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Abstract—Creating replicas of frequently accessed data
objects across a read-intensive Content Delivery Network
(CDN) can result in reduced user response time. Because
CDNs often operate under volatile conditions, it is of the
utmost importance to study replica placement techniques that
can cope with uncertainties in the system parameters. We
propose four CDN replica placement heuristics that guarantee
a robust performance under the uncertainty of arbitrary CDN
server failures. By robust performance we mean the solution
quality that a heuristic guarantees given the uncertainties in
system parameters. The simulation results reveal interesting
characteristics of the studied heuristics. We report these
characteristics with a detailed discussion on which heuristics to
utilize for robust CDN data replication given a specific scenario.

Index Terms—robustness; data replication; content delivery
networks; resource allocation

I. INTRODUCTION

More efficient content delivery over the Web has become
an important element of improving Web performance. Content
Delivery Networks (CDNs) have been proposed to improve
accessibility and reliability through content replication [23].
With CDNs, content is replicated to servers located close to
clients, resulting in fast and reliable applications and Web
services for the clients. Because of these qualities, CDNs are
becoming an increasingly popular solution for data sharing [3].

A number of static and dynamic CDN replica placement
techniques have been proposed over the last decade (e.g., [16],
[17]). However, the techniques operate on the assumption that
the CDN infrastructure is fault-free [3]. The performance that
is delivered by a (static or dynamic) CDN replica placement
technique may degrade due to the circumstances that change
unpredictably, such as server failures; therefore, robust replica
placement techniques must be developed that can guarantee
a desired level of system performance despite certain fluctua-
tions in a set of specified parameters.

A resource allocation is defined to be robust against pertur-
bations in specified system parameters if degradation in the
performance feature is limited when the perturbations occur
within a certain range [1], [2], [18]–[21]. For instance, if a
replica placement has been declared to be robust with respect
to satisfying a maximum allowable CDN traffic requirement
against unpredictable CDN server failures, then the CDN
should continue to operate without violating the maximum

allowable traffic requirement when CDN servers fail. A nat-
ural question at this point would be: what is the degree of
robustness associated with a given replica placement? That is,
for the example given above, how many server failures can
occur before the CDN traffic requirement is violated.

The major goal of this paper is to propose static robust
replica placement techniques for CDNs to support collabo-
rative decision making applications in unpredictable environ-
ments. For this purpose, we propose four different heuristics,
each with different characteristics. The performance of the
studied heuristics were recorded and analyzed using a sim-
ulator that mimicked real-world CDN infrastructure.

The remainder of this paper is organized as follows. In
Section II, we give a brief description of the related works
and discuss how our approach is different from previous work
in this field. We describe the system model and derive a
mathematical model for robust replica placements in Sec-
tion III. Section IV details the four robust replica placement
techniques, followed by experimental evaluations in Section V.
Finally, in Section VI, we summarize this paper.

II. RELATED WORK

Replica placement literature is full of procedures for “reli-
able” replica placement techniques, e.g. [6], [22]. For a com-
prehensive survey on reliable replica placement techniques,
see [3] and [12]. However, we do not find a concrete definition
of robustness or a performance metric that can quantitatively
measure robustness for a replica scheme. This is primarily
because the published research has followed the paradigm that
the system either ensures reliability or it does not [10].

This research is perhaps closest in philosophy to the study
in [22] that attempts to provide some level of performance
guarantee for replica placements. The guarantee is made in
terms of the responsiveness of the system, i.e., how fast the
clients can access the requested information. Ref. [22] studies
the problem of placing replicas of data objects in CDNs
to meet the responsiveness requirements of clients with the
objective of minimizing the replication cost. The replication
cost is measured in terms of storage, consistency management,
or a combination of both. Our proposed work differs from [22]
in the following ways.

1) We deliver a performance guarantee in the presence of
CDN server failures, whereas the work reported in [22]



considers a fault-free system.
2) In [22] the authors rely on complete knowledge about

the system parameters to deliver a performance guar-
antee. Our work delivers a performance guarantee in
the presence of inaccuracies in system parameters (e.g.,
uncertainty in server failure rate).

