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Abstract

We investigate the problem of converting sets of
sensors into strongly connected networks of sensors
using multiple directional antennae. Consider a set
S of n points in the plane modeling sensors of an
ad hoc network. Each sensor uses a fixed number,
say 1 ≤ k ≤ 5, of directional antennae modeled
as a circular sector with a given spread (or angle)
and range (or radius). We give algorithms for ori-
enting the antennae at each sensor so that the re-
sulting directed graph induced by the directed an-
tennae on the nodes is strongly connected. We also
study trade-offs between the total angle spread and
range for maintaining connectivity.

1 Introduction

Sensors in use today can have a variety of anten-
nae enabling them to vary their transmission range
and orientation. A directional (or beam) antenna
radiates greater power towards one or more direc-
tions thus allowing for increased performance on
transmit and receive as well as reduced interfer-
ence from unwanted sources. For example, ESPAR
(Electronically Steerable Passive Array Radiator)
antennae consisting of a steerable central source ra-
diating within a region that can be approximated by
a circular sector have been proposed by the engi-
neering community. [13] and [16] study configura-
tion and design of such multiple element antennae
and present simulation results on their beam/null
steering capability; they also found that 7-element
ESPAR antennae can achieve continuous steering
in almost all directions.

Directional antennae are known to enhance ad
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hoc network capacity and performance. The theo-
retical model presented in [7] shows that when n
omnidirectional antennae are optimally placed and
assigned optimally chosen traffic patterns the trans-
port capacity is Θ(

√
W/n), where each antenna

can transmit W bits per second over the common
channel(s). When both transmission and recep-
tion is directional [19] proves an

√
2π/αβ capacity

gain as well as corresponding throughput improve-
ment factors, where α is the transmission angle and
β is a parameter indicating that β/2π is the aver-
age proportion of the number of receivers inside
the transmission zone that will get interfered with.
Additional experimental studies confirm the impor-
tance of using directional antennae in ad hoc net-
working. For example, [15] provides experimental
evidence of throughput increase in ad hoc networks
with beam forming antennas, [18] and [17] inves-
tigate bounds (depending on the specific antenna
type and its parameters) on the amount of capacity
gain that can be achieved when directional anten-
nae perform independent communications in paral-
lel, while [1] looks at transmission scheduling in ad
hoc networks with directional antennae. See also
[5] for MAC layer protocols that exploit the use of
directional antennae.

1.1 Antennae spreads and strong
connectivity

In this paper we are interested in studying con-
nectivity properties of the underlying communica-
tion graph of a set of sensors using directional an-
tennae. Unlike omnidirectional antennae, direc-
tional antennae give rise to a more complex di-
rected graph whose connectivity varies depending
on the direction of the beam. A directed edge (u, v)
exists between sensors u and v if and only if v
lies within the spread and range of u. It is impor-
tant to maintain strong connectivity using the min-
imum possible antenna spread and range. Assum-
ing each beam forming sensor has a given number
of steerable directional antennae we are interested
in providing an algorithm that minimizes the total
antenna spread required so that by an appropriate
rotation of the antennae the resulting network be-

comes strongly connected. Thus, in the problems
studied in the sequel, we assume that the antenna
spread is part of the input.

Consider a set S of n points in the plane mod-
eling sensors of an ad hoc network. Each sensor
uses a directional antenna modeled by a circular
sector with a given spread (or angle) and reach (or
radius). A bound is given on the the spread of the
antennae. Given a bound on the reach, the con-
nectivity problem is to decide whether or not it is
possible to orient the antennae so that the result-
ing directed graph induced by the directed anten-
nae on the nodes is strongly connected. A variant
of this problem concerns sensors with multiple an-
tennae each, i.e., each sensor has k antennae, for
some given integer k. For a given bound on the
sum of the angles of the antennae, it is of interest
to know if there is a way to direct antennae with
a given bound on their radius so that the resulting
graph is strongly connected. Surprisingly, it will be
shown that strong connectivity can still be main-
tained by appropriately rotating the antennae, even
though the sum of angles of the directional anten-
nae at each sensor is significantly less than the full
angular spread 2π of an omnidirectional antenna.
We are interested in showing trade-offs between the
number k of antennae being used per sensor, the to-
tal spread of the antennae, and the maximum radius
required per antennae, such that for suitable rota-
tions of the antennae the network becomes strongly
connected.

