
Software Monitoring with Bounded Overhead

Sean Callanan Daniel J. Dean Michael Gorbovitski Radu Grosu Justin Seyster
Scott A. Smolka Scott D. Stoller Erez Zadok

Stony Brook University

Abstract

In this paper, we introduce the new technique of High-
Confidence Software Monitoring (HCSM), which allows
one to perform software monitoring with bounded over-
head and concomitantly achieve high confidence in the ob-
served error rates. HCSM is formally grounded in the the-
ory of supervisory control of finite-state automata: over-
head is controlled, while maximizing confidence, by dis-
abling interrupts generated by the events being monitored—
and hence avoiding the overhead associated with process-
ing these interrupts—for as short a time as possible under
the constraint of a user-supplied target overhead Otarget.

HCSM is a general technique for software monitoring
in that HCSM-based instrumentation can be attached at
any system interface or API. A generic controller imple-
ments the optimal control strategy described above. As a
proof of concept, and as a practical framework for software
monitoring, we have implemented HCSM-based monitoring
for both bounds checking and memory leak detection. We
have further conducted an extensive evaluation of HCSM’s
performance on several real-world applications, including
the Lighttpd Web server, and a number of special-purpose
micro-benchmarks. Our results demonstrate how confi-
dence grows in a monotonically increasing fashion with the
target overhead, and that tight confidence intervals can be
obtained for each target-overhead level.

1 Introduction

Ensuring the correctness and guaranteeing the perfor-
mance of complex, long-running software systems, such as
operating systems, Web servers and embedded control soft-
ware, presents unique problems for developers. Errors oc-
cur in functions that are called only rarely, and inefficiencies
whittle away at performance over the long term. Moreover,
it is difficult to replicate all of the environments in which
the software may be executed, so many of these problems
do not arise until the software is actually deployed.

This state of affairs has led to research in techniques for

monitoring software systems during deployment. In this
paper, we introduce the new technique of High-Confidence
Software Monitoring (HCSM). The essential idea is as fol-
lows. Given a user-specified target overhead Ot, HCSM
maximizes the confidence the user has in the monitoring
while keeping the actual overhead due to monitoring at lev-
els that never exceed Ot. By maximizing the confidence
in the monitoring, we mean that HCSM monitors as many
events as possibles within the confines of Ot.

The paper’s main contributions can be summarized as
follows.

• HCSM is a general technique for software monitoring.
HCSM-based instrumentation, which can be attached
to any system interface or API, maintains an estimate
of the rate of accesses to that interface as well as the
time spent handling instrumented accesses.

• We have implemented the instrumentation needed for
bounds checking as a GCC plug-in, using our newly
developed plug-in architecture for GCC [5]. For leak
detection, we introduce a novel method for detecting
stale memory using the virtual memory hardware.

• HCSM is formally grounded in control theory, in par-
ticular, the theory of supervisory control of finite-state
automata [17, 1].

The rest of this paper develops along the following lines.
Section 2 explains HCSM’s control-theoretic approach to
bounding overhead while maximizing confidence. Sec-
tion 3 presents our architectural framework for HCSM. Sec-
tion 4 contains our benchmarking results, while Section 5
considers related work. Section 6 offers our concluding re-
marks and directions for future work.

2 Control-Theoretic Monitoring

Given a process P , henceforth referred to as the plant,
with controllable input v and output y, and a reference in-
put x, the controller design problem is that of designing a
controller Q, with inputs x, y and output v, such that the

composition of Q and P follows the reference input (i.e., y
is nearly equal to x) with good dynamic response and small
error (see Figure 1).

x
Q P

v y

Figure 1. Plant (P) and Controller (Q) archi-
tecture.

Runtime monitoring can be beneficially stated as a con-
troller design problem, where the controller is the runtime
monitor, the plant is a software application and the reference
input x is the target overhead ot. To ensure that the plant
is controllable, one typically instruments the application so
that it emits events of interest to the monitor. The monitor
catches these events, and controls the plant by enabling or
disabling event signaling (interrupts). Hence, the plant can
be regarded as a discrete event process.

