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Abstract

The ubiquity of multicore processors in commodity com-
puting systems has raised a significant programming chal-
lenge for their effective use. An attractive but challenging
approach is automatic parallelization of sequential codes.
Although virtually all production C compilers have auto-
matic shared-memory parallelization capability, it is rarely
used in practice by application developers because of lim-
ited effectiveness. In this paper we describe our recent ef-
forts towards developing an effective automatic paralleliza-
tion system that uses a polyhedral model for data depen-
dences and program transformations.

1 Introduction

Current trends in microarchitecture are increasingly to-
wards larger number of processing elements on a single
chip. This has led to parallelism and multi-core architec-
tures becoming mainstream. In addition, several special-
ized parallel architectures (accelerators) like the Cell pro-
cessor and General-Purpose GPUs have emerged. The diffi-
culty of programming these architectures to effectively tap
the potential of multiple on-chip processing units is a sig-
nificant challenge. Among several approaches to address-
ing this issue, one that is very promising but simultaneously
very challenging is automatic parallelization. This requires
no effort on part of the programmer in the process of paral-
lelization and optimization and is therefore very attractive.

Automatic parallelization through compiler analysis and
transformation has been a goal from the early days of the Il-
liac IV. Over the last three decades, although there has been
significant progress in compiler techniques towards auto-
matic parallelization, the current state-of-practice leaves
much to be desired. Automatic parallelization has been
available in commercial compilers for many years. But
unlike vectorization technology, which was indeed heav-
ily used in practice by developers of production application
codes on vector machines, automatic parallelization across
multiple processors has not yet been sufficiently effective to
draw much interest from application developers. Intel’s pro-
duction compiler incorporates automatic parallelization and
automatic vectorization. But while its automatic vectoriza-
tion capability is very good, its automatic parallelization is

not very effective, as we show with experimental data later
in the paper.

Many compute-intensive applications often spend most
of their running time in nested loops. This is particularly
common in scientific and engineering applications. The
polyhedral model provides a powerful abstraction to rea-
son about transformations on such loop nests by viewing
a dynamic instance (iteration) of each statement as an in-
teger point in a well-defined space called the statement’s
polyhedron. We are developing an automatic paralleliza-
tion framework based on some very recent developments
[7, 6, 8] showing great promise. The key to our approach
is the use of a model that allows us to model transforma-
tions on collections of loop nests. In this model, a dynamic
instance (iteration) of each statement is viewed as an in-
teger point in a well-defined space called the statement’s
polyhedron. With such a representation for each statement
and a precise characterization of inter or intra-statement de-
pendences, it is possible to reason about the correctness of
complex loop transformations in a completely mathematical
setting using powerful machinery from linear algebra and
integer linear programming. With the conventional abstrac-
tions for data dependences used in most optimizing compil-
ers (including gcc and all vendor compilers), it is virtually
impossible to perform integrated model-driven optimization
using multiple loop transformations

This paper is organized as follows. Section 2 provides
an overview of the polyhedral transformation system and
presents some experimental results. Section 3 discusses
our work on extending the polyhedral transformation frame-
work to generate optimized code for accelerators such as
GPGPUs that have software-managed scratchpad memory.
In Section 4 we summarize recent work on enabling en-
hanced concurrency with tiled execution. Section 5 dis-
cusses related work and conclusions are presented in Sec-
tion 6.

2 Polyhedral Transformation Framework

The task of program optimization for parallelism and lo-
cality in the polyhedral model may be viewed in terms of
three phases: (1) static dependence analysis of the input
program, (2) transformations in the polyhedral abstraction,
and (3) generation of code for the transformed program.
Significant advances were made in the past decade on de-
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Figure 1. Our source-to-source transforma-
tion system prototype

pendence analysis [15, 14, 31] and code generation [23, 20]
in the polyhedral model, but the approaches suffered from
scalability challenges. Recent advances in dependence
analysis and more importantly in code generation [32, 5, 38]
have solved many of these problems resulting in the polyhe-
dral techniques being applied to code representative of real
applications like the spec2000fp benchmarks. But a signifi-
cant limitation has been the absence of a scalable and prac-
tical approach for automatic transformation for paralleliza-
tion and locality. Our recent work has sought to address
this problem and very promising progress has been made
towards developing a compiler framework that enables end-
to-end fully automatic parallelization and locality optimiza-
tion.

We have recently prototyped an end-to-end practical par-
allelizer and locality optimizer in the polyhedral model. A
model-driven approach to tile for both parallelism and lo-
cality directly through an affine transformation framework
is the central idea. Our approach is thus a departure from
scheduling-based approaches in this field [16, 17, 13, 19] as
well as partitioning-based approaches [27, 26, 25] (due to
incorporation of more concrete optimization criteria), but is
built on the same mathematical foundations and machin-
ery. Our system generates tiled code for statement do-
mains of arbitrary dimensionalities under statement-wise
affine transformations for data locality optimization as well
as shared memory parallel execution; this has not been pre-
viously feasible.

