
A flexible and robust lookup algorithm for

P2P systems

Mauro Andreolini, Riccardo Lancellotti

University of Modena and Reggio Emilia

Modena, I-41100

{mauro.andreolini, riccardo.lancellotti}@unimore.it

Abstract

One of the most critical operations performed in a P2P

system is the lookup of a resource. The main issues to

be addressed by lookup algorithms are: (1) support for

flexible search criteria (e.g., wildcard or multi-keyword

searches), (2) effectiveness – i.e., ability to identify all the

resources that match the search criteria, (3) efficiency – i.e.

low overhead, (4) robustness with respect to node failures

and churning. Flood-based P2P networks provide flexible

lookup facilities and robust performance at the expense of

high overhead, while other systems (e.g. DHT) provide a

very efficient lookup mechanism, but lacks flexibility.

In this paper, we propose a novel resource lookup al-

gorithm, namely fuzzy-DHT, that solves this trade-off by

introducing a flexible and robust lookup criteria based on

multiple keywords on top of a distributed hash table algo-

rithm. We demonstrate that the fuzzy-DHT algorithm satis-

fies all the requirements of P2P lookup systems combining

the flexibility of flood-based mechanisms while preserving

high efficiency, effectiveness ad robustness.

Keywords: Peer-to-peer, Overlay Routing, Distributed

Hash Tables, Resource lookup

1. Introduction

Peer-to-peer systems have emerged as a popular ap-

proach for the deployment of novel Internet-based services.

According to literature [27, 15], a significant fraction of the

Internet traffic is related to peer-to-peer applications. The

peer-to-peer approach has been proposed for a wide set of

applications, mainly due to their potential fault tolerance

and scalability. Besides the popular file sharing networks,

examples of peer-to-peer based services include multime-

dia streaming applications [32] or file systems [16, 10] de-

signed for the management of massive amounts of data,

Web caching [13], publishing systems [7], middleware ar-

chitectures [25] and even distributed computing applica-

tions [28, 12]. The deployment of these services based

on a peer-to-peer approach requires a lookup mechanism

that is characterized by the following properties: flexibil-

ity, effectiveness, efficiency, and robustness. A flexible re-

source lookup algorithm allows complex queries, includ-

ing keyword- and attribute-based searches. An effective re-

source lookup returns a list of all the resources that match

the search predicate. An efficient resource lookup has the

minimum impact on the underlying physical network. A

robust mechanism can provide effective lookup even in

the case when some nodes of the peer-to-peer network are

faulty.

The most popular solutions for lookup algorithms

are based on centralized or flood-based systems [20, 1]

that provide an extremely flexible query semantics, such

as wildcard-based searches. However, centralized solu-

tions cannot provide robust lookup, while flood-based sys-

tems are characterized by a high traffic overhead and, con-

sequently, a reduced efficiency. On the other hand, very

efficient routing algorithms based on distributed hash ta-

bles (DHTs) [30, 22, 25] provide highly effective lookup,

but provide poor query flexibility, because the lookup re-

quires a unique identifier. Proposals for implementing

keyword-based lookup on top of DHT have been pro-

posed [23, 9], but these solution require the implementation

of specific inverted index tables that are difficult to dis-

tribute and may reduce algorithm robustness.

In this paper, we propose a novel algorithm (fuzzy-DHT)

that introduces a keyword-based search on top of a dis-

tributed hash table. This algorithm satisfies all the require-

ments of flexibility, effectiveness, efficiency and robustness:

it supports a multiple keyword-based lookup semantics and

it returns every resource in the overlay network matching

the search criteria. The result is achieved with a contained

overhead, because only the nodes that can potentially lead

to a query hit are contacted during the lookup process. Fur-

thermore, the algorithm can exploit the basic DHT solutions

for fault tolerance, thus inheriting the robustness of these so-

lutions. Our implementation of fuzzy-DHT is based on the



Plaxton routing algorithm of the Pastry [25] overlay net-

work. However, we believe that the proposed algorithm can

be adopted to extend the functions of services that already

exploit the Pastry overlay such as Past or Scribe [7, 26].

To the best of our knowledge, this is the first algorithm

that achieves the goal of combining flexibility, effective-

ness, efficiency, and robustness. We propose a novel al-

gorithm that enriches DHTs with flexible search criteria,

while preserving their characteristics of effective lookup,

low overhead and robustness with respect to failures. As a

further advantage of our proposal, the proposed algorithm is

easy to implement on top of existing DHT applications and

does not require external services and indexes (such as ex-

ternal databases searches for hash keys or inverted indexes

structures for routing).

