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ABSTRACT
This paper presents a capture of the queries managed by an
eDonkey server during almost 10 weeks, leading to the ob-
servation of almost 9 billion messages involving almost 90
million users and more than 275 million distinct files. Ac-
quisition and management of such data raises several chal-
lenges, which we discuss as well as the solutions we devel-
oped. We obtain a very rich dataset, orders of magnitude
larger than previously avalaible ones, which we provide for
public use. We finally present basic analysis of the obtained
data, which already gives evidence of non-trivial features.

1. INTRODUCTION
Collecting live data on running peer-to-peer networks

is an important task to grasp their fundamental prop-
erties and design new protocols [7, 17, 15, 4, 5]. To
this end, eDonkey is appealing: it is one of the cur-
rently largest and most popular peer-to-peer systems.
Moreover, as it is based on servers in charge of file and
source searches, it is possible to capture the traffic of
such a server to observe the queries it manages and the
answers it provides.

Contribution and context.
We describe here a continuous capture of udp/ip level

traffic on an important eDonkey server during almost
ten weeks, from which we extract the application-level
queries processed by the server and the answers it gave.
This leads to the observation of 8 867 052 380 queries, in-
volving 89 884 526 distinct ip addresses and 275461 212
distinct fileID. We carefully anonymise and preprocess
this data, in order to release it for public use and make
it easier to analyse. Its huge size raises unusual and
sometimes striking challenges (like for instance count-
ing the number of distinct fileID observed), which we
address.
The obtained data surpasses previously available ones

regarding several key features: its wide time scale, the
number of observed users and files, its rigorous mea-
surement, encoding, and description, and/or the fact
that it is released for public use. It also has the distinc-

0This paper is candidate to the best paper award.

tive feature of dealing with user behaviors, rather than
protocols and algorithms, or traffic analysis, e.g. [1, 13,
16, 9, 19]. To this regard, it is more related to previous
measurement-based studies of peer behaviors in various
systems, e.g. [8, 14, 20, 6, 3], and should lead to more
results of this kind.
As a passive measurement on a server, it is comple-

mentary of passive traffic measurements in the network
[9, 19, 16], and client-side passive or active measure-
ments [20, 6, 3] previously conducted on eDonkey. Up
to our knowledge, it is the first significant dataset on
eDonkey exchanges released so far (though [11, 5] use
similar but much smaller data), and it is the largest
peer-to-peer trace ever released. Of course, it also has
its own limitations (for instance, it does not contain any
information on direct exchanges between clients).

2. MEASUREMENT
Since our goal was to observe real-world exchanges

processed by an eDonkey server, we had to capture the
traffic on an existing server (with the authorization of
its administrator and within legal limits). In this con-
text, it was crucial to avoid any significant overload on
neither the server itself nor its administrator. Likewise,
installing dedicated material (e.g. a dag card) was im-
possible.
Moreover, it is of prime importance to ensure a high

level of anonymisation of this kind of data. This anonymi-
sation must be done in real-time during the capture. As
ip addresses appear at both udp/ip and eDonkey/appli-
cation levels, this implies that the network traffic must
be decoded to application-level traffic in real-time.
Finally, we want the released data to be as useful

for the community as possible, and so we want to for-
mat it in a way that makes analysis easier. This plays
an important role in our encoding strategy described
in Section 2.4, with a strong impact on data usability
which we illustrate in Section 3.
In order to reach these goals, we set up a measure-

ment procedure in three successive steps, as illustrated
in Figure 1. First, we capture the network traffic of an
eDonkey server using a dedicated program and send it to
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Figure 1: From pcap raw traffic to xml repre-
sentation

our capture machine (Section 2.2). Then this traffic is
reconstructed at ip level and decoded into eDonkey-level
traffic, i.e. queries and corresponding answers (Section 2.3).
Finally, these queries are anonymised and formated (Sec-
tion 2.4) before being stored as xml documents.

2.1 The eDonkey protocol briefly
eDonkey is a semi-distributed peer-to-peer file exchange

system based on directory servers. These servers in-
dex files and users, and their main role is to answer
to searches for files (based on metadata like filename,
size or filetype for instance), and searches for providers
(called sources) of given files.
Files are indexed using a md4 hash code, the fileID,

and are characterised by at least two metadata: name
and size. Sources are identified by a clientID, which is
their ip address if they are directly reachable or a 24
bits number otherwise.
eDonkeymessages basically fit into four families: man-

agement (for instance queries asking a server for the
list of other servers it is aware of); file searches based
on metadata, and the server’s answers consisting of a
list of fileID with the corresponding names, sizes and
other metadata; source searches based on fileID, and the
server’s answers consisting of a list of sources (providers)
for the corresponding files; and announcements from
clients which give to the server the list of files they pro-
vide.
An unofficial documentation of the protocol is avail-

able [10], as well as source code of clients; we do not
give more details here and refer to this document for
further information.

