Probabilistic Allocation of Tasks on Desktop Grids *

Joshua Wingstrom

Henri Casanova

Information and Computer Sciences Dept.
University of Hawai‘i at Manoa, Honolulu, U.S.A.

Abstract

While desktop grids are attractive platforms for execut-
ing parallel applications, their volatile nature has often lim-
ited their use to so-called “high-throughput” applications.
Checkpointing techniques can enable a broader class of ap-
plications. Unfortunately, a volatile host can delay the en-
tire execution for a long period of time. Allocating redun-
dant copies of each task to hosts can alleviate this problem
by increasing the likelihood that at least one instance of
each application task completes successfully. In this paper
we demonstrate that it is possible to use statistical char-
acterizations of host availability to make sound task repli-
cation decisions. We find that strategies that exploit such
statistical characterizations are effective when compared to
alternate approaches. We show that this result holds for
real-world host availability data, in spite of only imperfect
statistical characterizations.

1 Introduction

Desktop grids are platforms that exploit the idle CPU
cycles of distributed and typically individually owned com-
puting resources, which we term hosts, such as desktop
computers. Many desktop grid systems have enabled large-
scale volunteer computing on the Internet, as in the famous
SETI@home project [16] and others [11][6]. The incen-
tive for host owners to participate in such systems is that
the target application is deemed worthwhile. Desktop grids
have also been deployed successfully at moderate scale in
enterprise environments, e.g., an organization’s local area
network to execute applications that are of interest to that
organization. Several desktop grid infrastructures are avail-
able from academia [11, 12, 5] and industry [17]. Although
some of these infrastructures vary in usage they all use hosts
that are both heterogeneous and volatile. As a result, the
overwhelming majority of applications executed on these
platforms consist of large numbers (relatively to the num-
ber of hosts) of independent tasks, which are often termed

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

“high-throughput” applications.

Several researchers have explored ways of using desktop
grids to run non-high-throughput applications. For instance,
the MPICH-V project [2] provides a way to execute appli-
cations in which tasks can synchronize and communicate
using MPI [15]. However, the difficult question of which
task should be assigned to which host(s) for best perfor-
mance remains. This question has been investigated in [7]
for applications that depart from the high throughput model
due to a small number of tasks (relatively to the number of
hosts). The authors empirically show that combining sim-
ple host exclusion, host prioritization, and task duplication
techniques lead to good application performance. They also
attempt to use information about past availability of hosts,
but surprisingly find this to be ineffective. However, they
employ a naive approach: they quantify past host availabil-
ity solely as the average number of useful CPU cycles de-
livered by each host, when available, in the previous day.
The broad question we address in this paper is whether a
more precise statistical characterization of host availability
is useful to better enable non-high-throughput applications,
including ones that go beyond the scenario studied in [7],
on desktop grids.

Statistical characterization of desktop grid host avail-
ability must rely on availability measurements collected on
desktop grids. In this paper we rely on such measurement
datasets used in previous work. In particular, two recent ar-
ticles have reported on and analyzed availability datasets:
Nurmi et al. [13] and Kondo et al. [8]. The former provides
an in-depth statistical analysis of host availability intervals.
These availability intervals are represented as durations, in
seconds, between host failures. The latter provides a high-
level analysis of CPU availability in terms of actual CPU
cycles delivered to a desktop grid application between two
application task failures.

The goal of this paper is to determine the value of using a
statistical model of host availability for the purpose of task
allocation in a desktop grid. A well-known approach is task
duplication, but the difficult question is to determine which
tasks to duplicate how many times and on which hosts. In

this context, our contributions are:

1. A formalization of the relevant task allocation problem
and a set of candidate algorithms that use task replica-
tion to solve it;

2. An evaluation of the algorithms with an ideal set of
assumptions;

3. An evaluation of the algorithms using host availability
trace data collected on real-world desktop grids;

4. A demonstration that an in-depth statistical model of
failure probability (i) is possible; and (ii) can be useful
to improve application performance.

This paper is organized as follows. Section 2 motivates
our task allocation problem, states it formally, and describes
algorithms to solve it. Section 3 compares the algorithms in
ideal “laboratory” conditions. Section 4 compares the algo-
rithms using “real-world” data. Section 5 concludes with a
brief summary and discussion of future directions.