We developed a simulator based on ns-2 to compare the

performance of the fuzzy-DHT algorithm with a standard

flood-based search mechanism [1] and probabilistic flood

algorithms [33, 21]. We show through extensive simulations

that the proposed algorithm can provide a query effective-

ness and robustness comparable with that of other search al-

gorithm, with a considerably reduced communication over-

head (at least an order of magnitude lower).

The rest of this paper is organized as follows. Section 2

discusses the related work on overlay routing algorithms.

Section 3 introduces the fuzzy-DHT algorithm. Section 4

describes the testbed environment and the workloads used

for the simulations. Section 5 presents a detailed compar-

ison between the algorithms. Finally, Section 6 provides

some concluding remarks.

2. Related work

The need for sophisticated resource lookup queries in

peer-to-peer systems has first emerged in the file sharing

networks [20, 1], where keyword-based searches are used

to identify the files to download. The lookup process is

typically based on flood-based algorithms [1] or on cen-

tralized directories [20]. However, the scalability limits of

flood-based searches are well known, as shown in [8]. Scal-

ability of flood-based lookup has been improved by means

of semi-structured networks such as Kazaa [29], where

flood-based lookup is carried out only within a small set

of well-connected supernodes, but all these techniques can-

not match the scalability characteristics achieved by means

of more advanced approaches, such as distributed hash ta-

bles (DHTs), including the fuzzy-DHT algorithm proposed

in this paper.

First generation DHTs [19, 22, 30, 25] are characterized

by a simple operation semantics that allows to insert and re-

trieve key-value pairs. While providing extremely low over-

head and guaranteeing a high scalability, this simple seman-

tics cannot be applied to complex environment where so-

phisticated queries must be provided.

The fuzzy-DHT algorithm proposed in this paper ad-

dresses the issue of joining the need for advanced

lookup features with the need to preserve the scalabil-

ity of DHTs. Other studies propose flexible queries.

For example, Liu et al. propose a system to support

range queries [18], other researchers propose single key-

word queries based on lookup over inverted indexes stored

in the overlay network nodes [23, 14] and at least one ex-

ample of multiple queries (with or composition) has been

proposed in literature [9]. On the other hand, Tang et al. in-

troduce semantic searches on the CAN DHT [31]. How-

ever, all these proposals require separate search services or

introduce a completely new routing mechanism. Our ap-

proach is different from these proposals for three main

reasons. First, the fuzzy-DHT algorithm allows the deploy-

ment of novel services with only slight modifications to the

existing overlay networks, thus allowing a simpler deploy-

ment of the fuzzy-DHT-based overlay. Second, the pro-

posed algorithm is explicitly designed to provide and-based

multiple keyword searches, which are convenient for lo-

cating resources based on attributes. Finally, our algorithm

is explicitly designed with efficiency and dependabil-

ity as a primary goals.

3. The fuzzy-DHT algorithm

The fuzzy-DHT algorithm exploits the standard Plaxton-

based lookup used in Pastry [25]. The support for flexible

queries is introduced by adding two main features to the

original algorithm: a new hash function that represents a

list of keywords, and a query routing algorithm that forks

the lookup process across nodes to ensure the identification

of every suitable resource. Lookup effectiveness, efficiency

and robustness are inherited from the standard Pastry rout-

ing algorithm.

3.1. Keyword representation

The proposed fuzzy-DHT algorithm introduces a first

fundamental difference with respect to the original DHT al-

gorithms in the hash function used to compute the resource

keys. A hash function for the fuzzy-DHT algorithm must

satisfy the following requirements:

• fixed-length binary representation of n;

• ability to represent the keywords kw1, kw2, . . . , kwk

associated with a resource;

We choose a Bloom Filter [6] as the data structure used

for the key. The hash function for the fuzzy-DHT algo-

rithm computes the Bloom filter. Let B[] be an array of



n bits representing the key for the resource r (we as-

sume the array B[] is initially filled with 0). Let KW [] =
{kw1, kw2, . . . , kwk} be a set of keywords associated with

resource r, and let H[] = {h1, h2, . . . , hm} be a set of

hash functions where hj : KW → [0, n − 1]. The Bloom
filter B[] is built as follows: B[hj(kwi)] ⇐ 1,∀kwi ∈
KW [],∀hj ∈ H[]. For every keyword kwi, we set to 1 the

bits in the bloom filter corresponding to the results of the m

hash functions computed on the keywords, as shown in Fig-

ure 1.