All of the above mentioned techniques do not provide any
performance guarantee except that clients will still be able
to access data when components fail in the system. In this
research, we replace the traditional notions of reliable replica
placement techniques with a quantification of what it really
means for a system to be robust. Performance guarantees are
important because when replicas are lost, clients experience
increased latency. In some environments, e.g., homeland secu-
rity, where timely information is extremely important, delays
may lead to critical security breaches.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. CDN Replica Placement

In this section, we derive a mathematical formulation for
the CDN replica placement problem. Our problem formu-
lation is one way to represent the optimization problem.
There are many other possible ways to represent the same
problem. Consider a generic CDN infrastructure consisting
of N geographically distributed servers (see Figure 1). The
servers include both surrogate servers and ISPs. Surrogate
servers store the replicated data and ISPs do not. The N
servers of the system are interconnected through a com-
munication network. Let there be M different data objects,
named {O1, O2, · · · , OM}, that have subscribed to the CDN
provider’s hosting service. Let Si and |Si| be the name and
the total available storage capacity for replication (in bytes)
of server i, respectively, for 1 ≤ i ≤ N , where the storage
capacity for an ISP is assumed to be null, i.e., Si = 0. The
size of data object Ok, denoted by |Ok|, is also measured
in bytes. The communication time C(Si, Sj) between two
servers Si and Sj is the cumulative communication time
of the shortest path between the two servers Si and Sj

per byte basis. We assume that the values of C(Si, Sj) are
known a priori. We also assume that C(Si, Sj) = C(Sj , Si).
These assumptions are often undertaken in formulating a
replica placement problem (e.g., [22]). In certain situations,
the assumption that C(Si, Sj) = C(Sj , Si) may be relaxed
when the upstream and downstream communication times vary
for a path. However, current commercial CDNs do not allow
varying upstream and downstream communication times for a
path [3].

The replication policy assumes the existence of one primary
copy for each data object. Let Pk be the server that holds the
primary copy of Ok, hence, referred to as the primary server
of Ok. Pk is not a part of the CDN network and thus, the
primary copy cannot be lost due to a CDN server failure. The
notion of the primary server is analogous to the subscriber’s
personal server in a real-world commercial CDN. In the real-
world commercial CDNs, the clients are not allowed to access

the primary server via the CDN because of possible security
breaches [11]. Hence, we do not allow clients to access the
primary server by considering it to be outside of the CDN.

Each primary server Pk contains information about the
entire replication scheme of Ok, i.e., the location of all of
the replicas of Ok. This can be done by maintaining a list
of the servers where the k-th data object is replicated. The
primary server holds the information about the entire replica
scheme because eventually the primary server may update the
data object [17]. However, the typical update frequency of a
data object in a commercial CDN has been observed to be very
low. Therefore, the network traffic generated due to updates
is negligible compared to the network traffic generated due
to reading data objects. Because of this, none of the replica
placement techniques in the literature consider optimizing the
network traffic due to updates [22].

Every ISP stores a multi-field record for each data object
Ok. The first field is the nearest server (in terms of communi-
cation times) SN i

k of ISP Si, that holds a replica of Ok. The
remainder of the fields store a list of the subsequent nearest
servers that hold replicas of Ok, ordered by the communication
times.

Finally, we assume that whenever a client issues an http
request for one of the M data objects, the Domain Name
Server (DNS) resolver at the client’s ISP will reply with the IP
address of the nearest, in terms of communication time, server
(step (2) in Figure 1). We will call this a first-hop CDN server.
The first-hop CDN server will act essentially as a proxy server,
and if the requested data object is not replicated at the first-
hop CDN server, it will redirect the request to the appropriate
server (i.e., the corresponding SN i

k). The http reply will be
sent back to the first-hop CDN server that in turn will forward
it to the client via ISP.

Let ri
k be the number of requests for Ok, initiated from an

ISP Si during a certain given time period. Because the CDN
servers cannot initiate requests for any data objects, they can
only service requests, ri

k for any data object from any CDN
server will be equal to zero. Our objective is to minimize
the total network traffic within the CDN, due to data object
transfers to satisfy access requests.

