 5(12):1252-1264, Dec.
1994.

[7] MPICH - A Portable Implementation of MPI.
http://www.mcs.anl.gov/mpi/mpich.

[8] The MPI Forum, “The MPI-2: Extensions to the Mes-
sage Passing Interface,” Available at http://www.mpi-
forum.org/docs/mpi-20-html/mpi2-report.html.

[9] Open MPI: Open Source High Performance Computing,
http://www.open-mpi.org/.

[10] P. Patarasuk, A. Faraj, and X. Yuan, “Pipelined Broadcast on
Ethernet Switched Clusters.” The 20th IEEE IPDPS, April
25-29, 2006.

[11] SCI-MPICH: MPI for SCI-connected Clusters. Avail-
able at: www.lfbs.rwth-aachen.de/ users/joachim/SCI-
MPICH/pcast.html.

[12] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimiz-
ing of Collective Communication Operations in MPICH,”
ANL/MCS-P1140-0304, Mathematics and Computer Sci-
ence Division, Argonne National Laboratory, March 2004.

[13] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra, “Automati-
cally Tuned Collective Communications,” In Proceedings
of SC’00: High Performance Networking and Computing,
2000.

[14] J. Watts and R. Van De Gejin, “A Pipelined Broadcast
for Multidimensional Meshes.” Parallel Processing Letters,
5(2)281-292, 1995.