Because of the enabling and disabling of interrupts, the
problem we are considering is nonlinear: intuitively, the
interrupts signal is multiplied by a control signal that is 1
when interrupts are enabled and 0 otherwise. While a lin-
earization is conceivable, for such nonlinear systems a su-
perior approach is provided in the automata-theoretic set-
ting [17, 1], where the controller design (synthesis) problem
is referred to as supervisory control.

The main idea of supervisory control we exploit in or-
der to enable and disable interrupts is the synchronization
inherent in the parallel composition of state machines. In
this setting, the plant P is a state machine, the desired out-
come (tracking the reference input) is a language L, and the
controller design problem is that of designing a controller
Q, which is also a state machine, such that the language
L(Q‖P) of the composition of Q and P is included in L.
In [17, 1] it is shown that this problem is decidable for finite
state machines.

The monitoring overhead depends on the timing of
events and the monitor’s per-event processing time. The
specification language L therefore consists of timed words
a1, t1, . . . , an, tn where each ai is an (access) event and ti
is the time at which ai has occurred. Consequently, the state
machines used to model P and Q must also include a notion
of time. In [19], supervisory control is shown to be decid-
able for timed automata [2] and in [18] for timed transition
models. In our setting, we use a more expressive version
of timed automata which allows clocks to be compared to
variables, and for such automata decidability is not guaran-
teed. We therefore design our controller manually, but are
currently investigating techniques for the automated synthe-
sis of an “approximate controller.” Moreover the controller

we are designing consists of the composition of a global
controller and a set of local controllers, one for each plant
(object in the application software) that we monitor. Sound-
ness and optimality proofs for these controllers appear in a
technical report [4].

Plant model. The plant P (see Figure 2) is described as
an extended timed automaton whose alphabet consists of in-
put and output events, and whose locations are labeled with,
and whose transition guards may contain, timing constraints
of the form x ∼ c, where x is a clock, c is a natural constant,
and ∼ is one of <,≤, =,≥,>. We write transition labels in
the form [guard]In/Out, Ass, where guard is a pred-
icate over the automaton’s variables, In is a sequence of
input events of the form v?e denoting the receipt of value e
on channel x, Out is a sequence of output events of the form
y!a denoting the sending of value a on channel y, and Ass

is a sequence of assignments to the (local) variables. All
fields are optional. A transition is enabled when its guard is
true and the event (if specified) has arrived. A transition is
not forced to be taken unless letting time flow would violate
the condition (invariant) labeling the current location.

v?en / i=1 v?di / i=0

[i=1] / y!ac

k <= M
k >= M

True

Figure 2. Plant P for a single monitored ob-
ject.

The plant P has an input channel v where it may receive
enable and disable events, denoted en and di, respectively.
It has an output channel y where it may send an access event
ac. Upon receipt of v?di, the interrupt bit i is set to zero
preventing the plant from sending further messages. Upon
receipt of v?en, the interrupt bit is set to one allowing the
plant to send messages at arbitrary moments in time. The
plant terminates when the maximum monitoring time M, a
parameter of the model, is reached; i.e., when the clock k
reaches value M. Initially, i=1 and k=0.

Target specification. The specification for a single con-
trolled plant is given as a timed language L. Let N denote
the natural numbers, R+ the positive reals, and A the set of
events. Then:

L = {a1, t1, . . . , an, tn | n ∈ N, ai ∈ A, ti ∈ R+}
where the following conditions hold:

1. The average overhead o = (n pa)/(tn − t1) is ≤ ot,
where pa is the average event-processing time.

2

2. If the strict inequality o < ot holds, then the overhead
undershoot is due to time intervals (with low activity)
during which all access events are monitored.

The first condition talks only about the mean overhead
o within a timed word w ∈ L. Hence, various policies for
handling overhead, and thus enabling/disabling interrupts,
are allowed. The second condition is a best-effort condition
which guarantees that if the target overhead is not reached,
this is only because the plant does not throw enough inter-
rupts. Our policy, described next, satisfies these conditions.