2.2 Traffic capture
Before starting any traffic capture, one has to obtain

the agreement of a server administrator. The following

guarantees made it possible to reach such an agreement:
negligible impact of the capture on the system; use of
collected data for scientific research; and high level of
anonymisation (higher than requested by law).
The ideal solution would be to patch the server source

code to add a traffic recording layer. However, as this
source code is not open-source, this was impossible. We
thus had to design a traffic capture system at the ip

level, then decode this traffic into eDonkey messages.
The server is located in a datacenter to which we have

no access. A dedicated traffic interception hardware in-
stallation was therefore impossible, and we had to build
a software solution. To this end, we used libpcap 1, a
standard ethernet capture library. We sent a copy of
the traffic to a capture machine, in charge of decoding
(Section 2.3), anonymising (Section 2.4) and storing.
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Figure 2: Ethernet packet losses per second
during the captureand cumulative losses in thou-
sands of packets (inset). Horizontal axes are
labelled by the number of weeks elapsed since
the beginning of the measurement. By its
end, 250 266 packets were lost and 31 555 295 781
were captured.

This approach leads to packet losses during the cap-
ture, due to the duration of the capture and the net-
work’s bandwidth. Indeed, libpcap uses a buffer where
the kernel stores captured packets. In case of traffic
peaks, this buffer may be unsufficient and get full of
packets, while some others still arrive. The kernel can-
not store these new packets in the buffer, and some are
thus lost. The number of lost packets is stored in a ker-
nel structure, and thus we know the amount of losses
that occured, see Figure 2. These losses, although very
rare, make tcp flows reconstruction very difficult, as
packets are missing inside flows 2. In this paper, we

1http://tcpdump.org
2Even without packet losses, tcp conversation reconstruc-
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therefore focus on udp traffic only, which constitutes
about half of the captured traffic.

2.3 From UDP to eDonkey
At udp level, our decoding software checks packets

and re-assembles the traffic. Among 14 124 818 158 udp

packets captured, 2 981 are fragments and 169 are not
well-formed. This corresponds to 949 873 704 eDonkey
messages, which are then decoded.
The captured traffic is generated by many poorly re-

liable clients of different kinds (and versions), with their
own interpretation of the protocol. Moreover, their
source codes are intricate, and the protocol embeds
complex encoding optimisations. Finally, decoding the
server traffic is much harder than programming a client,
and requires an important work of manual decoding of
the messages.
Our decoder operates in two steps: a structural vali-

dation of messages (based on their expected length, for
example), then, if successful, an attempt at effective de-
coding. Among the 949 873 704 handled eDonkey mes-
sages, only 0.68% were not decoded by our system (78%
of these messages were structurally incorrect, and thus
not decodable).

2.4 Anonymisation and formating
Anonymisation of internet traces is a subtle issue in

itself [2]. Since we want to provide the obtained data
for public use, we need a very strong anonymisation
scheme: clientID, fileID, search strings, filenames and
filesizes must all be anonymised (each with a dedicated
method, described below). In addition, timestamps are
replaced by the time elapsed since the beginning of the
capture to further limit the desanonymisation risks.
Filesizes are stored in kilo-bytes (originally they were

in bytes); this precision reduction seems enough to pro-
tect this information, which raises no important privacy
issue. Search strings, filenames, and server descriptions
are encoded by their md5 hash code, which provides sat-
isfying anonymisation while keeping a coherent dataset.
Anonymising clientID with a hash code is not satis-

factory: if one knows the hash function, it is easy to
find the original clientID by applying the function to
the 232 possible clientID. Shuffling strategies are not
strong enough either for this very sensitive data. We
therefore chose to encode clientID according to their
order of appearance in the captured data: the first one
is anonymised with the value 0, the second with 1 and
so on. Although computationaly expensive (see below),
this technique has two advantages: it ensures a very
strong anonymisation level and it makes further use of
the dataset much easier, as anonymised clientID are
integers between 0 and N-1 (if there are N distinct cli-

tion is not an easy task, as the server receives about 5000
syn packets per minute.

