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Abstract

We are designing scalable dynamic information flow
tracking techniques and employing them to carry out tasks
related to debugging (bug location and fault avoidance), se-
curity (software attack detection), and data validation (lin-
eage tracing of scientific data). The focus of our ongoing
work is on developing online dynamic analysis techniques
for long running multithreaded programs that may be exe-
cuted on a single core or on multiple cores to exploit thread
level parallelism.1.

1. Introduction

Dynamic Information Flow Tracking (DIFT) is a promis-
ing technique that tracks the flow of information along dy-
namic dependences starting from the program inputs to the
values computed by the program. Examples of applications
that can benefit from a DIFT facility, include: (debugging)
bug location and avoidance; (security) software attack de-
tection and fault location; and (data validation) maintaining
lineage of scientific data. The applications for which DIFT
is useful are numerous; however, the overhead of dynamic
fine-grained tracingneeded by DIFT can be very high in
terms of the increase in execution time of an application
and substantial in terms of increased memory requirements.
The actual overhead varies from one application to the next
due to the complexity of information flow needed by the
application. Therefore it would be beneficial to develop a
general, and highly optimized DIFT framework, that can be
adapted for use by developers of different applications.

In this paper we describe our experience in developing
a scalable DIFT framework and employing it for the wide
range of applications mentioned above. Our prior work in-
cluded collection of dynamic dependence traces for single
threaded programs and the performing offline processing to

1This research is funded by NSF grants CNS-0810906 and CNS-
0751961 to Univ. of California, Riverside; NSF grant CNS-0614707
to Univ. of Arizona; and NSF grant CNS-0720516 to Purdue
Univ. under the CSR Program. Contact information: Rajiv Gupta
(gupta@cs.ucr.edu); Neelam Gupta (ngupta@cs.arizona.edu); Xiangyu
Zhang (xyzhang@cs.purdue.edu)

compactly represent them and then use them to perform dy-
namic slicing based fault location. Over the past year we
have focused on developing a DIFT based online depen-
dence tracking for single and multithreaded programs ex-
ecuting on single or multicore processors. We have used
the DIFT framework in applications including: execution
perturbation based fault location and avoidance, software
attack detection and fault location, and data validation via
lineage tracking.

2. Scalable DIFT Analysis

2.1. Single Threaded Programs: ONTRAC

In our prior work dynamic analysis was based upon a two
step process [19, 5]. In the first step execution trace (address
and control flow) is collected by running an instrumented
version of the program and then the trace is postprocessed
to build a compact representation of the dynamic depen-
dence graph (DDG). In the second step slicing operations
are performed by traversing this DDG. While previously it
was thought that performing the second step in reasonable
time was impossible due to the huge size of the graph even
for small program runs, our work in [18] dispelled this no-
tion by coming up with a highly compact dependence graph
representation that made this step highly efficient - dynamic
slices for program runs of several hundred million instruc-
tions can be computed in a few seconds. However, the gen-
eration of this compact dependence representation is still
expensive. The offline post-processing had to be performed
on the collected address and control flow traces to yield the
compacted representation took as long as an hour even for
short executions of a few seconds yielding slowdowns by
factors of over 500. Since debugging is an iterative process
in which the user may reexecute the program after making
changes, the long time taken by DDG construction is a sig-
nificant bottleneck.

In our recent work [4] we have addressed the above prob-
lem by using a DIFT framework to efficiently generate a
DDG online. Our tracing system,ONTRAC, built on top
of a dynamic binary instrumentation framework, directly
computes the dynamic dependences online, thus eliminat-



ing the expensive offline post-processing step. To minimize
the program slowdown, we make the design decision of not
outputting the dependences to a file, instead storing them in
memory in a specially allocated fixed size circular buffer.
It is important to observe that the size of the buffer limits
the length of the execution history that can be stored, where
the execution history is a window of the most recently exe-
cuted instructions. Since the dependences stored in the trace
buffer pertain to the above window of executed instructions,
the faulty statement can be found using dynamic slicing
only if the fault is exercised within this window. Thus it
is important to maximize the length of the execution his-
tory stored in the buffer. To accomplish this, we introduce
a number of optimizations to eliminate the storage of most
of the generated dependences, at the same time we observe
from our experiments that those that are stored are suffi-
cient to capture the bug. Besides increasing the length of
the execution history that can be stored, our optimizations
help limit the instrumentation overhead, because some of
our optimizations identify static dependences for which dy-
namic instrumentation can be avoided.