1.2 Notation

Let S be a set of n points in the plane. As
usual, d(x, y) is the Euclidean distance between
two points x and y in the plane. Let ϕk be a
given non-negative value in [0, 2π) such that the
sum of angles of k antennae at each sensor loca-
tion is bounded by ϕk. Denote by rk,ϕk

the min-
imum radius (or range) of directional antennae for
a given k and ϕk that achieves strong connectivity
under some rotation of the antennae. T is a MST
of S with max degree ≤ 5, lmax is the maximum
length of edges in T . Note that lmax is a lower
bound on rk,ϕk

for any k and ϕk. Without loss
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of generality, we assume that lmax = 1. This will
be useful in the simplifying notation throughout the
paper without compromising generality. Let δ(v)
be the degree of vertex v ∈ S in T . A degree-
one vertex is arbitrarily chosen to be the root vertex
of T , denoted by RT . That is, δ(RT ) = 1. For
each v, v ∈ S, let Tv denote the subtree rooted at
vertex v and v(1), v(2), . . . , v(δ(v)− 1) denote its
children sorted in counterclockwise order. For each
v, v ∈ S \ {RT }, let p(v) be the parent of vertex
v. Finally, ûvw denotes the counterclockwise angle
between rays ~vu and ~vw.

1.3 Related work

The problem of converting (connected) net-
works of omnidirectional sensors to strongly con-
nected networks of sensors with directional anten-
nae was first addressed in [4] where it was assumed
that sensors had only one antenna each. They
present a polynomial time algorithm achieving the
optimal radius for the case when the sector angle
of the antennae is at least 8π/5. For smaller an-
gles φ with π ≤ φ < 8π/5 they give a polyno-
mial time algorithm that computes an orientation
of sectors of angle φ and radius 2 sin (π − φ/2) so
that the transmission graph is strongly connected.
When the sector angle is smaller than 2π/3, they
show that the problem of determining the minimum
radius in order to achieve connectivity is NP-hard.
When antennae have spread 0 this problem turns
out to be the bottleneck traveling salesman problem
studied in [14]. It is shown in [14] that there is an
algorithm which for any set of points in the plane
computes antennae orientations such that the sen-
sors have range ≤ 2. Since lmax = 1 is a lower
bound on the radius, the algorithms with radius
greater than 1 above may thought of as approxima-
tion algorithms for the minimum radius required to
achieve connectivity.

Other related papers include [9] on minimum
range for energy consumption, [2] on energy-
efficient broadcasting in wireless networks, [3] on
energy efficient wireless network design and [6]
on the complexity of computing minimum energy
consumption broadcast subgraphs. Topology con-

trol for ad hoc networks with directional antennae
is studied in [8], while directional versus omnidi-
rectional antennae for energy consumption and k-
connectivity of networks of sensors is considered in
[11]. Coverage and connectivity in networks with
directional sensors is investigated in [10]. Power
consumption and throughput in mobile ad hoc net-
works using directional antennas is investigated in
[12] while the performance of ad hoc networks with
beamforming antennas is studied in [15]. However,
to the best of our knowledge the problem of using
directional antennae to achieve connectivity has not
appeared in the literature before for the case of mul-
tiple antennae per sensor.

1.4 Outline and results of the paper

In Section 2 we provide necessary and suffi-
cient conditions on antennae spreads so as to form
a strongly connected graph with range equal to
lmax = 1. These results provide optimal algorithms
for large spread sum. In Section 3 we provide algo-

# Antennae Spreads Antennae Range Reference

1 ϕ1 ≥ 0 2 [14]
π ≤ ϕ1 < 8π/5 2 sin

(
π − ϕ1

2

)
[4]

ϕ1 ≥ 8π/5 1 [4]
2 ϕ2 ≥ 0 2 [14]

2π
3 ≤ ϕ2 < π 2 sin(π2 −

ϕ2
4 ) Theorem 3

ϕ2 ≥ π 2 sin(2π/9) Theorem 3
ϕ2 ≥ 6π/5 1 Theorem 2

3 ϕ3 ≥ 0
√

3 Theorem 5
ϕ3 ≥ 4π/5 1 Theorem 2

4 ϕ4 ≥ 0
√

2 Theorem 6
ϕ4 ≥ 2π/5 1 Theorem 2

5 ϕ5 ≥ 0 1 Folklore

Table 1. Upper bounds on antenna
range for various specified sums of
antennae.

rithms for two antennae of a given sum and prove
the main result for two antennae per sensor. In Sec-
tion 4 we discuss the case of more than two anten-
nae. Table 1 summarizes the results obtained and
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also mentions previous results from the literature.