Figure 1 shows the components of our prototype system
[8] for automatic parallelization. The scanner, parser and
dependence tester from the LooPo infrastructure [28] are
used. LooPo is a polyhedral source-to-source transforma-
tion system that includes implementations of various poly-
hedral analyses and transformations from the literature. We
used PipLib 1.3.3 [29, 14] as the ILP solver and CLooG
0.14.1 (with 64 bits) for code generation.

We [8] have done several initial experiments from the ex-
isting system. Significant improvements are obtained over
production compilers as well as the state-of-the-art from the
research community.

Table 1. Initial results from Automatic Par-
allelization system: improvements on Intel
quad-core (details in [8])

Benchmark Single core Quad-core
improvement: improvement:
icc research icc research

compiler compiler
1-d Jacobi 5.2x 2.1x 20.0x 1.7x
2-d FDTD 3.7x 3.1x 7.4x 2.5x

LU 5.6x 5.7x 14.0x 3.7x
MVT 9.3x 5.5x 13.0x 7.0x

3 GPGPUs and Accelerators

Several parallel architectures such as GPUs and the Cell
processor have fast explicitly managed on-chip memories,
in addition to slow off-chip memory. They also have very
high computational power with multiple levels of paral-
lelism. A significant challenge in programming these archi-
tectures is to effectively exploit the parallelism available in
the architecture and manage the fast memories to maximize
performance.

In recent work, we have developed an approach to ef-
fective automatic data management for on-chip memories,
including creation of buffers in on-chip (local) memories
for holding portions of data accessed in a computational
block, automatic determination of array access functions of
local buffer references, and generation of code that moves
data between slow off-chip memory and fast local memo-
ries. We also addressed the problem of mapping compu-
tation in regular programs to multi-level parallel architec-
tures using a multi-level tiling approach, and studied the
impact of on-chip memory availability on the selection of
tile sizes at various levels. Below, we provide results (on
an nVIDIA GeForce 8800 GTX GPU) of an experimental
study on two kernels, Mpeg4 Motion Estimation (ME) and
1-D Jacobi. For efficient execution of the kernels, multi-
level tiling was performed scratchpad memory was man-
aged using our automatic data management framework. De-
tails were reported in a recent paper [4].

Fig. 2 and Fig. 3 illustrate the benefits of efficient data
access using scratchpad memory and also exemplify the
high speedup achieved in running the kernel in GPU in con-
trast to the CPU (Intel Core2 Duo processor clocked at 2.13
GHz). The speedup of the implementation utilizing scratch-
pad memory was 8x for Mpeg4 ME kernel and 10x for Ja-
cobi kernel over that using only GPU DRAM. The speedup
over CPU performance was over 100x for the Mpeg4 ME
kernel and 15x for the Jacobi kernel.

For various problem sizes, we conducted experiments to
analyze the performance of the Mpeg4 ME kernel. The re-
sults are shown in Fig. 4. The number of thread blocks was
chosen as 32 and the number of threads as 256. The tile
sizes were determined by automatically using a model that
minimized data movement subject to the scratchpad mem-
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Figure 2. Execution time: Mpeg4 ME
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Figure 3. Execution time: 1-D Jacobi

ory constraint.
The tile sizes chosen by the algorithm gave better per-

formance than other tile sizes for various problem sizes, as
shown in Fig. 4.

4 Concurrency in Tiled Execution

With few exceptions (e.g. work of Griebl [19]), research
on performance optimization with tiling [22, 39, 37, 12, 36,
33, 35, 9, 21, 2] has generally focused on one or the other of
the two complementary aspects: (a) data locality optimiza-
tion [1, 2, 39, 37, 12]; or (b) tile size/shape optimization
for parallel execution [36, 33, 9, 21]. Tiling for data local-
ity optimization involves maximization of data reuse, i.e.,
tiling along directions of the data dependence vectors. But
such tiling may result in inter-tile dependences that inhibit
concurrent execution of tiles on different processors. We
address in an integrated fashion, the issues of tiling for data
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Figure 4. Execution time: Mpeg4 ME for vary-
ing tile sizes

locality optimization and load balancing for parallel execu-
tion.

Consider the one-dimensional Jacobi code shown in Fig-
ure 5. The expanded array version is shown for simplicity
of illustration. Tiling for data reuse optimization (e.g. us-
ing the approach presented in [1]) results in tiles of shape
as shown in Figure 6(a). The horizontal axis corresponds to
the spatial dimension, with time along the vertical dimen-
sion. Using a sufficiently large tile size along the time di-
mension facilitates significant data reuse within caches/reg-
isters. However, there are inter-tile dependences in the hor-
izontal direction, inhibiting concurrent execution of tiles by
different processors. However, if the vertical tile size is re-
duced to one (i.e., tiling is eliminated along the time dimen-
sion), all tiles along the spatial dimension (adjoining the x-
axis) can be executed concurrently. Thus there is a trade-off
between achieving good data reuse and load balancing of
parallel execution.