The optimizations that we perform to reduce the size of
the dependence graph can be classified broadly into two
types. While the first kind of optimizations are generic ones,
based on program properties, the second kind are exclu-
sively targeted towards debugging. Our generic optimiza-
tions are as follows. First, we eliminate the storage of de-
pendences within a basic block that can be directly inferred
by static examination of the binary. Second, we extend the
same idea to traces of frequently executed code spanning
several basic blocks. Third, we detect redundant loads dy-
namically and exclude the related dependences. Our tar-
geted optimizations are as follows. We first provide support
to safely trace only the specified parts of the program, where
the programmer expects to find the bug. This is useful be-
cause the programmer sometimes has fair knowledge about
the approximate location of the bug in the code. For in-
stance, he/she might be modifying a particular function and
hence may be relatively sure that the bug is in that function.
It is worth noting that a naive solution where the unspec-
ified functions are simply uninstrumented, will not work
because this could potentially break the chain of depen-
dences through the user specified functions; this can cause
the backward slice to miss some statements from the spec-
ified functions that should have been included. Our second
targeted optimization is based on the observation that the
root cause of the bug is often in the forward slice of the in-
puts of the program. This observation has been verified in
our prior work [1]. Thus, by computing the forward slice
of the inputs dynamically, we provide support to selectively
trace only those dependences that are affected by the input.

Our experiments conducted on cpu-intensive programs
from the SPEC 2000 suite show that computing the depen-

dence trace online causes the program to slowdown by a
factor of 19 on an average, as opposed to 540 times slow-
down caused by extensive post-processing [18]. The op-
timizations also ensure that we only need to store tracing
information at the average rate of 0.8 bytes per executed
instruction as opposed to 16 bytes per instruction without
them. This enables us to store the dependence trace history
for a window of 20 million executed instructions in a 16MB
buffer.

Exploiting multicores. While ONTRAC executes the in-
strumented programs on a single core, to further reduce the
execution time overhead, we also explored an approach in
which an additional core is used to carry out dependence
tracking [3]. This approach exploits multicores to perform
DIFT transparently and efficiently. We spawn a helper
thread that is scheduled on a separate core and is only re-
sponsible for performing information flow tracking opera-
tions. This entails the communication of registers and flags
between the main and helper threads. We explore software
(shared memory) and hardware (dedicated interconnect) ap-
proaches to enable this communication. Finally, we propose
a novel application of the DIFT infrastructure where, in ad-
dition to the detection of the software attack, DIFT assists
in the process of identifying the cause of the bug in the code
that enabled the exploit in the first place. We conducted de-
tailed simulations to evaluate the overhead for performing
DIFT and found that to be 48% for SPEC integer programs.

2.2. Multithreaded Programs: Execution
Reduction

While ONTRAC was developed for tracing single
threaded applications, we have also developed a technique
that scales information flow tracking so that it can be ap-
plied to long running, multithreadedprograms (e.g., server
programs) being executed on a single processor core. For
single threaded programs that run for short durations of
time, if the program fails, program can be rerun and ON-
TRAC can be used during the rerun to assist in debug-
ging. However, for long running, multithreaded programs
this simple strategy does not work. First, the program may
fail after executing for a long time and thus rerunning the
program from the start under ONTRAC may be extremely
time consuming. Second, due to non-deterministic behav-
ior of a multithreaded program, the same failure may not be
encountered during the rerun.