Figure 1. Bloom filter construction

The Bloom filter satisfies the two requirements of the

hash function for the fuzzy-DHT algorithm. The represen-

tation of a Bloom filter is an array of fixed length, with n

defined in the design phase of the overlay network. Since a

Bloom filter is a compact representation of a data set, it can

be used to store the association between a set of keywords

KW [] and the the corresponding resource identifier B[]. If
all the bits associated with keyword kw are set, the key-

word is likely to be associated with a resource. The above-

mentioned condition can be formalized as: a necessary con-

dition for the keyword kw to be represented in the Bloom

filter B[] is that
∑

∀hj∈H[]

B[hj(kw)] = m. This condition

is necessary but not sufficient due to possible Bloom filter

collisions that may cause false positives (also called false

hits). However, the literature proposing solutions based on

Bloom filters suggests that the percentage of false positives

due to collisions is usually low if proper filter tuning is ap-

plied [11, 24].

3.2. Overlay routing algorithm

Before describing the fuzzy-DHT algorithm, we briefly

recall the main features of the original Pastry algorithm.

In the Pastry system, nodes and resources are identified by

means of a key. The key is a fixed-length string of bits that

acts as a unique identifier for nodes and resources. Most

DHTs, including Pastry, suggest to use digests to generate

a key. For example, the key of a node can be computed as

the hash (MD5 or SHA1) of its IP address; the key of a re-

source may be computed as the hash of the resource identi-

fier (e.g., in a file-sharing context, the filename).

In Pastry a key is represented as a sequence of d dig-

its, each composed by b bits. We represent a key KX =
(x1, x2, . . . , xd) as a vector with d elements (each corre-

sponding to a digit). Resources and nodes share the same

hash space and are identified by a key value. Each resource

is hosted by the node with the key closer to the resource

key value. Lookup requests are routed by the overlay net-

work in order to reach the node that hosts the resource it-

self. It is important to note that in the Pastry algorithm, as in

most DHTs, the query refers to a key and only the resource

with the exact key is reached. The lookup uses a longest pre-

fix matching algorithm that tries at every step to increase by

1 digit the length of the matching prefix.

Figure 2. The Pastry lookup process

Figure 2 shows the routing step of the Plax-

ton algorithm used in the Pastry overlay network.

Let KQ = (q1, q2, . . . , qk, . . . , qd) be the key

in a lookup request reaching node X with key

KX = (x1, x2, . . . , xk, . . . , xd). We suppose that the

matching prefix has a length of k − 1. This implies that

qi = xi,∀i ∈ [1, k−1] and qk 6= xk (see the left side of Fig-

ure 2).

The lookup step uses the digit xk of the key and a set data

structure called neighbor and leaf tables to identify the next

hop Y . This node has a key KY = (y1, y2, . . . , yk, . . . , yd)
such that qi = yi∀i ∈ [1, k], as shown in the right part of

Figure 2. We omit further details of the Pastry algorithm

for the sake of simplicity. The reader can refer to [25] for a

complete descrition.

The second significant contribution of the proposed over-

lay routing algorithm is the process used to select the next



Figure 3. Query forking process

hop in the overlay routing process. The fuzzy-DHT algo-

rithm extends the Plaxton-based routing algorithm to take

advantage of the enhanced hash function used in the re-

source key computation.

The fuzzy-DHT algorithm allows a multiple keyword-

based lookup such that the query is forwarded to every node

that hosts resources whom key contains all the keywords

composing the search key. The resources that result in a hit

are characterized by a superset of the keywords compos-

ing the query. Recalling the definition of the Bloom filter,

matching all the keywords means that each bit with a value

of “0” in the query key KQ acts as a wildcard for match-

ing purposes. We introduce a new operation in the query

routing step, namely query fork, for the management of the

wildcard bit. During the query fork we generate a set of new

queries that have every possible combination of bit in place

of the wildcard bits in the original query. A complete query

fork (where every “0” in the key is used for forking) at the

beginning of the route process would saturate the network.