2 Redundant Task Allocation
2.1 Problem Motivation and Definition

We consider the problem of executing an application that
consists of n identical (in terms of computational require-
ments) tasks on m hosts. Our goal is to maximize the prob-
ability that all tasks run to completion without being in-
terrupted or stopped due to host unavailability. This may
seem drastic, as indeed many applications would tolerate
some of its tasks to be suspended and later resumed. Al-
though checkpointing guarantees that an application ulti-
mately completes successfully, application makespan may
be prohibitively long due to long host unavailability periods
(which occur in real-world desktop grids). This problem
can be alleviated using task migration, with some overhead.
Some desktop grid systems/applications enable task migra-
tion while others preclude it.

In this paper we explore solutions to maximize the prob-
ability that the application would completed successfully,
assuming conservatively that checkpointing or migration
are not implemented. The goal is not to guarantee appli-
cation completion, since this can only be achieved with
checkpointing, but instead to minimized the probability of
an “application failure” delaying the execution. We term
the situation in which one of the application tasks does not
complete successfully before the host on which it is execut-
ing causes the task to fail an “application failure”, with the
understanding that checkpointing could then be used to re-
cover from this failure but with perhaps a long delay due to
long host unavailability periods. Our approach is thus or-
thogonal to checkpointing and can thus be easily integrated

with a checkpointing/migration infrastructure to guide ini-
tial allocation of tasks to hosts so that task checkpoint-
ing/resuming/migration is needed only with low probabil-
ity. We leave a study of the performance/overhead trade-off
of such an integration for future work.

The way to improve probability of application comple-
tion in our context, as in [7], is then to use task redun-
dancy: multiple replicas of a task can be started on mul-
tiple hosts in the hope that at least one of the replicas com-
pletes successfully. It is usually straightforward to imple-
ment task replication in several applications, e.g., for itera-
tive data-parallel application. Also, transparent task redun-
dancy could be implemented as part of infrastructures like
MPICH-V. Task replication in desktop grids is an attractive
and realistic proposition because hosts are often plentiful
and expendable.

Our task allocation problem is a version of the redun-
dancy allocation problem for a parallel-series system [10],
which has been studied extensively in industrial engineer-
ing. Our version of the problem is less constrained. An
allocation is defined by (x;);=1,.. ,, where z; = j if an
instance of task j is allocated to host 7. Our objective is
to maximize the probability of success of the entire appli-
cation. Assume that the probability of task j failing when
scheduled on host 7 is p; ;. The probability that all instances

of task j fail is:
II 2 (1)

iz =3

Then, the probability that the application executes without
failure for a given task allocation is:

Ro.= [[1-] »is)
j=1

iz =7

The problem, which we call REDUNDANTTASKALLOC, is
to find the allocation (x;);=1,... ,, that maximizes R,s.

All that is required to specify the above problem fully is
a method for estimating the p; ;’s. A simple way to model
host availability in desktop grids is to consider that each
host goes through a sequence of “availability intervals” and
“unavailability intervals” [7]. The duration of each inter-
val can be measured as the interval’s elapsed time or as the
number of operations completed by the host in the interval.
Similarly, application tasks are defined by their “size”, ¢,
which can denote either a task execution time (on some ref-
erence host) or as a number of operations required by the
task. Our approach is applicable for both interpretations (as
long as they are consistent between interval duration and
task size). For now, we simply refer to “durations” and
“sizes” with the understanding that they are expressed in
the same units.

At a given time, a host is either unavailable, or has been
available for some duration since it was unavailable last.

Assuming that availability interval duration can be modeled
by a probability distribution ¢, then p; ; can be defined as:

Py — ¢(vi+1t)— () ’ 3)
1—¢(v)

where -y; is the duration between the last time host 7 became
available and the time at which the task starts. This ap-
proach relies on the existence of ¢. Fortunately, it was was
shown in previous work that it is indeed possible to model
availability interval duration reasonably well with standard
probability distribution functions [13, 19].

2.2 Algorithms

The allocation problem defined in the previous section
is (weakly) NP-hard. We refer the reader to a technical
report for the proof [18]. Candidate heuristics to compute
the allocation are described below.