The local controller. For a single monitored plant, our lo-
cal controller (see Figure 4) disables interrupts by sending
event di along v upon the occurrence of event ac, and sub-
sequently enables interrupts by sending event en along v.
Let τi be the time monitoring is on, i.e., the time between
events en and ac. Let pi be the time required to process
event ac, and let di be the delay time until monitoring is
restarted, i.e., until event en is sent again along v. We as-
sume that the processing time of an interrupt varies in the
interval [pm, pM]. We refer to the time ci = τi + pi + di as
a cycle and to oi = pi/ci as the overhead ratio at i. These
intervals are shown graphically in Figure 3.

τ1
p1

Start Monitoring

Event

d1 τ2

Controller gets τ1, p1, sets d1 Start MonitoringStop Monitoring

Time

Legend
Monitoring

Not Monitoring

p2

Event

Stop Monitoring

d2

Controller gets τ2, p2, sets d2

Figure 3. Timeline for a Q ‖P.

To ensure that oi = ot whenever the plant is throw-
ing access events at high rate, the local controller com-
putes di as the least positive real greater than or equal to
pi/ot− pi− τi. If the plant throws events at a low rate,
then all events are monitored and di = 0. Whenever pro-
cessing of event ac is finished, the local controller sends
along u the processing time k to the global controller, which
is dicussed below.

True
y?ac / v!di,

[k >= di] / v!en

k <= pM

[k >= 1] / p = k , u!k,
k <= did = p/ot - p - τ , k = 0 τ = k , k = 0

x?v / ot = ot x?ot / ot = ot x?v / ot = ot

Figure 4. State machine for local controller Q.

The global controller. The local controller Q achieves its
target overhead ot only if the plant P throws events at a suf-
ficiently high rate. Otherwise the mean overhead o is less

than ot. In case we monitor a large number of plants Pi si-
multaneously, it is possible to take advantage of this under-
utilization of ot by increasing the overhead ot of those con-
trollers Qi associated with plants Pi that throw interrupts at
a high rate. In fact, we can scale the target overhead ot of
all local controllers Qi with the same factor λ, as the con-
trollers Qj of plants Pj with low rate of interrupts will not
take advantage of this scaling. We do this every T seconds,
a period of time we call the adjustment-interval. The peri-
odic adjustment of the local target overheads is the task of
the global controller GQ. The architecture of our overall
control framework for HCSM is shown in Figure 5.

x
GQ

Q
1

x1

u1

Q
2

x2

u2

Q
n

xn

un

...

P
1

v1

y1

P
2

v2

y2

P
n

vn

yn

y1

y2

yn

Figure 5. Overall control architecture.

The timed state machine for the global controller GQ is
given in Figure 6. It inputs on x the user-specified target
overhead ot, which it then assigns to local variable ogt rep-
resenting the global target overhead. It outputs ot/n to the
local controllers and assigns ot/n to local variable ot, rep-
resenting the target overhead for the local controllers. The
idea is that the global target overhead is evenly partitioned
among the n local controllers. It also maintains an array of
total processing time p, initially zero, such that p[i] is the
processing time used by local controller Qi within the last
adjustment-interval of T seconds. Array entry p[i] is up-
dated whenever Qi sends the processing time pj of the most
recent event aj ; i.e., p[i] is the sum of the pj local controller
Qi generates during the current adjustment interval.

Whenever the time bound of T seconds is reached, GQ
computes a scaling factor λ =

∑n
i=1 p[i]/(T n ogt) as the

overall observed processing time divided by the product of
T , n and the global target overhead ogt. This factor repre-
sents the under- or over-utilization of ogt. The new local
target overhead ot is then computed by scaling the previous
ot by λ.

The target specification language LG is defined in a
fashion similar to the one for the local controllers, except
that the events of the plant P are replaced by the events of
the parallel composition P1 ‖ P2 ‖ . . . ‖ Pn of all plants.