Instead of the standard tiling described above, consider
the tiling shown in Figure 6(b). Starting with the tiles
formed by the same hyperplanes, an additional triangular
region is added to the left of the tile, overlapping with the
points at the right end of the neighboring tile. With this
tiling, some of the iterations are executed redundantly by
two neighboring tiles. While increasing the computation
cost, this eliminates the dependence between tiles along the
horizontal direction. All processors can start executing in
parallel, eliminating the initial processor idling that results
with the pipelined parallel execution of tiles in Figure 6(a).

While standard tiling can enhance data locality in this
context, overlapped tiling can both improve data locality
and eliminate the overhead of pipelined parallelism, at the
cost of slightly increased computation time. However, the
increased computational cost is independent of tile size.
Therefore the fractional computation overhead is inversely
proportional to the tile size in the direction of overlapped
tiling, and can be made insignificant if a sufficiently large



for t = 0 to T-1
for i = 1 to N-1

A[t,i] = (A[t-1,i-1] + A[t-1,i] + A[t-1,i+1])/3;

Figure 5. Single-statement form of one-dimensional Jacobi code

(a) (b) (c)

Figure 6. One-dimensional Jacobi code. s1 and s2 denote the inter-tile dependences. (a) Standard-
tiling (b) Overlapped tiling (c) Split tiling

tile size is chosen along the time dimension.
An alternative approach, shown in Figure 6(c), splits the

interior of each tile into two sub-tiles, where the points in
only one of the two sub-tiles (shaded) are dependent on
points in the neighbor tile, while the points in the other sub-
tile are not dependent on any neighboring tile’s points, and
therefore executable concurrently. With this approach, each
standard tile is split into two sub-tiles, and load-balanced
concurrent execution is possible as a sequence of two steps:
first all non-dependent sub-tiles are concurrently executed
and communicate with the neighbor tiles, and then the de-
pendent sub-tiles are all concurrently executed.

Both approaches are novel parallelization schemes ex-
posing greater parallelism in the program. We have demon-
strated a unified formulation to derive overlapped and split-
tiled versions of tiled loop programs in which concurrent
start is inhibited in the tiled space. Both were demonstrated
to have improved performance over pipelined execution.

5 Related work

Iteration space tiling [22, 39, 33] is a standard approach
for aggregating a set of loop iterations into tiles, with each
tile being executed atomically. It is well known that it can
improve register reuse, locality and optimize communica-
tion. Researchers have considered the problem of select-
ing tile shape and size to minimize communication, im-
prove locality or minimize finish time [33, 9, 36]. But
these studies were restricted to perfectly nested loops with
uniform dependences or had other restrictions that limited
their applicability to very simple codes. Some specialized
works [37, 40] also exist on tiling a restricted class of im-
perfectly nested loops.

Loop parallelization has been studied extensively. The
reader is referred to the survey of Boulet et al.[9] for
a detailed summary of older parallelization algorithms
which accepted restricted input and/or were based on
weaker dependence abstractions than exact polyhedral de-
pendences. Overall, automatic parallelization efforts in

the polyhedral model broadly fall in two classes: (1)
scheduling/allocation-based, and (2) partitioning-based.
The works of Feautrier [16, 17], Darte and Vivien [13],
and Griebl [19] (to some extent) fall into the former class,
while Lim/Lam’s approach falls into the second class. Our
approach is closer to the latter class of partitioning-based
approaches. In addition to model-based approaches, semi-
automatic and search-based transformation frameworks in
the polyhedral model also exist [11, 18, 30].

Code generation under multiple affine mappings was
first addressed by Kelly et al. [23]. Significant advances
were made by Quilleré et al. [32] and more recently by Bas-
toul et al. and Vasilache et al. [5, 38], resulting in a pow-
erful open-source code generator, CLooG [10]. Our tiled
code generation scheme uses Ancourt and Irigoin’s classic
approach [3] to specify domains with fixed tile sizes and
shape information, but combines it with CLooG’s support
for scattering functions to allow generation of tiled code for
multiple domains under transformations obtained from our
theoretical framework. Techniques for parametric tiled code
generation [34, 24] were recently proposed for single state-
ment domains for which rectangular tiling is valid. Such
techniques complement our parallelization framework and
we plan to integrate them into our system.

6 Conclusions

We have summarized our recent progress on automatic
parallelization for multicore processors, including general-
purpose systems as well as accelerators. The polyhedral
model for transformation provides a powerful basis for the
system, and recent advances have made it feasible to use
with non-toy codes. We plan to work with application de-
velopers and further advance the infrastructure with the goal
of making effective automatic parallelization of real pro-
grams feasible in the future.
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