EA Algorithm — The EA (Equal Arbitrary) algorithm
arbitrarily assigns k or k + 1 hosts to tasks, where k = _%J
This algorithm does not account for past host availability. It
is our baseline from which other algorithms will be judged.

PPB Algorithm — The PPB (Purely Probability Based)
algorithm approximates the optimal solution to REDUN-
DANTTASKALLOC via simulated annealing. We also im-
plemented a dynamic programming algorithm to solve RE-
DUNDANTTASKALLOC exactly. Due to its exponential ex-
ecution time we could not run this algorithm for desktop
grids with more than 14 hosts. For these small grids we
found that simulated annealing produces results equal or
very close to the optimal.

The PPB algorithm accounts for the time a host has
been available (see Eq. 3) to make allocation decisions,
which should increase reliability. The question is, does
this increase justify the extra work? Indeed, this algorithm
requires that host availability measurements be gathered,
archived, and processed for off-line statistical modeling.

EPB Algorithm — The EPB (Equal Probability Based)
algorithm is a mix of the EA and the PPB algorithms.
It approximates the optimal solution to REDUNDANT-
TASKALLOC in the same manner as the PPB algorithm,
but it constrains the solution so that a near equal number
of hosts is allocated to all tasks (as the EA algorithm).
The EPB algorithm should always perform at least as
well as the EA algorithm, even if the statistical model of
host availability is far from accurate. And in fact, it could
perform better than the PPB algorithm when the statistical
model of host availability is not accurate, because in some
sense it puts less “trust” into this model.

In practice both the PPB and EPB algorithms require less
than 1 second of computation on a 3.2Ghz Intel Xeon pro-
cessor to converge to a solution for up to problem instances
with 400 hosts and 200 tasks. Note that more sophisticated
search techniques, such as genetic algorithms, could also
be employed and improve the allocations computed by both
these algorithms (e.g., as seen in [3] for an industrial engi-
neering parallel series problem).

3 Laboratory Evaluation

3.1 Evaluation Methodology

Problem REDUNDANTTASKALLOC, as it was formu-
lated in Section 2.1, is defined by three parameters (m, n, t)
and the probability distribution ¢. Ideally, we would like to
obtain a closed-form expression for the application success
probability achieved by all three algorithms. We start by ex-
amining the distribution of the probabilities of task failure.
This distribution depends on the probability distribution ¢
and the task size ¢. It was found in [13, 19] that the length
of availability intervals in real-world desktop grids can be
modeled reasonably well with either a Weibull or a Log-
Normal distribution. Unfortunately, finding a closed form
solution to the probability of failure distribution based on
the parameters to these distributions and the task size seems
very challenging.

Fortunately, a little bit of empirical work can help here.
If the availability intervals are assumed to be independent,
then we observe empirically that the distribution of the
probability of failures is perfectly modeled as a Generalized
Doubly Folded Normal Distribution [14] (GDFN). This was
observed for Uniform, Normal, and Log-Normal availabil-
ity interval duration distributions, and for ranges of param-
eters for these distributions. We leave a formal proof of this
result for future work. This may also be true for correlated
data.

The GDFN distribution is defined by the mean (u) and
standard deviation (o) of the normal distribution on which
it is based (with mirror barriers at 0.0 and 1.0). Further-
more, we found that although the nature of distribution ¢
and the magnitude of the task size impact the parameters of
this distribution, if the availability intervals are assumed to
be independent the distribution of the probability of failure
nevertheless remains GDFN. Note that high (resp. low) u
indicates high (resp. low) mean task failure probability, and
that high (resp. low) o indicates high (resp. low) standard
deviation of task failure probabilities.

Consequently, we can compare our algorithms using
only four parameters: m, n, and the parameters of the
GDEN distribution distribution: g and . We have thus
eliminated the need for an extensive and labor-intensive
evaluation our algorithms for various types of ¢ distribu-

tions and for various parameter values for each type. We
have also eliminated the need to evaluate our algorithms for
varying values of the task size ¢.

The EA algorithm always produces the same task alloca-
tion for the same values of m and n. Therefore, its perfor-
mance can be expressed analytically. [4] states that for the
parallel series problem the expected mean reliability of the
system is:

ER,)=]]|1- [] 1-ris| -)
Jj=1

i|li=j

where p; ; it the mean reliability of component j in subsys-
tem 1.