To enable the application of DIFT to long running, mul-
tithreaded programs, we have developed the following ap-
proach that addresses the aforementioned problems by com-
bining fine-grained tracing for dependence tracking with the
checkpointing & loggingtechnique as follows:

• (Logging Phase) Under normal circumstances the pro-



gram is executed with checkpointing & loggingturned
onwhile fine-grained tracing isturned off.

• (Execution Reduction Phase) When an event is en-
countered that raises the need for dynamic informa-
tion flow tracking, then, by analyzing the replay log,
thepart of execution that is relevant to the desired dy-
namic information flow information is identified.

• (Replay Phase) The relevant part of execution isre-
played with fine-grained tracing turned onso that the
desired dynamic information flow trace is captured.

The above approach has two desirable consequences. First,
the space overhead is reduced because the relevant part of
execution to which fine-grained tracing is applied is often a
small fraction of the total execution. Our experiments show
that the size of the dynamic trace captured is dramatically
reduced. Second, the time overhead is also significantly re-
duced. This is because while checkpointing and logging,
which is applied to the entire execution, typically resultsin
a slow down by afactor of twowhile fine-grained tracing
which results in a slow down by two orders of magnitude is
applied only to a fraction of the execution.

As an illustration we describe the benefits of the ap-
proach when applied to a memory bug in theMySqlversion
3.23.56. The program execution under consideration has the
following execution times under different conditions: orig-
inal execution time is 14.8 seconds; execution time with
only checkpointing & logging turned on is 16.8 seconds
which is only slightly higher than the original execution
time; and execution time with tracing turned-on is 3736 sec-
onds which is much higher than the original execution time.
After the proposed technique is applied, and relevant por-
tion of the execution is replayed with fine-grained tracing
turned on, the execution time is only 0.67 seconds. In other
words, the relevant portion of the execution is only a small
fraction of the total execution. As a consequence, the size of
the dynamic data dependence trace generated reduces dra-
matically from 976 million dynamic data dependences to
3175 dynamic data dependences. Clearly the above exam-
ple demonstrates that by applying the proposed approach
the applicability of DIFT can be dramatically scaled mak-
ing it a practical tool for debugging long running, multi-
threaded programs. A detailed description and evaluation
of the above technique can be found in [6, 8].

Application executing on Multicores. In order to in-
strument programs for tracing, dynamic binary translation
(DBT) tools like pin and valgrind are used. However, such
dynamic analysis frameworks currently handle only sequen-
tial programs efficiently. When handling multithreaded pro-
grams, such tools often encounter racing problems and re-
quire serialization of threads for correctness. The races

arise when application data and corresponding meta data
stored in DBT tools are updated concurrently. To address
this problem, transactional memory (TM) was recently pro-
posed to enforce atomicity of updating application data and
their corresponding meta data. However, a problem with
this approach arises in the presence of synchronization op-
erations typically present in parallel applications( e.g., bar-
riers, locks, flag synchronization etc.). In particular, in-
cluding synchronization operations inside transactions can
cause livelocks, and thus degrade performance. In our re-
cent work [9] we consider common forms of synchroniza-
tions and show how they can give rise to livelocks when TM
is used to enable runtime monitoring. In order to avoid such
livelocks, we present an algorithm that dynamically detects
synchronizations and uses this information in performing
conflict resolution. Our experiments show that our synchro-
nization aware strategy can efficiently avoid livelocks and
reduce monitoring overhead for the SPLASH benchmarks
[9]. We plan to continue further work on tracing of parallel
applications which are expected to become more prevalent
due to the advent of multicore processors.