To realize our objective, we must judicially store replicated
data on the available CDN servers. Because a CDN is com-
posed of N servers and M data objects, the entire replication
scheme can be represented by an N×M matrix, named X . An
element Xik ∈ X will be equal to 1 if a replica of Ok is stored
at Si, and 0 otherwise. Without the storage constraint, the most
obvious solution to minimize the total network traffic would be
to replicate every data object on every CDN server. However,
each CDN server has a bounded storage capacity. Hence, the
total size of the stored replicated data on a CDN server must
not exceed the CDN server’s bounded storage capacity. This
constraint can be represented as

M∑
k=1

(Xik · |Ok|) ≤ |Si|, 1 ≤ i ≤ N. (1)



Fig. 1. A generic CDN architecture. When a data object is requested by a client, the following procedure is invoked. Step (1): client sends an http request
to the ISP. Step (2): the ISP forwards the http request to the nearest (in terms of communication times) CDN server called the first-hop CDN server. Step
(3): the first-hop CDN server resolves the DNS entry and identifies the nearest server that holds the replica of the requested data object. The http request is
forwarded to that server. Step (4): the data object is sent to the first-hop CDN server. Step (5): the first-hop CDN server forwards the data object to the ISP.
Step (6): the data object is sent to the client from the ISP.

Let Ri
k denote the network traffic due to ISP Si’s requests

for data object Ok, addressed to the nearest server in terms of
communication time, which is given by

Ri
k = (1−Xik) · ri

k · |Ok| ·min
j
{C(Si, Sj)|Xjk = 1}. (2)

Given our objective is to minimize the total network traffic,
(2) must be accumulated over all of the CDN servers and
data objects. The cumulative network traffic within the CDN,
denoted by D, can be represented as

D =
N∑

i=1

M∑
k=1

Ri
k. (3)

This performance metric is often used in the literature
(e.g., [5], [17]). We can formally state the CDN replica
placement problem as: “Find the assignment of 0 or 1 values
in the X matrix that minimizes (3) subject to the storage
constraint in (1).”

Because of the close resemblance of the CDN replica place-
ment problem with the well-known NP-complete knapsack
problem [14], we suspect that the CDN replica placement
also must be classified in NP. Therefore, heuristics must
be deigned that can efficiently and effectively minimize the
overall network traffic by selectively storing replicated data
on CDN servers. The minimization of the overall network
traffic will reduce the average end-user perceived access time,
i.e., the smaller the value of D the better experience for the
end-users. However, when anomalies, such as server failures
occur, the value of D, in general, will increase because: (a)

when servers storing replicated data fail, requests must traverse
further to retrieve data, and (b) when communication paths are
lost as a consequence of server failures, request must traverse
through potentially slower paths. Therefore, one must design
heuristics that can cope with such anomalies by proactively
provisioning resources such that when servers fail, the total
network traffic is within an acceptable range. This is the topic
of the subsequent section.

B. Robust CDN Replica Placement

In this paper, our goal is to develop robust replica
placement techniques for systems that are fraught with
uncertainties of when and how many CDN servers fail. To
derive a deterministic robustness metric for the static CDN
replica placement problem formulation, we make use of the
four-step FePIA (Features, Perturbations, Impact, Analysis)
procedure [2].

Step 1: Describe the performance feature and requirements
on that feature for the system to be robust.
Let DO be the amount of network traffic when the CDN
does not have any replicas and the CDN servers do not fail
during the life-span of the CDN. Let Df denote the amount of
network traffic when the CDN does have replicated data and
the CDN servers can fail during the life-span of the CDN.
Because our target system is a CDN that may experience
arbitrary server failures, with each (or a combination of) server
failure(s) the total network traffic may increase. To quantify
the impact of server failures on the total CDN network traffic,



we consider Df to be the performance feature. With each
server failure Df is bound to increase. However, we must
restrict the increase in Df to an acceptable bound. In CDNs,
this bound may be represented by DO. Therefore, a CDN
replica placement technique is considered to be robust if it
can guarantee that the total cumulative network traffic within
a given CDN exhibits the following

Df ≤ DO. (4)

Step 2: Identify the system and environmental
perturbation parameters (a) that are uncertain, and
(b) whose impact on the system performance features
selected is to be evaluated in the given robustness analysis.
The perturbation parameter that we select is the uncertainty
of which and how many servers fail within a CDN. We
evaluate the impact on the total CDN network traffic due to
server failures. (We assume that once a CDN server fails, it
does not recover. The failure is permanent.)