In the context of the REDUNDANTTASKALLOC prob-
lem, this translates to:

n

ER,,) =[] [1- II »| - (5)

Jj=1 iz =j

where p is the mean probability of failure for a given dis-
tribution and task size. Now, with Eq. 5, for a given mean
probability of task failure, and given n and m, we can com-
pute the expected application success probability when task
allocations are computed by the EA algorithm.

It is unlikely that a similar result can be obtained for
the PPB and EPB algorithms. Therefore, we must evalu-
ate these algorithms for varying values of our four param-
eters. We use simulation, generating task failure probabili-
ties from the GDFN distribution. We term the results in this
section “Laboratory” because the task failure probabilities
are perfectly accurate since sampled from the distribution.
For each instance of the problem (i.e., fixed values of m, n,
1 and o) we simulate each algorithm 2,000 times and esti-
mate the achieved probability of application execution suc-
cess. Our rationale for picking 2,000 repetitions is as fol-
lows. We computed the empirical failure rate for a subset of
the search space for the EA algorithm for various number of
repetitions and found that for more than 400 repetitions, the
empirical rate was within 2% of the analytical rate (which,
conveniently, can be computed for the EA algorithm). We
expect that the same number of repetitions would be appro-
priate for the other two algorithms, and we conservatively
opted for 2,000 repetitions.

3.2 Probability of Success

In this section we use the term performance to denote the
application success probability achieved by our different al-
gorithms, with high performance meaning high probability.

Figure 1 shows the performance of our algorithms for
two fixed values of 1 as o varies. When o is small, all al-
gorithms perform comparably. This is expected because the

Algorithm Performance vs. Distribution Parameter Sigma

<
—

Performance
0.6 0.8

0.4

0.2

0.0

Sigma

Figure 1. Algorithm performance as a func-
tion of of o for m = 9 and n = 24. Two sets of
curves are plotted for two values of ;1 = 0.151
and ;. = 0.556.

probability of task failure is very similar across the hosts.
The best solution in this situation is an even allocation,
which all algorithms compute. When o is large, the value
of 1 does not matter and the performance of each algorithm
converges to some fixed value regardless of . This is ex-
plained by the fact that the GDFN distribution becomes uni-
form as o increases. For larger values of o, there are larger
potential gains from using the PPB and EPB algorithms as
opposed to the EA algorithm.

Figure 2 shows algorithm performance for a fixed value
of o as p varies. All algorithms perform worse as p in-
creases, which is expected because task failure rates in-
crease. For ;1 = 0.6 the PPB algorithm generates an al-
location that is 9% more likely to succeed than the alloca-
tion generated by the EPB algorithm, and 22% more likely
to succeed than the allocation generated by the EA algo-
rithm. The EPB algorithm generates an allocation that is
> 5% more likely to succeed than the allocation generated
by the EA algorithm, except for when the allocation prob-
lems are very easy (1 < 0.3, which corresponds to an av-
erage task failure probability < 34%) or very challenging
(p > 0.75, which corresponds to an average task failure
probability > 70%).

3.3 Feasible Number of Tasks
While the results in the previous section indicate that

the PPB and EPB algorithms outperform the EA algorithm,
those results do not highlight the trends with respect to the

Algorithm Performance vs. Distribution Parameter Mu

o
i — — PPB
- T -- EPB
- EA
o
o
o ©
e o]
5
£
£
s <
a o 7
o
o
=
o
T T T T T T
0.0 02 0.4 0.6 08 1.0
Mu

Figure 2. Algorithm performance as a func-
tion of of ;. for o = 0.3, m = 9 and n = 37.

size of the desktop grid, m. It turns out that there is a glaring
weakness of the EA algorithm when m increases. Indeed,
the application success probability with the EA algorithm is
of the form: P(a x m,«a x n) = P(m,n)®, where « is
a positive real. This is because P(« X m,« X n) can be
thought of as o dependent versions of the P(m, n) schedul-
ing problem. The probability of success of « versions of the
P(m,n) allocation is P(m,n)®. Therefore:

P(m,n) = P(mN/n, N)"/N . (6)

Eq. (6) means that, if the task to host ratio remains fixed,
the probability of success decays exponentially as the num-
ber of host, m, increases, thus precluding the efficient use
of large desktop grids. An important question is then to de-
termine whether the PPB and EPB algorithms suffer from
the same weakness.