3. Applications of DIFT

3.1. Fault Location

In our prior work we demonstrated how execution per-
turbations can be employed to identify different forms of
dynamic slices that capture faulty code and assist in fault
location [13, 14, 1, 15, 17]. However, all forms of faults are
not captured by dynamic slices computed as transitive clo-
sure of data and control dependences. In particular,execu-
tion omission errorsare known to be difficult to locate using
dynamic analysis. These errors lead to a failure at runtime
because of the omission of execution of some statements
that would have been executed if the program had no er-
rors. Since dynamic analysis is typically designed to focus
on dynamic information arising from executed statements,
and statements whose execution is omitted do not produce
dynamic information, detection of execution omission er-
rors becomes a challenging task. In particular, while dy-
namic slices are very effective in capturing faulty code for
other types of errors, they fail to capture faulty code in the
presence of execution omission errors. To address this issue
relevant slices have been defined to consider certain static
dependences (called potential dependences) in addition to
dynamic dependences. However, due to the conservative
nature of static analysis, overly large slices are produced.

In our recent work [16], we propose afully dynamicso-
lution to locating execution omission errors using dynamic
slices. We introduce the notion ofimplicit dependences
which are dependences that are normally invisible to dy-
namic slicing due to the omission of execution of some



statements. We design a dynamic method that forces the ex-
ecution of the omitted code by switching outcomes of rele-
vant predicates such that those implicit dependences are ex-
posed and become available for dynamic slicing. Dynamic
slices can be computed and effectively pruned to produce
fault candidate sets containing the execution omission er-
rors. We solve two main problems: verifying the existence
of a single implicit dependence through predicate switch-
ing, and recovering the implicit dependences in a demand
driven manner such that a small number of verifications are
required before the root cause is captured. Our experiments
show that the proposed technique is highly effective in cap-
turing execution omission errors [16]. Since dynamic con-
trol dependences play a critical role in slicing, we have de-
veloped an efficient online algorithm for detecting dynamic
control dependences [11].

Recently we have developed a value profile based ap-
proach for ranking program statements according to their
likelihood of being faulty [2]. The key idea is to see which
program statements exercised during a failing run use val-
ues that can be altered so that the execution instead pro-
duces correct output. Our approach is effective in locating
statements that are either faulty or directly linked to a faulty
statement. Moreover, unlike dynamic slicing which is de-
pendence based, this value based approach can uniformly
handle all errors irrespective of whether or not they are cap-
tured by dynamic slices.

We have also made significant progress in applying our
dynamic analysis framework todata race detectionin mul-
tithreaded programs. We have extended the notion of dy-
namic slicing to multithreaded programs in a way that incor-
porates write-after-read and write-after-write dependences
so that data races can be detected using dynamic slicing [8].
We have also developed a dynamic synchronization aware
race detection algorithm which greatly reduces the number
of data races reported to the user as many benign synchro-
nization races and infeasible races reported by other tools
are filtered out and thus excluded from reporting by our al-
gorithm [10].

3.2. Fault Avoidance

We have developed a framework to capture and recover
from environment faultswhen they occur and to prevent
them from occurring again [7, 8]. These faults can be either
deterministic or non-deterministic and are caused by pro-
gram bugs that manifest under certain environmental con-
ditions. Also, these faults can be avoided if the environ-
ment is appropriately modified, like changing the schedul-
ing decisions to prevent synchronization bugs. Since envi-
ronment faults could be non-deterministic, our framework
employs a lightweight checkpointing/logging infrastructure
that records all the important events (in anevent log) during
an execution and replays the entire execution exactly when

a fault occurs. Upon a faulty execution, we modify the ex-
ecution environment (e.g., change scheduling decisions) by
manipulating the event log and replay the altered log so that
the fault is avoided. The altered log now corresponds to an
execution without any faults and normal execution can be
safely resumed. By analyzing the changes done to the event
log, we try to detect the unsafe execution environment that
resulted in the fault (e.g., scheduling at a particular point
that exposed a synchronization bug). We then record the fix
in a file,environment patch, and all future executions of this
application refer to this patch to figure out the safe execution
environment when executing the region of the code where
the fault appeared previously. This prevents the fault from
occurring again. The checking of the environment patch
file, to prevent the bug in future runs, is piggybacked with
the logging of events. Hence, the only overhead incurred
by our framework is that of checkpointing/logging, which
is low. We have looked at three different types of environ-
ment faults that can be avoided by altering the execution
environment (atomicity violation, heap buffer overflow, and
malformed user request) and found our system to be effec-
tive in avoiding them.