Step 3: Identify the impact of perturbation parameters
on the system performance features.
Server failures will increase the network traffic within a CDN.

Step 4: Analysis to determine the smallest collective
variation in the values of perturbation parameters that
will cause any of the performance features to violate its
acceptable variation.
We must determine the largest number of arbitrary server
failures that a given CDN can tolerate before the robustness
constraint given in step 1 (Equation 4) is violated.

IV. ROBUST REPLICA PLACEMENT TECHNIQUES

In our simulations, we have used four heuristics described
below. The basic idea is to have a heuristic place at least K
replicas of each object in the CDN. This criteria is enforced
to make a replica scheme tolerate K − 1 arbitrary replica (or
CDN server) failures, in the worst-case scenario.

1. Random-Popularity (RP). Randomized algorithms may
exhibit a “good” average-case performance with fast execution
times [14]. Based on these characteristics, we proceed with the
development of a randomized algorithm for the CDN replica
placement problem.

RP assigns the most popular data objects to
CDN servers randomly subject to the storage
constraints. We pick the most popular data object
Ok, where k = argmaxk(

∑N
i=1 ri

k, ∀ 1 ≤ k ≤ M )
and then pick one CDN server with uniform probability, and
we store the data object in that CDN server. If the CDN
server is the closest possible to an ISP that is accessing the
replicated data from the CDN server, then the popularity of
the data objects is adjusted by subtracting the number of read
requests generated by the ISP’s request for the data object.
Because by definition, if a replica is placed at the closest
possible CDN server, then the cost of retrieval will be the

minimal. Hence, no further improvement in solution quality
is possible. The popularity of the data object Ok is not
adjusted if a replica is not placed at the closest possible CDN
server to the ISP that is requesting Ok. If the CDN server
is the closest possible to multiple ISPs that are accessing
the replicated data from the CDN server, then the popularity
of the data object is adjusted by subtracting the number of
read requests generated by all of the ISPs’ request for the
data object. The RP heuristic also maintains the number
of replicas of each data object and ensures that at least K
replicas of each data object are present within the CDN. This
can be done by maintaining a counter for each data object
that stores the number of replicas in the system. Once the
counter reaches K that particular data object is not chosen
for further replication unless all data objects have K number
of replicas within the CDN.

2. Tree Based Bottom Up (TBBU). The Internet topology
can be considered as a tree, the root being the top most
CDN server and the leaves being the ISPs [9]. If there are a
multiple number of roots, then a virtual root with zero storage
capacity can be added to complete the topology. Because our
simulations are based on a hierarchical Internet topological
model, a simple depth-first traversal can be used to convert
the graph topology into a tree topology. The general topology
of the tree is such that other than the leaf nodes all other
nodes are potential CDN servers. Intuitively, if replicated data
is stored within a close vicinity (a few levels above the leaf)
of the ISPs, then the total network traffic within the CDN
should be minimized. However, when CDN servers fail, the
total network traffic may drastically increase because an ISP
must traverse higher up the tree to retrieve replicated data.

TBBU performs a bottom-up traversal of the tree. Because
the leaf nodes are the ISPs, the TBBU heuristic must
move one level up (using breath-first traversal) the tree to
identify potential CDN servers. The first CDN server that
the breath-first traversal explores, replicates data objects that
are requested by the leaf nodes of the subtree of which the
current CDN server is the parent. The CDN server replicates
as many data objects as its storage permits. If the current
node (CDN server) is the closest CDN server to any of the
ISPs, then the popularities of the data objects are adjusted
similar to the RP heuristic. After all of the current level
nodes (CDN servers) have replicated the appropriate data
objects, the breath-first traversal moves one-level up the
tree and replicates data objects as done previously. This
process is repeated until the root of the tree is reached.
Similar to the RP heuristic, it is ensured that in the TBBU
heuristic (a) no data object is further replicated until all of
the data objects have at least K replicas within the CDN by
maintaining appropriate counters and (b) at least K copies
of all of the data objects are always replicated within the
CDN by the repeated runs of the TBBU heuristic, if necessary.

3. Greedy Median (GM). When it is known that anomalies,
such as server failure may exist within a CDN, one must



develop heuristics that consider the relative communication
delay between the replicas of a data object. The reason is that
when replicas are lost, requests must be serviced from replicas
in close vicinity of the lost replica. If a heuristic optimizes the
relative communication delay between the replicated data, then
it may exhibit a smaller increase in the total network traffic
when CDN servers fail.