We define application scale as the number of tasks that
can be run in parallel while maintaining a minimum fail-
ure rate. Figure 3 plots the average n/m ratio, that is the
effective fraction of the desktop grid used to execute the ap-
plication (ignoring “wasted” hosts due to non-useful repli-
cas), versus m, for our three algorithms. The figure shows
two families of curves, each for a different minimum failure
rate Rg = 0.4 or Ry = 0.8. We see that, on average, the
PPB and EPB algorithms lead to an increase in application
scale over the EA algorithm by 24% and 17%, respectively.

Figure 3 also shows that both the EPB and the PPB algo-
rithm exhibit roughly the same performance for large grids.
When m is large, the search space for the optimal redun-
dant allocation is enormous. In this case, using simulated

Tasks Per Host vs. Grid Size

0.5

0.3 0.4

Tasks per Host
0.2

0.1

0.0

0 100 200 300 400
Grid Size

Figure 3. The n/m ratio for a fixed success
rate (Ro) as a function of m. Ro = 0.4,0.8;
uw=.5and o = 3.

annealing, the added constraint on the solution imposed by
the EPB algorithm does not preclude reaching a solution
that is similar to that reached by the PPB algorithm. As
noted earlier, a better search heuristic (e.g., a genetic algo-
rithm) could lead to improved performance.

Based on Figure 3 we conclude that accounting for task
failure probability to determine redundant task allocations
leads to an increase in application scale when compared to
the best probability-oblivious approach, namely the EA al-
gorithm. This result is perhaps not very surprising due to
the fact that our experiments in this section were performed
in “laboratory” conditions with perfectly accurate task fail-
ure probability estimates.

4 Evaluation with Real-World Data

In the previous section we have demonstrated that ac-
counting for host availability for computing a redundant
task allocation improves application success probability,
meaning that at least one instance of each task completes
without being interrupted due to a host failure. However,
the experiments in that section were conducted with ques-
tionable assumptions. First, our use of the GDFN distribu-
tion to generate failure rate probabilities introduces an as-
sumption of statistical independence. (We surmise that this
assumption should have little effect because the theory be-
hind why the algorithms work does not rely on statistical
independence.) The second assumption is that a perfect sta-
tistical model, i.e., a known probability distribution, for the

duration of host availability intervals exists and is known.
This assumption does not hold in the real world and ap-
proximations have to be used. In this section, we conduct
simulations based on host availability trace data collected
on real-world desktop grid systems to see if the algorithms
that account for host availability still lead to improvements
when the above i.i.d. assumptions are violated.

We use host availability trace data collected by other
researchers [8]. It is important to note that we only use
datasets that quantify availability intervals in terms of num-
ber of delivered operations in between failures (as perceived
by the desktop grid application), rather than time. The num-
ber of delivered operations per interval is not in general pro-
portional to interval duration in seconds (since desktop grid
infrastructure can throttle task execution rate to avoid im-
pacting host owners [9]). As a result, availability interval
durations in seconds, are not easily connected to task fail-
ure probability. Since we are concerned solely with appli-
cation task failures, we do not make assumptions regarding
the homogeneity or the heterogeneity of the desktop grid.
Many interesting questions arise when considering the re-
sults in this paper in conjunction with checkpointing tech-
niques, and when focusing on the connection between task
failure probabilities and application makespan. We leave
these questions for future work.

We use two datasets in our experiments: UCB and En-
tropia. The UCB trace originated from an older data set
first reported in [1]. This trace was create from a log gen-
erated by a daemon that logged CPU and keyboard/mouse
activity every 2s over a 46-day period on 85 hosts. The
Entropia trace originated from running the commercial En-
tropia desktop Grid software on desktop PC’s at the San
Diego Super Computer Center during a cumulative one
month period in the last quarter of 2003. We performed
statistical analysis of these datasets, fitted availability inter-
val durations (in terms of operations) to Log-Normal distri-
butions. The results of this fit are summarized in Table 4,
which shows for each dataset the parameters of the fitted
Log-Normal distribution and the p-values obtained with the
Kolmogorov-Smirnov test (see a technical report for all de-
tails [19]).