entID).
To perform this encoding, we must be able to recog-

nise previously encountered (and anonymised) clientID.
We must thus store throughout the capture the set of
clientID already seen, with their anonymisation. As
each message contains at least one clientID, an over-
whelming number of searches (several billions) must be
performed in this set, as well as millions of insertions.
Classical data structures (like hashtables or trees) are
unsatisfactory in this context: they are too slow and/or
too space consuming. Instead, we used the fact that at
most 232 dictinct clientID exist: we used an array of 232

integers (hence of total size 16 giga-bytes), and stored
the anonymisation of each clientID in the clientID-th
cell of this array. This has a high cost in central mem-
ory, but allowed us to anonymise clientID with a direct
memory access operation only, hence very efficiently.
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Figure 3: Size distribution of fileID anonymisa-
tion arrays after one week of capture. One can
observe abnormally large arrays when the arrays
are indexed by the first two bytes (array 0 con-
tains 24 024 elements in this case); using other
bytes reduces this significantly.

We also chose to anonymise the fileID by their order
of appearance. Here again, the number of insertions
and searches in the corresponding set is huge. As a
consequence, classical set structures were not relevant
in this case either. Moreover, because of the size of
fileID (128 bits), we could not use the same solution as
for clientID.
A possible solution could be to use a sorted array

containing fileID, with their anonymisation key. Arrays
are compact structures, and when sorted a dichotomic
search is very fast. However, insertion has a prohibitive
cost, due to the reorganisation it implies to keep the
array sorted.
One may avoid this problem in a simple way, as fileID

are hash codes: they are supposed to be uniformally
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distributed in their coding space. As a consequence,
dividing the main array in equally-sized smaller ones,
indexed by any part of the fileID, should reduce their
size uniformally and thus significantly speed up element
insertions.
In our particular situation, dividing the array size by

a factor of 65 536 by using the two first bytes to index
65 536 arrays seems a good solution: as we encounter 88
million distinct fileID in our capture, each array length
should be around 1500; sorted insertion in such arrays
is reasonable.
However, implementing this strategy led to surpris-

ing results: anonymisation arrays 0 and 256 had very
large sizes, see Figure 3. This shows that, in practice, a
majority of fileID start with 0 or 256, and thus reveals
the massive presence of forged fileID [12]. They induce
the unbalanced sizes of our anonymisation arrays, which
strongly hampers our computations.
We solved this problem by selecting two different bytes

in the fileID to index our 65 536 arrays. Figure 3 shows
that this approach does not perfectly remove the het-
erogeneity of array sizes, but it was sufficient for our
application.
Finally, the processing method we have described is

rather space consuming, but it is able to decode udp

traffic in real-time, which is crucial in our context.

2.5 Final dataset
The final dataset we obtain consists in a series of

8 867 052 380 eDonkey messages (queries from clients
and answers to these queries from the server) in xml

format 3. It contains very rich information on users at
89 884 526 distinct ip addresses dealing with 275 461 212
distinct fileID, while preserving the privacy of users.
This dataset is publicly available with its formal spec-

ification 4.

3. BASIC ANALYSIS
We present in this section a few basic analysis of the

data obtained above. Thanks to our formating, the
computations needed to obtain these results have a rea-
sonable cost. They give more detailed insight on our
dataset. Notice however that these statistics are subject
to measurement bias [18], and only reflect the content of
our data; more careful analysis should be conducted to
derive accurate conclusions on the underlying objects.

3.1 File point of view
Figures 4 and 5 present statistics from the file point

of view. They clearly confirm the well known fact that
these objects have a very heterogeneous nature: the

3We chose xml as output format because it leads to easy-
to-read and rigorously specified text files, and, once com-
pressed, does not have a prohibitive space cost.
4http://www-rp.lip6.fr/~latapy/P2P_data/
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Figure 4: Distribution of the number of clients
providing each file, i.e. for each value x on the
horizontal axis the number of files provided by
x clients.
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Figure 5: Distribution of the number of clients
asking for each file, i.e. for each value x on the
horizontal axis the number of files searched by
x clients.

number of clients providing each file spans several or-
ders of magnitude, as does the number of clients asking
for each file. In particular, some files are provided by
more than 10 000 clients, and some are searched by al-
most 150 000, which is a non-neglectible fraction of all
clients observed 5. On the other hand, a huge amount
of files are provided by very few clients (more than 3.5
millions are provided by only one client, and more than
one million by two clients only).
The decrease of the distribution of the number of

clients providing each file is reasonably well fitted by
a power-law (see Figure 4), and the number of clients
asking for each file too. This captures the intrinsinc
heterogeneity of files regarding the number of clients
providing or searching them. This has important con-

5This kind of statistics may be used to conduct audience
estimations for the files under concern, most probably audio
files or movies.
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sequences on modeling and simulation, as there can be
no notion of average client.
Going further, notice that a better fit would be ob-

tained using a combination of several power-laws, or
more subtle laws. This may indicate that files of differ-
ent nature coexist in the system, which is indeed true
(for instance, audio file vs movies, or pornographic con-
tent vs classical one). Our data may help in ivestigating
this, but this is out of the scope of this paper.