The CDN replica placement problem is closely related to
the K-median problem [14], which must place K facilities
on the nodes of a graph such that the sum of the distances
from each node to its nearest facility is minimized. Based
on this close resemblance, the GM heuristic sorts the data
objects based on their popularities. The most popular data
object, say Ok, is placed at a CDN server that would incur in
the minimum cumulative communication delay for Ok when
accessed by all of the ISPs. If the located CDN server is
the closest possible to an ISP that is requesting Ok, then the
popularity of Ok is adjusted similar to the RP heuristic. In
each iteration, the GM heuristic places only one data object.
Note that any two consecutive iterations of the GM heuristic
may result in the replication of the same data object. If a
CDN server cannot accommodate a replica due to storage
constraint, then the next best CDN server is chosen. The
GM heuristic also keeps a count of the total number of
replicas of each data object. If a data object already has K
replicas within the CDN it is not replicated further until
all of the data objects have at least K replicas within the CDN.

4. Greedy Median Robust (GMR). The optimization of the
relative communication delay between replicas of a data object
can be a very effective method to reduce the total network
traffic. However, storage capacity constraints may not warrant
an optimized placement of replicas. Therefore, one must also
consider the worst-case impact of a server failure on the
increase in the total network traffic. The basic idea behind the
GMR heuristic is to apply the placement of the GM heuristic
to potential worst-case server failures. This guarantees that we
always improve the impact of the worst-case server failures.

First, the data objects are sorted in the decreasing order of
popularities. Then the data object that is the most popular is
replicated at each of the CDN servers where there is enough
storage space. The GMR heuristic, then identifies a replica
that if dropped from the current replica scheme will result in a
minimal increase in network traffic. The GMR heuristic, drops
this replica and the process continues until only K replicas
of the data object remain within the CDN. Then, the GMR
heuristic picks the next most popular data object and repeats
the process until all of the data objects have at least K replicas
within the CDN. After placing K replicas for each data object,
the GMR heuristic further replicates those data objects that
can potentially have an adverse affect on the network traffic
due to server failures. The replica (say R) that increases the
most network traffic if lost due to a server failure is replicated
within the vicinity of R, i.e., the heuristic places a replica
of R on the closest CDN server from the server replicating
R that has enough storage capacity. This process of placing

additional replicas continues until the storage capacity of the
CDN servers is exhausted.

Different variants of these heuristics are possible and any
improvements could be used directly to enhance the perfor-
mance of our proposed heuristics. However, due to the large
number of possible combinations of improvements, we will
defer these extensions for future work.

V. RESULTS AND DISCUSSION

Here, we present the results of our simulations. Before
proceeding to the discussion of results, we describe our
simulation setup.

The network topologies we used in the simulations were
generated using the Inet topology generator toolkit. The
toolkit is publicly available on the Internet (http://topology.
eecs.umich.edu/inet/). The toolkit produces random network
topologies following the characteristics of the Internet topol-
ogy reported in [13]. (The Inet toolkit has been successfully
used in recently published data replication research to simulate
large-scale Internet topologies, e.g., [15], [17].) Each simulated
network had a total of 20,000 nodes. Out of the 20,000 nodes,
we selected at random: (a) 400 to be the ISPs and (b) 100 to
be the primary locations of the 30,000 data objects. The Inet
designated 1500 to the CDN server nodes and the rest of the
18,000 nodes to be routing nodes.

Based on a literature survey, we allow the distribution of
object sizes to follow a heavy-tailed characterization [10] that
consists of a body and a tail. The body is a lognormal distribu-
tion with mean and standard deviation equal to 8.5 and 1.318,
respectively [5], [15]. The tail of the object size distribution
is a Pareto distribution that has a large variation (i.e., heavy-
tailed) with Pareto index and the necessarily positive minimum
possible value of the distribution equal to 1.1 and 133Kb,
respectively [15], [24]. By using this setting, more than 93
percent of objects fall into the body distribution and the mean
size of objects is about 11Kb. Statistics have shown that the
mean object size within the Internet is 10–12Kb [17].