4.1 The SAB Algorithm

We introduce a fourth algorithm that may work well and
is straightforward to implement in practice. This algorithm,
SAB (Simple Availability Based), is similar to the PPB al-
gorithm, but does not rely on a statistical model of avail-
ability interval duration. Instead, it simply assume a linear
model for task failure probability, in which the longer the
host has been available, the lower the probability of failure:

vi+t
pi,jzl_ ZC . (7)

where ~; is the availability duration so far, ¢ is the task size,
C'is a constant, and y; + t < C for all ~y; and .

This algorithm is straightforward to implement in prac-
tice because it does not require archival and statistical fitting
of availability interval durations. We include it in our ex-
periments to evaluate whether in-depth statistical modeling
of host availability is truly necessary or whether a simple
method to account for host availability is sufficient.

4.2 Results

The input to our scheduling algorithms is the number of
hosts to be used m, the number of tasks to execute n, and
the fitted availability interval distribution function ¢ as de-
scribed in Table 4 for each dataset. Figure 4 shows algo-
rithm performance versus the grid size for both datasets,
for an n/m ratio of 0.6. As seen in Section 3.3, the per-
formance of all the algorithms decreases as the grid size
increases.

Since n and m are discrete, the n/m ratio is only ap-
proximately equal to 0.6, causing the “jagged” aspect of the
curves. Experiments based on trace data are extremely com-
putationally intensive, thus preventing us from generating a
graph with as many data points as in, say, Figure 3.

The ranking of the three original algorithms is the same
as was observed in the “laboratory” experiments. The cru-
cial result here is that the PPB algorithm achieves the best
performance in spite of the i.i.d. assumption being violated
in the real-world availability data. Furthermore, the larger
the grid size, the better the relative performance of the PPB
algorithm when compared to the other algorithms. The SAB
algorithm does well for small grid sizes, but its performance
becomes similar to that of the EA algorithm for large grid
sizes. This important result demonstrates the value of using
a more involved approach (i.e., archival of historical avail-
ability data, statistical modeling of availability interval du-
rations) to account for host availability for the purpose of
redundant task allocation.

5 Conclusion

In this paper we have studied the problem of allocating
redundant tasks to desktop grid hosts in a view to maximiz-
ing the probability of application completion without task
failure. We proposed three algorithms to solve this prob-
lem. We first evaluated them in laboratory conditions, that
is with i.i.d availability interval durations. We found that
significant gains are possible by using a full-fledge statisti-
cal model of host availability for computing redundant task
allocations. Using two host availability datasets from real-
world desktop grids, we confirmed these gains when the
i.i.d assumption does not hold.

Table 1. Summary of datasets and their corresponding statistical models.

Name Number of Hosts | Duration | log-normal fit | KS p-value
p_ | o
UCB 80 46-days | 16.42 | 2.419 0.3249
Entropia 232 I-month | 18.76 | 2.188 0.2337
Algorithm Performance vs. Grid Size Algorithm Performance vs. Grid Size
S — PPB
- - EPB @
EA s
: £
£ 24 &
< s K
20 40 60 80 0 50 100 150 200
Grid Size Grid Size

(a) UCB trace: 32 tasks, 80 hosts

(b) Entropia trace: 93 tasks, 232 hosts

Figure 4. Performance of the algorithms as a function of the grid size, using real-world host avail-
ability data for UCB ¢ = 1.0¢9, Entropia ¢ = 1.0e8 and n/m ~ 0.6

This work can be extended in the following directions.
Although our PPB and EPB algorithms used simulated an-
nealing, work in the field of reliability engineering has
shown that genetic algorithms may provide a better solu-
tion [3]. While not discussed in this paper, better task al-
locations could be computed by accounting for availabil-
ity correlation across hosts. An interesting question also is
that of availability stationarity and of whether it would be
possible to account for it when making task allocation de-
cisions. Studying stationarity however would require avail-
ability data collected on real-world desktop grids for long
periods of time, which to the best of our knowledge are
not readily available. In this paper our performance met-
ric was the probability of successful application comple-
tion, defined as an application execution in which at least
one instance of each task completed without encountering
a failure. This metric is strongly connected to application
makespan in a homogeneous system. However, real desk-
top grids, by their nature, are heterogeneous. An interesting
research direction would be to study the problem of com-
puting redundant task allocations that minimize application

makespan in heterogeneous systems.