3.3. Software Attacks

Dynamic information flow tracking is a promising tech-
nique for providing security against malicious software at-
tacks. The basic idea hinges on the fact that an important
avenue through which an attacker compromises the system
is through input channels. This is a direct consequence of
most of the vulnerabilities beinginput validationerrors. In
fact, 72% of the total vulnerabilities discovered in the year
2006 are attributed to a lack of (proper) input validation.
Note that most of the memory errors including buffer over-
flow, boundary condition and format string errors fall into
this category.

We go a step further in this direction and leverage the
DIFT infrastructure to assist us in the process of bug loca-
tion. The basic idea is quite simple. Instead of propagating
the boolean taint values, we propagatePC values, where
PC refers to program counter. Later, we show that the mul-
ticore architecture is able to tolerate the extra taint memory
overhead incurred gracefully. As usual, a zero indicates un-
tainted data and a non-zero (PC) value represents tainted
information. At any instant, the PC value corresponding to
a tainted location is the PC of themost recentinstruction
that wrote to the location. When an attack is detected, the
PC taint value of the tainted memory location (or register)
gives us additional information, namely the most recent in-
struction (statement) that modified it. This information can
be vital in identifying the source of the bug and our experi-
ments confirm that in most cases this directly points to the
statement that is the root cause of the bug [3].



3.4. Data Validation

We have also extended DIFT to data lineage tracing in
the application of data validation. Data lineage or data
provenance captures how data is generated, what tools and
parameters are used, and how one data item in the output is
related to the input, and hence is essential for scientific data
validation. Traditionally, data lineage is computed inside
a data management system through query transformations.
However, it is often the case that a significant part of scien-
tific computation is carried out as an external process to the
data management system and thus tracing lineage for these
external operations is beyond the capability of traditional
approaches. We observe that these external operations are
indeed programs and thus data lineage can be traced through
monitoring their executions.

We extend DIFT to trace the set of relevant inputs for
each individual step of execution. In other words, instead
of tracing a bit or a PC value, we trace a set of input values
that contribute to the current executed instruction through
dependences, which is essentially a genelized form of dy-
namic information flow tracking. The prominent challenge
lies in the potentially prohibitive overhead because for each
value resident in memory, we have to maintain a set; for
each executed instruction, we have to perform set opera-
tions on potentially large sets. In [12], we observe that data
lineage often exhibits certain characteristics that lead to ef-
ficient tracing. For example, the lineage sets for values res-
ident in memory often have significant overlap; the input
values that are in a lineage set are often clustered, i.e., ifan
input value is in a set, its neighboring values in the origi-
nal input stream are very likely also present in the set. We
exploit these characteristics usingreduced ordered binary
decision diagram(roBDD). Our experiments on a set of sci-
entific applications show that the typical slow down factor
is less than 40 when the valgrind infrastructure overhead
is discounted. The memory overhead is 300% on average.
Given the fact that lineage sets could be as large as thou-
sands of elements, the extended DIFT system is capable of
tracing data lineage with cost that can be tolerated in the
context. Applying the system to a realistic bio-chemistry
application at Purdue unversity identifies a few false pos-
itives in a real experiment, which may otherwise result in
highly expensive wet-bench experiments.

4. Work in Progress

Our ongoing work is focused on online, cost effective
tracing of parallel applications as well as data race detection
in parallel applications. We are developing both software
techniques as well as identifying hardware support that can
be incorporated in multicore processors to carry out the task
of tracing efficiently. In addition to employing efficient trac-

ing to enable debugging of parallel applications, we also
plan to explore its use in performing adaptive optimizations.
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