We choose to fork queries only when it is required, in or-

der to save network resources. At every routing step, only

the key digit xk is subject to fork. Figure 3 provides an ex-

ample of the query fork process: the node with key KY re-

ceives the query KQ; the first k − 1 in both KQ and KY

are identical. For the k-th digit with value 0101 a query fork

is necessary. Considering the 0 in the k-th digit we obtain

four values (0101, 0111, 1101, 1111) that are used to gen-

erate four forked queries KQ′, KQ′′, KQ′′′, KQ′′′′. The

forked queries are then handled as standard queries and are

routed according to the Plaxton-based algorithm.

Algorithm 1 shows the fuzzy-DHT routing algorithm.

Even if the proposed algorithm introduces a significant

change in the functionality of the original Pastry algorithm,

the implementation effort remains limited to a few lines of

code related to the management of the query fork process.

The pastry next hop() function (the most complex part of

the routing algorithm) is identical to the Plaxton-based al-

gorithm used in Pastry. The simplicity of fuzzy-DHT is one

of its distinctive features because it allows to take advantage

of pre-existing code base. Indeed, in our experiments, the

simulator code for the fuzzy-DHT algorithm reuses nearly

90% of the code of the Pastry algorithm. Furthermore, the

fuzzy-DHT algorithm reuses all the mechanisms for self-

configuration and fault-tolerance already available in Pas-

try, thus inheriting the proven robustness of this algorithm.

Algorithm 1 shows also the details of the query manage-

ment process in the fuzzy-DHT algorithm. The prefix length

k is calculated in the loop in lines 1-4 of the algorithm. The

if statement in line 5 is required for a proper handling of the

query fork even in the case where the next hop must recon-

sider the same xk digit of the previous routing step. Indeed,

in the case where neighbor table is incomplete, the Pastry

algorithm can forward a query to a nearby node without in-

creasing the matching prefix length [25]. The fuzzy-DHT

algorithm must avoid unneeded query forking even in this

case. To this purpose, the fuzzy-DHT algorithm introduces

an attribute to the key, that we call forked prefix. The forked

prefix represents a pointer to the last digit in the key where

query forking occurred. The query forking process occurs

for byte k only if the forked prefix states that no forking al-

ready occurred for that byte. The forked prefix starts with

a value of 0 and increases by one digit for every key fork,

as shown in line 7 of Algorithm 1. The query fork process

(shown in Figure 3) is used to create a new set of query keys

(the forked queries), to which we associate the new value of

the forkedPrefix variable. The forked queries are then

routed to their next hop according to the standard Plaxton-

based algorithm. When the routing must consider for two or

more consecutive hops the same digit xk, the query fork oc-

curs at most once, because in the next hops the forked pre-

fix will have a length of k and will prevent additional query

forks. Hence, the query key is routed according to the stan-

dard Pastry algorithm.

Algorithm 1 fuzzy-DHT algorithm

Require: forkedPrefix,KQ =
{q0, q1, . . . , qn},KX = {x0, x1, . . . , xn}

Ensure: Step of overlay routing (fuzzy-DHT)

1: k ⇐ 0
2: while qk = xk do

3: k ⇐ k + 1
4: end while

5: if forkedPrefix < k then

6: ForkedKQ ⇐fork query(KQ, k)

7: forkedPrefix ⇐ forkedPrefix + 1
8: for all KQ′ ∈ ForkedKQ do

9: pastry next hop(KQ′)

10: end for

11: else

12: pastry next hop(KQ)

13: end if



4. Experimental testbed

The description of the fuzzy-DHT algorithm in Section 3

demonstrates that the algorithm guarantees search flexibil-

ity thanks to the support for multiple keywords in the lookup

process. We now evaluate the effectiveness, the efficiency

and the robustness of the fuzzy-DHT algorithm through ex-

tensive simulations. To this purpose, we extended the pop-

ular ns-2 simulator with the support for the fuzzy-DHT,

the flood-based and the probabilistic-flood algorithms. The

flood-based algorithm is similar to the algorithm used in the

popular Gnutella file sharing network [1], while the proba-

bilistic flood algorithm is a variation of the standard flood-

based algorithm where at each step and for each neighbor,

the propagation of the query occurs with a given proba-

bility π [33, 21] (the standard flood-based algorithm is an

extreme case of probabilistic routing with π = 1). In our

experiments we use π = 0.7, because preliminary experi-

ments demonstrate that this value ensures an high effective-

ness, guaranteeing an higher efficiency with respect to the

standard flood-based algorithm. For both flood-based and

probabilistic flood algorithms, we consider an overlay net-

work where neighborhood relationship creates a scale-free

network following the Barabasi and Albert model [4, 5].