3

ui?pi / p[i] = p[i] + pi

k <= T

k <= 0[k >= T] / k = 0,

λ = Σp[i] / (T∙n∙ ogt) , ot = λ∙ot , p = 0

[k >= 0] / x1!ot , x2!ot , ... xn!ot

x?ot / x1!ot÷n , ... xn!ot÷n , ot = ot÷n , ogt = ot

i=1

n

Figure 6. State machine for the global con-
troller.

3 Design

Instrumented Program

f′ hg′ i

Stack tracing
Access reporting

MMU / Allocator

Memory m n o p

Bounds
checking

Leak
detection

m

n

p

oSplay
tree

faults, allocs

allocs

allocs,
accesses

Controller
faults

activations

activations

events

Figure 7. The architecture for our implemen-
tation of bounds checking and staleness de-
tection.

In this section, we discuss the two applications that we
have implemented for HCSM, namely leak detection and
bounds checking. The overall architecture of the system
is shown in more detail in Figure 7. The controller reg-
ulates delay times for each of these mechanisms, receiv-
ing only notifications of hits and incurred overhead. All
fault detection and reporting is decoupled from the over-
head regulation; both the bounds checker and the leak de-
tector receive information from their respective instrumen-
tation points and consult a shared splay tree of memory ar-
eas in performing their functions. We discuss them in more
detail in Sections 3.1 and 3.2.

3.1 Memory Under-Utilization

We have implemented an HCSM-based under-utilization
detector which identifies areas that are not accessed for a
user-definable period of time. We refer to such a time period
as a Non-Accessed Period, or NAP. Note that we are not
detecting areas that are never touched, but rather areas that
are not touched for a sufficiently long period of time to raise
concerns about memory-usage efficiency.

We introduce a memory-access interposition mechanism
called memcov that intercepts accesses to particular areas,
not accesses by particular instructions. We take advantage
of the memory-protection hardware by using the mprotect
interface, which allows a programmer to control access to
a particular memory region. Accesses that violate the ac-
cess controls set in this way cause segmentation fault sig-
nals (SIGSEGV on Linux) to be sent to the process in ques-
tion. By intercepting such faults, which include the faulting
address, memcov can determine which areas are being ac-
cessed by the program and when.

To perform our memory-access interposition, we imple-
ment a shared library that replaces memory-allocation func-
tions, such as malloc and free, with functions that track
allocated regions in a splay tree. Each allocation gets its
own page, so that mprotect can independently control ac-
cess to it.

3.2 Bounds Checking

The second application for our controller architecture
is a more traditional problem: bounds checking. Bounds
checking may be broadly defined as ensuring that pointers
are dereferenced only when they are valid. Our definition
of a valid pointer is one that points to a region that

• has been allocated using the system’s heap memory al-
location functions (notably malloc),

• corresponds to some instance of a stack variable (either
a local variable or a function parameter), or

• corresponds to a static variable.

We consider any dereferenced pointer to be valid if its
target matches the above criteria, regardless of the pointer’s
type or the region it originally pointed to. This means that
we are not required to keep track of each pointer update. In-
stead, we need only keep track of areas as they are allocated
and deallocated. To accomplish this, we use the same splay
tree described in Section 3.1. At the entry to each function,
we find the stack and static variables used by that function
and register them in the splay tree, and at the exit point, we
deregister all stack areas used by the function.

To add instrumentation to a program, we use a version of
the GNU C compiler that we modified to use plug-ins [5].
Plug-ins are written as normal GCC optimization passes
that modify GCC’s GIMPLE intermediate representation
but can be compiled separately from GCC and loaded dy-
namically.

Our bounds-checker plug-in, called meminst, creates a
duplicate copy of every function it instruments. Both copies
register and deregister valid memory areas, but the plug-in
only adds checks for pointer dereferences in one copy. At

4

each function call, the controller runs the fully instrumented
copy only if bounds checking is enabled for that function.