The read frequency to data object Ok follows the Zipf-like
distribution. During the simulations, the rank parameter was
set to 0.75 because that was the average number obtained
from the popular web sites studied in [8] and subsequently
in [16], [17]. All of these parameters were used by the SURGE
Internet traffic generator toolkit to produce a list of data
objects with unique identification, sizes, and access frequen-
cies. The SURGE toolkit is publicly available on the Internet
(http://cs-www.bu.edu/faculty/crovella/surge 1.00a.tar.gz).

Let TS denote the total size of the data objects. The capacity
of a CDN server was generated using a uniform distribution
from ( 1

2TS)C and ( 3
2TS)C, where 0 ≤ C ≤ 1 is a parameter

that reflects the storage capacities of the CDN servers. For
example, when TS = 100Mb and C = 0.30 the capaci-
ties of the CDN servers are uniformly distributed between
( 1
2×100×0.30 =) 15Mb and ( 3

2×100×0.30 =) 45Mb. For our
simulations, the CDN servers’ capacities were varied by set-
ting the parameter C as 0.30, 0.35, 0.40, 0.45, and 0.50 [16],
[17]. To have enough confidence in our simulation results, the



Inet topologies, the locations of the ISPs, the locations of the
primary servers, and the CDN server storage capacities were
altered five times each per simulated network—a total of 625
runs per simulated network. The minimum number of required
replicas, i.e. K, for each data object was set to 20.

Each of the plots shown in the subsequent text, reports
the performance of the heuristics that is an average over the
625 individual runs. (The average performance is a widely
used measurement in data replication research [5].) Because
the locations of the original servers also vary during each
topological variance, the value for DO also varies. In all of
the results, the value for DO is to be interpreted as the average
over all of the simulations.

The robustness criteria (as described in Section III-B)
advocates that we must find the largest number of arbitrary
CDN server failures before the constraint given in Equation
4 is violated. To achieve that we must exhaustively search
for all possible combinations of server failures before we can
ensure an accurate measure of the worst-case performance.
However, it takes exponential time to exhaustively check
for all possible combinations. The results reported here only
show an exhaustive combinatorial search for up to five CDN
servers failures. (On average for a single run of identifying
exhaustively the top five CDN server combination failures
took the simulation package fifteen minutes.) For the higher
number of server failure combinations, we took the result of
the top five CDN server combination failures and extended
it for each additional CDN server failure by selecting from
the remaining CDN servers the one that produced the highest
impact on network traffic.

To give an overview of the results, Figure 2(a) shows the
performance of all of the heuristics averaged over all of the
simulated runs. We can see that the GMR heuristic tolerates
the most server failures (seventeen to be exact) before it
violates the robustness criteria. This robust performance can
be attributed to the fact that the heuristic circumvents the
worst-case impact on network traffic of a failing CDN server
by judicially replicating more data objects within a close
vicinity. Within the plot, above each bar, one also can see the
average number of replicas placed (per data object) by each
of the compared heuristics. The average number of replicas
placed has a profound impact on the total network traffic
within the CDN. The more the replicas, in general, the lesser
would be the total network traffic. However, the placement of
replicas also considerably affects the total network traffic. This
phenomenon is evident in Figure 2 (b) that shows the solution
quality of the heuristics when the CDN servers do not fail
during the life-span of the system. Observe that the solution
quality of the RP heuristic is the lowest among all of the
simulated heuristics. (Higher the network traffic, lower is the
solution quality of a heuristic.) This is due to the fact that RP
heuristic randomly replicates data objects, even though the RP
heuristic places the second largest number of replicas within
the system. The TBBU heuristic places the least number of
replicas within the CDN. However, greedily replicating data
objects (as is the case in the TBBU heuristic) also may not

be such a good idea because storage quickly depletes before
other popular data objects are replicated.