Indeed, scale-free networks are characterized by a power-

law distribution of neighboring degree that is typical of real

peer-to-peer scenarios [2].

The simulator focuses on query routing and does not take

into account other operations of peer-to-peer networks, such

as the fruition of the looked-up resource, e.g., the download

in the case of file sharing networks. The simulator takes care

of the setup of the physical network, the generation of ini-

tial conditions for the overlay network, and the generation

queries issued by the peers of the network. We also imple-

ment the logic for the management of the overlay network

management that takes into account node joins and leaves,

as well as the support for managing the network when a

faulty node is detected. These operation are directly pro-

vided by the Pastry protocol, as discussed in [25].

We use UDP as the transport layer for every consid-

ered overlay network because the query-response mecha-

nism proper of overlay network operations is easily mapped

on UDP messages; moreover most new-generation P2P sys-

tems are progressively discarding TCP-based transport in

favor of the more agile UDP [1, 19]. Each experiment is car-

ried out 10 times (each time using traces obtained from dif-

ferent random seeds) and the results are averaged over the

runs to guarantee that the results are statistically relevant.

The resources are randomly distributed over the nodes of

the overlay network according to a normal distribution with

mean value of 10 resource per node. Each resource is de-

scribed by 5 words on average, according to the workload

characterization available in literature [3]. In order to en-

sure the correct behavior of the DHT, we consider that after

the initialization of the network, the DHT can re-distribute

the resources over the nodes according to the routing algo-

rithm.

Each simulation run generates 106 queries that are issued

by the nodes of the simulation network. For each query we

randomly select a number of keywords based on the work-

load characterization in [3]. From each query we compute

the bloom filter representing the keywords and we compute

the number of bits set to “1” in the filter. We define the ra-

tio between the number of bits set to “1” and the bloom fil-

ter length as the query selectivity σ. The query selectivity

represents the number of potential hits returned by a query.

When σ is low, the query is highly selective and only few

resources will match with the query predicate. On the other

hand, when σ is high, most resource will generate a hit.

5. Performance evaluation

In this section we show the performance of the fuzzy-

DHT algorithm by comparing its effectiveness and effi-

ciency with flood-based search algorithms. We demonstrate

that the fuzzy-DHT algorithm provides the best effective-

ness and efficiency for every considered scenario of query

selectivity σ, network size and percentage of node failures.

5.1. Impact of the query selectivity

We now compare the three algorithms by evaluating the

effectiveness and the efficiency as a function of the query

selectivity parameter σ.

Fig. 4 compares the performance of the fuzzy-DHT,

flood-based, and probabilistic flood algorithms as σ ranges

from 0.2 to 0.8 over a network of 500 nodes. The σ is a func-

tion of the number of keywords used in the search. The typ-

ical cases of resource lookup in file sharing networks and in

Web caching is using 3 or 4 keywords [23, 17], which re-

sults in a value of σ close to 0.7. We recall that the higher

is σ the lower is the query selectivity, hence a query with

σ = 0.7 is likely to provide a significant number of hits.