L2:
int i;
for(i = 0; i < len; i++) {
 check_bounds(&values[i]);
 total += values[i];
}
deregister(bases, extents, 1);
return total;

void* uid;
void* bases = { &values };
size_t extents = { sizeof(values) };
register(bases, extents, 1);
if(controller(uid)) goto L2; else goto L1;

L1:
int i;
for(i = 0; i < len; i++) {
 total += values[i];
}
deregister(bases, extents, 1);
return total;

Figure 8. meminst adds initial registrations
and a call to the controller in a function’s first
block; the rest is duplicated, and one copy
(white) of the function only has deregistra-
tions, whereas the instrumented copy (gray)
also includes bounds checking.

Figure 8 shows an abstract representation of a function
instrumented by meminst.

4 Evaluation

In this section, we describe a series of benchmarks we
ran to validate our implementation and determine its run-
time characteristics. We will show that HCSM fulfills its
goals: not only does it closely adhere to the desired over-
head in systems with varying levels of load, but it also
observes events at higher rates as it receives more over-
head and catches bugs with greater effectiveness. We be-
gin with a real-world demonstration using the Lighttpd Web
server [14]. Then we investigate the effectiveness of HCSM
by demonstrating its usage with a micro-benchmark that
causes bounds violations.

We ran our benchmarks on a group of identically config-
ured machines, each with two 2.8GHz EM64T Intel Xeon
processors with 2 megabytes of L2 cache each. The com-
puters each had 1 gigabyte of memory and were installed
with the Fedora Core 7 distribution of GNU/Linux. The in-
stalled kernel was a vendor version of Linux 2.6.23. We
built all packages tested from source: we built the instru-
mented programs with a custom 4.3-series GCC compiler
modified to load plug-ins [5] and other utility programs us-
ing a vendor version of GCC 4.1.2. Our Lighttpd bench-
marks use Lighttpd version 1.4.18. Graphs that have con-
fidence intervals show the 95% confidence interval over 10

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

O
bs

er
ve

d
ov

er
he

ad

M
ill

io
ns

 o
f e

ve
nt

s

Target overhead

Observed overhead
Access events

Function call events

Figure 9. Observed load versus desired load
for the Lighttpd server with 25 clients issuing
one request per second.

runs, assuming a sample mean distributed according to the
Student’s-t distribution.

4.1 Lighttpd Benchmark Results

HCSM’s main goal is to instrument as much as possible
while regulating overhead so that it adheres closely to the
user’s specification. Since our theoretical result in Section 2
shows this to be achievable, any deviation of the measured
performance results from user specification must arise from
implementation limitations.

The most obvious limitation is saturation: regardless of
the kind of instrumentation, once the instrumented system
hits a bottleneck (usually the processor), it will reach a peak
service level. More instrumentation will simply reduce the
service level, and as a result we will not be able to observe
more than a particular threshold of events.

Figure 9 shows observed overhead versus target over-
head for our load benchmark of the Lighttpd server, with
both bounds checking and memory-under-utilization detec-
tion turned on. We ran Lighttpd with target overheads from
5% to 100% in increments of 5%. The solid line shows the
observed percent overhead (y axis), which should ideally
adhere to the y = x line. The dotted and dashed lines show
the number of processed function call events and memory
access events respectively, in millions of events (y2 axis).

We use the curl-loader tool to hit the server with one
request per second from 25 simulated clients. We observe
roughly linear growth for target overhead settings between
5% and 60%, with the saturation point lying at 60%.

We observe that saturation accompanies a rapid increase
in the number of memory access events observed. At a point

5

between 60% and 70% target overhead, we observed that
the CPU becomes saturated: we measured CPU usage to be
at its maximum. Fluctuations at higher target overheads are
due to the controller attempting to get more overhead out
of a CPU that is pegged at 100% usage. With a saturated
CPU, it is not possible to increase observed overhead by in-
creasing the monitoring rate for functions. The global con-
troller consequently increases the adjusted target overhead
dramatically, and the individual memory area controllers in-
strument more aggressively to match the higher target. At
higher targets we enter a mode that is almost streaming:
all but 3–4 areas are monitored at a time, which actually
reduces overhead per observed access by decreasing con-
tention on an internal queue that the controller uses to keep
track of the subjects that are waiting to be activated. How-
ever, the CPU is still saturated, so the cost of processing this
overhead is borne by reducing per-function instrumentation
or by sacrificing observed overhead.