As suggested by several researchers (e.g., [5], [16], [17],
[24]), we also must consider measuring the increase in network
traffic with the increase in the number of CDN server failures
to get an idea about the performance of a heuristic. In
the next set of simulations, we study the effect of variance
in the locations of the CDN server storage capacities on
the solution quality of the heuristics. First, we restrict the
simulated network to have 50% of the entire available storage
capacity at the CDN servers that are at most four-hops away
from the ISPs. The rest of the storage capacity is allocated
at random to the remaining CDN servers. The reason for
limiting the range to a four-hop neighborhood is that most of
the current commercial CDNs resolve requests to data objects
within a four-hop neighboorhood of the client requesting the
data objects [4]. This suggests that most of the data objects are
replicated on CDN servers that are within four-hop distance
from the ISPs and that is only possible when there is enough
provision for storage on those CDN servers. The results for
this simulated network are reported in Figure 2(c). Note that
the DO line represents the robustness criteria (as described in
Equation 4), i.e., how many server failures are allowed for each
of the replica placement technique (e.g., the TBBU heuristic
allows twelve server failures before the robustness criteria is
violated and the RP heuristic allows seven server failures). The
TBBU heuristic clearly outperforms the RP and GM heuristics.
This is because the TBBU heuristic by construction prefers to
replicate data objects as close as possible to the ISPs. Thereby,
reducing the impact on the network traffic when replicas are
lost due to CDN servers failures. Another interesting result is
that the GM heuristic is less robust to this simulated network
compared to its average performance as shown in Figure
2(a). However, from Figure 2(c) we can observe that the GM
and GMR heuristics gradually increase the network traffic
compared to the RP heuristic that drastically increase the
network traffic as the number of failed CDN servers increase
within the CDN. Figure 2(c) also clearly illustrates that the
TBBU heuristic (due to its construction) is the least sensitive
to the CDN server failures given the simulated network when
half of the storage is located around the ISPs.

We now compare the performance of the heuristics when
we restrict the simulated network to have 50% of the entire
available storage capacity at the CDN servers that are at most
four-hops away from the primary servers. Figure 2(d) shows
the results for this simulated network. Because majority of
the storage is now located at the CDN servers that are further
away from the ISPs, the TBBU heuristic is the most sensitive
to such a change in the simulated network. Compared to the
previous result, the TBBU heuristic is robust against only ten
CDN server failures. The GM and the GMR heurisitcs are
again moderately sensitive to the simulated network. Figure
2(d) clearly indicates that the TBBU heuristic is the most
sensitive to this simulated network. The heuristic has the
largest gradiant compared to other heuristics. All heuristics
maintain their relative rankings compared to the previous set
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Fig. 2. Simulation results.

of simulations.

One also may suspect that altering the locations of the
primary servers within a CDN will impact the performance
of the heuristics. However, we found that such a variance
only alters the baseline performance, i.e., it only affects the
value of DO. Moreover, we also found that this change in
the baseline performance was somewhat arbitrary—mainly
because the locations of the primary servers are not accessible
by the ISPs. Hence, altering the the locations of the primary
servers only moves the baseline bar up and down (see either
Figure 2(c) or 2(d) to visualize the vertical movement of the
baseline performance bar) and it has no correlation with the
sensitivity of a heuristic. Furthermore, we also observed that
such a change does not drastically change the relative rankings
of the heuristics, i.e. if we ranked the heuristics according to

the robustness reported in Figure 2(a), then the results obtained
with the altered locations of the primary servers would be
ranked similarly.

The proposed heuristics have different characteristics and all
use the information available to them in a different fashion.
Overall the RP heuristic is the least sensitive to the changes
in the CDN server capacities, while the TBBU heuristic is the
most sensitive. The TBBU heuristic may be a good option
when the underlying CDN has most of its storage located
within a close vicinity of the ISPs. The GM and GMR
heuristics gave a very balanced performance for all of the
topological variances of the simulated network. In essence,
the GMR heuristic is the most robust compared to the rest of
the heuristics.



VI. CONCLUDING REMARKS

In this paper, we proposed four robust replica placement
heuristics for CDNs, where CDN servers could fail arbitrarily.
Such techniques are meaningful to develop when a certain
performance guarantee is demanded by the end users. There
are many ways in which this current work can be extended.
One of them is to relax the assumption that accesses to data
objects are independent of each other. In reality, a collection
of data objects may be accessed simultaneously or they can
have interdependent access patterns—as is the case when
accessing a web page. Therefore, it may be effective to
replicate interdependent data objects on the same server or
a close by server. Investigating such scenarios will require
modeling real-world data sets. That would be considerably
different than existing approaches that have always assumed
independent data object accesses.
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