Fig. 4(a) compares the effectiveness of the three proto-

cols. As σ grows, the number of hits for each query in-

creases. The graph shows that fuzzy-DHT and flood-based

algorithms achieve a similar effectiveness, which is within

5% from the optimal theoretical value (obtained by com-

paring the query traces with the resources available on the

network), while the probabilistic flood-based algorithm is

less effective, with a penalty of nearly 10% with respect to

the optimal theoretical value. If we consider the overhead,

shown in Fig. 4(b), the differences between the three algo-

rithms are evident. The overhead of the flood-based query is

up to three order of magnitude higher than that of the fuzzy-

DHT algorithm. The probabilistic-flood algorithm achieves

a higher efficiency if compared to the flood-based algo-



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

#
 H

it
s
/Q

u
e
ry

Query selectivity σ

fuzzy-DHT
flood-based

probabilistic flood

(a) Effectiveness

 0

 5000

 10000

 15000

 20000

 25000

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

#
 M

e
s
s
a
g
e
s
/Q

u
e
ry

Query selectivity σ

fuzzy-DHT
flood-based

probabilistic flood

(b) Efficiency

Figure 4. Impact of the query selectivity σ

rithm, with an overhead nearly halved with respect to the

flood-based algorithm, but still significantly higher if com-

pared to the fuzzy-DHT algorithm. The overhead of the

flood-based and probabilistic flood algorithms is similar for

every value of σ. This can be explained by considering that

the query propagation is completely unrelated to the match-

ing process that leads to resource discovery. On the other

hand, the fuzzy-DHT algorithm sends queries only to the

nodes that may return a hit. As a consequence, the over-

head of this algorithm grows as σ increases. However, even

for high values of σ (e.g., σ = 0.8) the overhead of the

fuzzy-DHT algorithm remains at least one order of magni-

tude lower than that of the flood-based lookup.

5.2. Scalability

Scalability analysis evaluates the impact of the overlay

network size over the effectiveness and efficiency of the

considered algorithms. We carry out the analysis using a

network topology with a variable number of nodes issuing

queries with σ = 0.6.

Fig. 5 shows the effectiveness and the efficiency of the

fuzzy-DHT, flood-based and probabilistic flood algorithms.

Fig. 5(a) shows the hit rate as the measure of the lookup ef-

fectiveness instead of the number of hits per query used in

the previous analysis. The motivation is that as nodes are

added to the network, the number of resources available

grows, hence we normalize the number of hits per query

against the theoretical maximum hit rate. We confirm that

every algorithm is effective, with hit rates always higher

than 80%. However, the flood-based and the probabilistic

flood algorithms present an hit rate degradation for large

network sizes. This effect is motivated by the query time-

to-live that does not guarantee the exploration of the whole

network when the number of nodes is very high. On the

other hand, the fuzzy-DHT lookup algorithm achieves the

best scalability with no effectiveness degradation with re-

spect to the network size.

Fig. 5(b) shows the overhead per query as a function of

the network size. We observe that every algorithm shows

an increment in the traffic generated with each query. How-

ever, the overhead growth of the flood-based and probabilis-

tic flood algorithms is much more evident than the overhead

growth of the fuzzy-DHT algorithm. Indeed, the overhead

of the flood-based and probabilistic flood algorithms grows

by a factor of 10 as the number of nodes increases from 100

to 1000 because, for every query, the number of nodes to

visit is higher. On the other hand, the overhead increase for

the fuzzy-DHT is only by a factor of 4. The better scala-

bility is due to the ability of the algorithm to route queries

only to a reduced fraction of nodes that have a high proba-

bility of hosting the requested resource.

5.3. Robustness

Robustness evaluation is carried out by issuing queries

on the overlay network (σ = 0.6) and introducing failures

in the network nodes. A variable fraction of nodes is se-

lected and marked as faulty in each experiment. A faulty

node cannot report any hit and the hosted resources are con-

sidered lost. Furthermore, during the routing operation, a

faulty node cannot act as the next hop for the routing pro-

cess and must be discarded from neighbor tables.

Fig. 6(a) shows the number of hits for each query as a

function of the amount of faulty nodes in the network. As

expected, the number of hits is reduced as the fraction of

faulty nodes grows for every algorithm. The main motiva-

tion for the hit rate reduction is the loss of resources hosted

on the faulty nodes, because both the inherent message re-

dundancy of flood-based protocols and the alternate routing

strategies of Plaxton’s algorithm are effective in preserving

search effectiveness. On the other hand, the faulty nodes de-

termine a growth in the amount of exchanged messages, al-

though this impact is almost negligible if compared with the

normal traffic generated by the algorithms. Fig. 5(b) shows

the overhead per query as a function of the amount of faulty



 0

 0.2

 0.4

 0.6

 0.8

 1

 100  200  300  400  500  600  700  800  900  1000

H
it
 r

a
te

# nodes

fuzzy-DHT
flood-based

probabilistic flood

(a) Effectiveness

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 100  200  300  400  500  600  700  800  900  1000

#
 M

e
s
s
a
g
e
s
/Q

u
e
ry

# nodes

fuzzy-DHT
flood-based

probabilistic flood

(b) Efficiency

Figure 5. Scalability evaluation

nodes and demonstrates that the amount of traffic generated

by fuzzy-DHT algorithm remains nearly two order of mag-

nitude lower with respect to the other alternatives even when

15% of the nodes are faulty.