During our benchmarking, we did not observe any
bounds violations resulting from bugs in Lighttpd. How-
ever, we observed a number of NAPs (non-accessed peri-
ods, see Section 3). A comparatively large amount of mem-
ory, about 180 kilobytes, goes unused for almost all of the
program’s run. Lighttpd is intended as an embedded Web
server with a low memory footprint—its total heap foot-
print is 540 kilobytes—so the unused 180 kilobytes are of
particular interest and comprise a significant reduction in
Lighttpd’s heap memory footprint (one-third less). We have
verified that at least some of these areas come from a pre-
loaded MIME type database that could be loaded incremen-
tally on demand.

4.2 Micro-Benchmark Results

Having seen the effectiveness of HCSM at catching
memory leaks, we turn to the effectiveness of HCSM
at catching bounds violations. We designed a micro-
benchmark that runs for ten seconds, accessing a single
memory area as fast as it can. Ten times a second, it issues
an out-of-bounds access. This micro-benchmark allows us
to examine the performance of HCSM in more detail.

Figure 10 shows our effectiveness at detecting bounds
violations in this micro-benchmark for different target over-
head settings. The solid line shows the percent of bounds vi-
olations caught, and the dotted line shows how many events
HCSM observed overall. Initially, we observe a linearly in-
creasing number of accesses, which saturates near 100% of
accesses observed, confirming that we are not only achiev-
ing our overhead targets, we are in fact getting something
for that overhead—we are achieving the goal explained in
Section 2: to monitor as much as possible given the over-
head constraints.

In each of our tests, the number of bounds violations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50
 0

 0.5

 1

 1.5

 2

 2.5

 3

P
er

ce
nt

 v
io

la
tio

ns
 c

au
gh

t

M
ill

io
ns

 o
f e

ve
nt

s

Target overhead

Violations caught
Function call events

Figure 10. Number of function executions
bounds-checked and number of bounds vio-
lations caught, versus target overhead for the
micro-benchmark.

observed increases evenly throughout, consistent with the
micro-benchmark’s highly regular behavior. This is in con-
trast to adaptive sampling tools [12] that reduce overhead
over time, making violations occurring later less likely to
be caught than early violations.

5 Related Work

In this paper, we have presented techniques that touch
on a variety of fields of study. In this section, we will sur-
vey some of the other approaches that exist in these fields,
and describe what distinguishes our contribution from them.
We will discuss the fields of control theory, bounds check-
ing, and leak detection, starting with two systems that are
closely related to HCSM.

Chilimbi and Hauswirth [12] have proposed a sampling-
based technique for detecting memory leaks that approxi-
mates memory-access sampling through code sampling at
the level of basic blocks. Their tool, SWAT, records mem-
ory accesses in each monitored basic block. Low overhead
is ensured by reducing the sampling rate of blocks that gen-
erate a high rate of memory accesses. The aim of their
sampling policy is, however, to reduce overhead over time;
once monitoring is reduced for a particular piece of code,
it is never increased again, regardless of that code’s future
memory-access behavior. Also, because they approximate
sampling of memory accesses by sampling basic-block ex-
ecutions, and because a leak is most commonly associated
with a memory allocation and not with a basic block, there
is no clear association between the sampling rate for blocks
and the confidence in any particular leak.

6

Artemis [8] also reduces overhead from runtime checks
by enabling them for only some function executions. In
order to observe as many behaviours as possible, Artemis
always runs a function with instrumentation when the func-
tion runs in a context that it has not seen before, where a
function execution’s context consists of the values of global
variables and arguments. The user cannot provide a bound
on overhead, however, so Artemis may still instrument too
aggressively when functions run in many different contexts.