3.2 Client point of view
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Figure 6: Distribution of the number of files
provided by each client, i.e. for each value x on
the horizontal axis the number of clients provid-
ing x distinct files.
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Figure 7: Distribution of the number of files
each client asks for, i.e. for each value x on the
horizontal axis the number of clients searching
x distinct files.

Similarily, Figures 6 and 7 present statistics from the
client point of view. They also confirm that clients are
very heterogeneous regarding the number of files they
provide or search for: both numbers span several orders
of magnitudes, with clients providing more than 5 000
files and/or searching for almost one hundred of thou-
sand files, while hundreds of thousand clients provide

or search only a few files. This accounts for the high
heterogeneity of user behaviors regarding their use of
peer-to-peer systems.
Notice however that these distribution are far from

power-laws. The number of provided files would not be
fitted for small values, and the number of files asked for
clearly has several regimes (a slow slope at the begin-
ning, then a sharper one, and a wide range of values
with only few occurrences). This may reveal different
kinds of activity, and in particular some clients scan-
ning the network to identify many file sources (which
is also indicated by the inhomogeneous repartition of
fileID observed in Section 2.4). One may investigate
this further by observing the correlations between the
number of files provided and asked for, for instance, but
this is out of the scope of this paper.
Finally, we observe that the distribution of the num-

ber of files provided by each client (Figure 6) indicates
an unexpected large number of clients providing a few
thousands of files. This may be due to limitations in
client software, like for instance a maximal number of
files manageable in a same directory on some systems.
Likewise, the distribution of the number of files asked

by each client displays a surprisingly singular value:
there is a clear peak for the number of peers asking
for 52 files. This may be due to a maximal number of
queries allowed by a widely used client software.

3.3 Other statistics
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Figure 8: File size distribution, i.e. for each en-
countered file size (horizontal axis) the number
of files having this size (vertical axis).

Many other statistics may be observed. For instance,
we display in Figure 8 the distribution of the size of ex-
changed files (the answers of the server to some queries
indicate the size of found files). One observes many
small files (probably music files), and clear peaks at
700 MB (typical size of a CD-ROM), and at fractions
(1/2, 1/3, 1/4) or multiples (2 ×) of this value. The
peak at 1 GB may indicate that users split very large
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files (DVD images for instance) into 1 GB pieces.
This plot reveals the fact that, even though in princi-

ple files exchanged in P2P systems may have any size,
their actual sizes are strongly related to the space ca-
pacity of classical exchange and storage supports.

4. CONCLUSION
This paper presents a capture of the queries man-

aged by a live eDonkey server at a scale significantly
larger than before, both in terms of duration, number
of peers observed, and number of files observed. This
dataset is available for public use (with its formal spec-
ification) in an easy-to-use and rigorous format which
significantly reduces the computational cost of its anal-
ysis. We present a few basic analysis which give more
information on the collected data.
This work may be extended by conducting measure-

ments of tcp eDonkey traffic, and more generally by
measuring the eDonkey activity using complementary
methods (active measurements from clients, for instance).
The measurement duration may also be extended even
more, and likewise the traffic losses may be reduced.
From an analysis point of view, this work opens many

directions for further research. For instance, it makes
it possible to study and model user behaviors, commu-
nities of interests, how files spread among users, etc.
Most of these directions were out of reach with pre-
viously available data, and they are crucial from both
fundamental and applied points of view.
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peer-to-peer file sharing workloads. In IPTPS,
2004.

[4] P. Gauron, P. Fraigniaud, and M. Latapy.
Combining the use of clustering and scale-free
nature of user exchanges into a simple and
efficient P2P system. In Euro-Par, 2005.

[5] J.-L. Guillaume, S. Le-Blond, and M. Latapy.
Clustering in P2P exchanges and consequences on
performances. In IPTPS, 2005.

[6] S. Handurukande, A.-M. Kermarrec, F. L.
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