6. Conclusions

The P2P approach has gained popularity in the context

of distributed services, and multiple novel applications are

being deployed using this scheme. The lookup of resources

in a highly distributed environment remains one of the most

critical tasks of peer-to-peer applications.

Current lookup algorithms must address a trade-off is-

sue between flexibility, efficiency and robustness: the flexi-

ble keyword-based lookup of the flood-based algorithms is

provided at the expenses of high overhead, while the ef-

ficient DHT-based lookup is not flexible or rely on data

structures such as reverse indexes that may hinder algorithm

robustness. In this paper, we have shown that it is possi-

ble to design an novel algorithm that introduces keyword-

based lookup operations on top of an efficient and robust

distributed hash table. The implementation does not require

significant modification to the native source code of existing

 0

 50

 100

 150

 200

 250

 300

 350

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

#
 H

it
s
/Q

u
e
ry

Failure probability

fuzzy-DHT
flood-based

probabilistic flood

(a) Effectiveness

 0

 5000

 10000

 15000

 20000

 25000

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

#
 M

e
s
s
a
g
e
s
/Q

u
e
ry

Failure probability

fuzzy-DHT
flood-based

probabilistic flood

(b) Efficiency

Figure 6. Robustness evaluation

overlay network lookup algorithms. Our experiments show

that the proposed fuzzy-DHT algorithm meets the main re-

quirements for the most innovative P2P applications.

• The keyword-based lookup of the fuzzy-DHT algo-

rithm provides the flexibility of innovative applications

and services based on a peer-to-peer approach.

• The fuzzy-DHT algorithm is effective, as it achieves

hit rates higher than flood-based search and very close

to the theoretical optimum.

• It is extremely efficient as it limits the lookup over-

head to at least one order of magnitude lower than

that of flood-based and probabilistic flood algorithms.

Our experiments proves that the high efficiency of the

proposed algorithm is guaranteed for every considered

query selectivity, and physical network topology. Fur-

thermore, the efficiency of the fuzzy-DHT algorithm

guarantees higher scalability with respect to the other

considered protocols.

• The proposed algorithm is as robust as flood-based so-

lutions thanks to the Pastry network management algo-

rithms that address the issues of node failures, leaves

and joins.



References

[1] Rfc-gnutella 0.6, 2008. http://rfc-gnutella.sourceforge.net/.

[2] M. Amoretti, F. Zanichelli, and G. Conte. Performance eval-

uation of advanced routing algorithms for unstructured peer-

to-peer networks. In Proc. of Valuetools 2006, Pisa, Italy,

Oct. 2006.

[3] M. Andreolini, R. Lancellotti, and P. S. Yu. Analysis of

peer-to-peer systems: workload characterization and effects

on traffic cacheability. In Proc. of 12th Annual Meeting of the

IEEE / ACM MASCOTS 2004, Volendam, NL, Oct. 2004.

[4] A. Barabasi and R. Albert. Emengence of scaling in random

networks. Science, 286(5439):509–512, Oct. 1999.

[5] A. Barabasi, R. Albert, and H. Jeong. Mean-field theory for

scale-free random networks. Physica A, 272(1–2):173–187,

Oct. 1999.

[6] B. Bloom. Space/time trade-offs in hash coding with allow-

able errors. Communications of the ACM, 13:422–426, Jul.

1970.

[7] M. Castro, P. Druschel, and A. Rowston. Scalable

application-level anycast for highly ynamic groups. In Proc.

of NGC 2003, Munich, Germany, Sept 2003.

[8] Y. Chawathe, S. Ratnasamy, L. Breslau, and S. Shenker.

Making gnutella-like p2p systems scalable. In Proc. of ACM

SIGCOMM 2003 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication,

Karlsruhe, Germany, Aug. 2003.

[9] H. Chen, H. Jin, J. Wang, L. Chen, Y. Liu, and L. M. Ni. Ef-

ficient multi-keyword search over p2p web. In Proc. of the

17th international conference on World Wide Web, 2008.

[10] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-

ica. Wide-area cooperative storage with cfs. In Proc. of

the 18th ACM Symposium on Operating Systems Principles

(SOSP ’01), Chateau Lake Louise, Banff, Canada, Oct. 2001.

[11] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary

cache: A scalable wide-area web cache sharing protocol.

IEEE/ACM Trans. on Networking, 8(3):281–293, Jun 2000.