Control theory. The classic theory of digital control for
linear systems is discussed extensively in [9]. The theoreti-
cal treatment of the automatic synthesis of a maximal con-
troller within supervisory control is given in [17, 1]. The
same is discussed within a timed framework in [17, 1]. In
this paper we go beyond the theoretical limitations of au-
tomated controller synthesis for timed automata and timed
transition models in [17, 1], by manually constructing the
controller and proving its soundness and optimality. Note
that extracting an optimal controller from the maximal con-
troller is generally a hard problem. Moreover, we apply the
supervisory control theory to two nontrivial applications:
leak detection and bounds checking. To the best of our
knowledge, this has not been done before.

Bounds checking. Keeping track of valid areas associated
with particular pointers is usually done with the help of the
compiler [7]. One approach is to keep information about
valid areas in out-of-band data structures [11], which can
be checked at each memory access, which has the advantage
that it can tolerate external code accessing the pointers.

The alternative is performing bounds checking at the
memory, rather than at the pointer. One technique is to place
canary values around critical areas and verify them before
they are used [6]. Alternatively, areas can be surrounded
with pages that have been monitored using the system’s
virtual memory hardware [15], which is most effective for
heap areas because it is low-overhead but requires space on
each side of the allocation for a full page of untouchable
memory. Finally, a recent technique is to randomize the al-
locator [3]. If multiple copies of a program are executed
with different memory layouts, deviations in their behavior
will indicate pointer manipulations that took pointers out of
their designated zones.

Leak detection. Though most general leak detection
techniques are dynamic, overhead can be significantly re-
duced using static analysis [13]. Purely static approaches
do exist [10], but must deal with the problem of false pos-
itives. Our approach allows us to measure the use of even
those allocations that are properly deallocated. This sort of
profiling is nearly impossible to perform statically.

Another system that uses hardware support but achieves
finer-grained allocation size is SafeMem [16], which repur-
poses ECC memory’s built in error-checking to perform ac-
cess detection.

6 Conclusions and Future Work

We have presented High Confidence Software Monitor-
ing (HCSM), an approach to overhead control for the run-
time monitoring of instrumented software. HCSM is high-
confidence because it monitors as many events as possible
without exceeding a target overhead. The key to HCSM’s
performance is an underlying control strategy based on an
optimal controller for a nonlinear control problem repre-
sented in terms of the composition of timed automata.

Using HCSM as a foundation, we have developed two
sophisticated monitoring tools: a memory staleness detector
and a bounds checker. Both the per-area and per-function
checks in these detectors are enabled and disabled by the
same generic controller, which achieves a desired target
overhead with both of these systems running.

Our benchmarking results demonstrate that it is possible
to perform correctness monitoring of large software systems
with fixed overhead guarantees. We also demonstrated the
effectiveness of our system at detecting real-world issues:
we demonstrated that one-third of the Lighttpd Web server’s
heap footprint is unused.

Future work. Because HCSM is such a general approach,
there are many potential uses for it. Such varied techniques
as integer value profiling, lockset profiling and checking,
runtime type checking, and intrusion detection would ben-
efit from being coupled with controllable overhead regula-
tion. Some applications could also manage disk or network
time instead: a background file-system consistency checker
could use the HCSM controller to ensure that it gets only a
specific fraction of disk time.

Kernel services that run asynchronously also benefit
from a fixed-overhead approach. For example, a heavy-
weight packet filter may be willing to invoke constant over-
head on packets coming in to prevent Denial-of-Service at-
tacks, but ensure that its operation does not itself cause a
Denial of Service under heavy load.

Apart from specific applications such as the ones men-
tioned above, we also believe that several general improve-
ments should be made to HCSM. It should be extended to
handle events that must be processed for the rest of the in-
strumentation to work; for example, a runtime type checker
must add some overhead to allocation functions to keep
track of types for heap areas, so the type-checking oper-
ations should be regulated keeping the overhead from the
allocations in mind.

7

7 Acknowledgments

This work was partially made possible thanks to a Com-
puter Systems Research NSF award (CNS-0509230) and
NSF CAREER awards in the Next Generation Software
program (CNS-0113589), and the Embedded and Hybrid
Systems program (CCR-0133583). We also thank Rob
Johnson, Annie Liu, and Paul Talamo from Stony Brook
University for their advice and feedback, and Eric Christo-
pher and Diego Novillo from the GCC project for assistance
porting our GCC plug-ins to mainline GCC.