References

(1]

(2]

(3]

(4]
(3]
(6]

R. Arpaci, A. Dusseau, A. Vahdat, L. Liu, T. Anderson, and
D. A. Patterson. The Intercation of PArallel and Sequential
Workloads on a Network of Workstations. In Proceedings
of SIGMETRICS’95, pages 267-278, May 1995.

G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak,
C. Germain, T. Herault, P. Lemarinier, O. Lodygensky,
F. Magniette, V. Neri, and A. Selikhov. Mpichv: Toward
a scalable fault tolerant mpi for volatile nodes. In Proceed-
ings of SC’2002. IEEE, Nov 2002.

D. Coit and A. Smith. Reliability optimization of series-
parallel systems using a genetic algorithm. In /EEE Trans-
actions on Reliability, pages 254-260,266, June 1996.

D. Coit and A. Smith. Stochastic formulations of the redun-
dancy allocation problem. 1996.

T. B. O. L. for Network Computing. http://boinc.
berkeley.edu/.

L. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Phys-
iology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration. In GGF, 2002.

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

D. Kondo, A. Chien, and H. Casanova. Resource Manage-
ment for Short-Lived Applications on Enterprise Desktop
Grids. In Proceedings of SC’2004, November 2004.

D. Kondo, G. Fedak, F. Cappello, and H. Casanova. On Re-
source Volatility in Enterprise Desktop Grids. In Proceed-
ings of the 2nd IEEFE International Conference on e-Science
and Grid Computing (e-Science 2006), December 2006.

D. Kondo, M. Taufer, C. L. Brooks, H. Casanova, and
A. Chien. Characterizing and Evaluating Desktop Grids: An
Empirical Study. In Proceedings of the International Par-
allel and Distributed Processing Symposium (IPDPS’04),
April 2004.

W. Kuo and V. R. Prasad. An annotated overview of system-
reliability optimization. In IEEE Transaction on Reliability,
volume 49, pages 176-187, 2000.

M. Litzkow and M. Livny. Experiences with the Condor
disributed batch system. In IEEE Workshop on Experimental
Distributed Systems, pages 97-101, October 1990.

O. Lodygenski, A. Cordier, G. Fedak, V. Neri, and F. Cap-
pello. ”Auger & Xtremweb: Monte Carlo computation on a
global computing platform”. In Computing in High Energy
and Nuclear Physics, pages 24-28, March 2003.

D. Nurmi, J. Brevik, and R. Wolski. Modeling Machine
Availability in Enterprise and Wide-area Distributed Com-
puting Environments. In Proceedings of Euro-Par 2005, Au-
gust 2005.

C. Rose. A statistical identity linking folded and censored
distributions. In Journal of Economic Dynamics and Con-
trol, volume 19, pages 1391-1403, 1995.

M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and
J. Dongarra. MPI the complete reference. The MIT Press,
1996.

Sullivan, Werthimer, Bowyer, Cobb, Gedye, and Anderson.
A New Major SETI Project based on project SERENDIP
data and 100,000 Personal Computers. In Astronomical and
Biochemical Origins and the Search for Life in the Universe,
1997.

United Devices Inc. http://www.ud.com/.

J. Wingstrom and H. Casanova. On the NP-Hardness
of the RedundantTaskAlloc Problem. Technical Report
ICS2007-11-02, Dept. of Information and Computer
Sciences, University of Hawai‘i at Manoa, October 2007.
http://navet.ics.hawaii.edu/ casanova/
homepage/papers/techreportNP.pdf.

J. Wingstrom and H. Casanova. Statistical Modeling
of Resource Availability in Desktop Grids. Technical
Report ICS2007-11-01, Dept. of Information and Computer
Sciences, University of Hawai‘i at Manoa, October 2007.
http://navet.ics.hawaii.edu/ casanova/
homepage/papers/techreportFit.pdf$.