[12] R. Gupta, V. Sekhri, and A. K. Somani. Compup2p: An

architecture for internet computing using peer-to-peer net-

works. IEEE Tran. on Parallel and Distributed Systems,

17(11), Nov. 2006.

[13] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentral-

ized, peer-to-peer web cache. In Proc. of 21st ACM Sympo-

sium on Principles of Distributed Computing (PODC 2002),

Monterey, CA, Jul. 2002.

[14] Y.-J. Joung, C.-T. Fang, and L.-W. Yang. Keyword search

in dht-based peer-to-peer networks. In Proc. of 25th IEEE

Int’l conf. on Distributed Computing Systems (ICDCS’05),

Columbus, OH, Jun. 2005.

[15] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and

M. Faloutsos. Is p2p dying or just hiding? In Global In-

ternet and Next Generation Networks, 2004.

[16] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,

R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,

C. Wells, and B. Zhao. Oceanstore: An architecture for

global-scale persistent storage. In Proc. of ACM ASPLOS,

Nov. 2000.

[17] N. Leibowitz, A. Bergman, R. Ben-Shaul, and A. Shavit. Are

file swapping networks cacheable?: Characterizing p2p traf-

fic. In Proc. of 7th Int’l Workshop on Web Content Caching

and Distribution (WCW ’02), Boulder, CO, USA, Aug. 2002.

[18] B. Liu, W.-C. Lee, and D. L. Lee. Supporting complex multi-

dimensional queries in p2p systems. In Proc. of 25th IEEE

Int’l conf. on Distributed Computing Systems (ICDCS’05),

Columbus, OH, Jun. 2005.

[19] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer

information system based on the xor metric. In Proc. of

the 1st Int’l Workshop on Peer-to-Peer Systems (IPTPS ’02),

Cambridge, MA., Mar. 2002.

[20] Napster. Napster file sharing system, 2008.

http://www.napster.com.

[21] M. Portmann and A. Seneviratne. The cost of application-

level broadcast in a fully decentralized peer-to-peer network.

In Proc. of the 7th Int’l Symposium on Computers and Com-

munications (ISCC’02), 2002.

[22] S. P. Ratnasamy. A scalable content-addressable network. In

In Proceedings of ACM SIGCOMM, pages 161–172, 2001.

[23] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword

searching. In Proc. of the ACM/IFIP/USENIX Middleware

Conference, Rio de Janeiro, Brazil, Jun. 2003.

[24] A. Rousskov and D. Wessels. Cache digests. Computer Net-

works and ISDN Systems, 30(22-23), Nov. 1998.

[25] A. Rowstron and P. Druschel. Pastry: Scalable, distributed

object location and routing for large-scale peer-to-peer sys-

tems. In IFIP/ACM International Conference on Distributed

Systems Platforms (Middleware), pages 329–350, nov 2001.

[26] A. Rowstron and P. Druschel. Storage management and

caching in past, a large-scale, persistent peer-to-peer storage

utility. In Proc. of 18th ACM SOSP’01, Lake Louise, Al-

berta, Canada, Oct. 2001.

[27] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-

ment study of peer-to-peer file sharing systems. In Proc. of

Multimedia Computing and Networking 2002 (MMCN ’02),

San Jose, CA, USA, Jan. 2002.

[28] SETI. Seti@home, 2008. http://setiathome.berkeley.edu/.

[29] Sharman. Kazaa file sharing system, 2008.

http://www.kazaa.com.

[30] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-

ishnan. Chord: A scalable peer-to-peer lookup service for

internet applications. In Proceedings of the 2001 ACM SIG-

COMM Conference, pages 149–160, 2001.

[31] C. Tang, Z. Xu, and M. Mahalingam. psearch: information

retrieval in structured overlays. SIGCOMM Comput. Com-

mun. Rev., 33(1):89–94, 2003.

[32] D. A. Tran, K. A. Hua, and T. Do. Zigzag: an efficient peer-

to-peer scheme for media streaming. In Proc. of 22nd An-

nual Joint Conference on IEEE Computer and Communica-

tions (IEEE Infocom), S. Francisco, CA, Mar. 2003.

[33] M. B. Yassein, M. Ould-Khaoua, and S. Papanastasiou. On

the performance of probabilistic flooding in mobile ad hoc

networks. In Proc. of the 11th Int’l Conference on Parallel

and Distributed Systems (ICPADS’05), 2005.