References

[1] A. Aziz, F. Balarin, R. K. Brayton, M. D. Dibenedetto, A.
Sladanha, and A. L. Sangiovanni- Vincentelli. Supervi-
sory control of finite state machines. In P. Wolper, editor,
7th International Conference On Computer Aided Verifica-
tion, volume 939, pages 279–292, Liege, Belgium, 1995.
Springer Verlag.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theo-
retical Computer Science, 126(2):183–235, 1994.

[3] E. D. Berger and B. G. Zorn. DieHard: probabilistic mem-
ory safety for unsafe languages. In Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI ’06), Ottawa, Canada, June
2006.

[4] S. Callanan, D. J. Dean, M. Gorbovitski, R. Grosu,
J. Seyster, S. A. Smolka, S. D. Stoller, and E. Zadok.
High-confidence software monitoring with bounded over-
head. Technical Report FSL-07-03, Computer Science De-
partment, Stony Brook University, November 2007. www.

fsl.cs.sunysb.edu/docs/memcov-tr/memcov.pdf.
[5] S. Callanan, D. J. Dean, and E. Zadok. Extending GCC

with Modular GIMPLE Optimizations. In Proceedings of
the 2007 GCC Developers’ Summit, Ottawa, Canada, July
2007.

[6] C. Cowan, C. Pu, D. Maier, H. Hintongif, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.
StackGuard: Automatic Adaptive Detection and Prevention
of Buffer-Overflow Attacks. In Proceedings of the Seventh
USENIX Security Symposium, pages 63–78, San Antonio,
TX, January 1998.

[7] F. C. Eigler. Mudflap: Pointer Use Checking for C/C++. In
Proceedings of the First Annual GCC Developers’ Summit,
pages 57–70, Ottawa, Canada, May 2003.

[8] L. Fei and S. P. Midkiff. Artemis: practical runtime monitor-
ing of applications for execution anomalies. In Proceedings
of the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’06), Ottawa,
Canada, June 2006.

[9] G. Franklin, J. Powell, and M. Workman. Digital Control
of Dynamic Systems, Third Edition. Addison Wesley Long-
man, Inc., 1998.

[10] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A System and
Language for Building System-Specific, Static Analyses. In
ACM Conference on Programming Language Design and
Implementation, pages 69–82, Berlin, Germany, June 2002.

[11] R. Hastings and B. Joyce. Purify: fast detection of memory
leaks and access errors. In Proceedings of the Winter 1992
USENIX Conference, pages 125–138, San Francisco, CA,
January 1992.

[12] M. Hauswirth and T. M. Chilimbi. Low-overhead memory
leak detection using adaptive statistical profiling. SIGARCH
Comput. Archit. News, 32(5):156–164, 2004.

[13] D. L. Heine and M. S. Lam. A practical flow-sensitive
and context-sensitive C and C++ memory leak detector. In
Proceedings of the 2003 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI
’03), San Diego, CA, June 2003.

[14] J. Kneschke. Lighttpd. http://www.lighttpd.net/,
2003.

[15] B. Perens. efence(3), April 1993. linux.die.net/man/

3/efence.
[16] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-

memory for detecting memory leaks and memory corruption
during production runs. In Proceedings of the 11th Inter-
national Symposium on High-Performance Computer Archi-
tecture (HPCA 2005), San Francisco, CA, February 2005.

[17] P. Ramadge and W. Wonham. Supervisory control of a class
of discrete event systems. SIAM J. Control and Optimiza-
tion, 25(1):206–230, 1987.

[18] P. Ramadge and W. Wonham. Supervisory control of timed
discrete-event systems. IEEE Transactions on Automatic
Control, 38(2):329–342, 1994.

[19] H. Wong-Toi and G. Hoffmann. The control of dense real-
time discrete event systems. In Proc. of 30th Conf. Decision
and Control, pages 1527–1528, Brighton, UK, 1991.

8