2 Optimal Antennae Spreads and
Connectivity

For the given set of points, we will be refer-
ring to an arbitrary minimum weight spanning tree
(MST) induced when edges between any two points
are weighted by their corresponding Euclidean dis-
tance. Well-known geometric considerations imply
that an MST of maximum degree 5 can be shown
to exist. The first useful result we prove relates the
node degree with the sum of the spreads of all the
antennae.

Lemma 1 (Node degree and sum of antennae spreads)
Assume that a node u has degree d and the sen-
sor at u is equipped with k antennae, where
1 ≤ k ≤ d, of range at least the maximum edge
length of an edge from u to its neighbors. Then
2(d − k)π/d is always sufficient and sometimes
necessary bound on the sum of the angles of the
antennae at u so that there is an edge from u to all
its neighbors in an MST.

Proof. The result is trivially true for k = d since
we can satisfy the claim by directing a separate an-
tenna to each node adjacent to u. So we can as-
sume that k ≤ d − 1. To prove the necessity of
the claim take a point at the center of a circle and
with d adjacent neighbors forming a regular d-gon
on the perimeter of the circle of radius equal to the
maximum edge length of the given spanning tree
on S. Thus each angle formed between two con-
secutive neighbors on the circle is exactly 2π/d. It
is easy to see that for this configuration a sum of
2(d− k)π/d is always necessary.

To prove that sum 2(d − k)π/d is always suf-
ficient we argue as follows. Consider the point u
which has d neighbors and consider the sum σ of
the largest k angles formed by k + 1 consecutive
points of the regular polygon on the perimeter of
the circle. We claim that σ ≥ 2kπ/d. Indeed, let
the d consecutive angles be α0, α1, . . . , αd−1. (see
Figure 1). Consider the d sums αi + αi+1 + · · ·+
αi+k−1, for i = 0, . . . , d−1, where addition on the

α
u α

α
α

α3

4
0

2
1

Figure 1. Example vertex with d = 5.

indices is modulo d. Observe, that

2kπ =
d−1∑
i=0

(αi + αi+1 + · · ·+ αi+k−1) ≤ dσ.

It follows that the remaining angles sum to at
most 2π − σ ≤ 2π − 2kπ/d = 2π(d − k)/d.
Now consider the k + 1 consecutive points, say
p1, p2, . . . , pk+1, such that the sum σ of the k con-
secutive angles formed is at least 2kπ/d. Use k−1
antennae each of size 0 radians to cover each of the
points p2, . . . , pk, respectively, and an angle of size
2π(d−k)/d to cover the remaining n−k+1 points.
This proves the lemma.

The next result we prove shows how antennae
spreads affect the range in order to accomplish
strong connectivity.

Theorem 2 For any 1 ≤ k ≤ 5, if ϕk ≥ 2(5−k)π
5

then rk,ϕk
= 1.

Proof. We prove the theorem by that if φk ≥ 2(5−
k)π/5 then the antennae can be oriented in a way
such that for every vertex u there is a directed edge
from u to all its neighbors. Let d be the degree of
a vertex u in an MST with max degree 5. If d ≤ k
then for sure we have enough antennae.

Otherwise, k < d ≤ 5. Then, φk ≥ 2(5 −
k)π/5 ≥ 2(d − k)π/d. We know from Lemma 1
that for k antennae 2(d − k)π/d is always suffi-
cient and sometimes necessary on the sum of the
angles of the antennae at u so that there is a direc-
tional antenna from u pointing to all its neighbors.
Therefore, if φk ≥ 2(5− k)π/5 then we can orient
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the antennae such that for every vertex u there is a
directed edge from u to all its neighbors.

3 Two Antennae

In this section we prove the main theorem which
provides a more detailed tradeoff between sum of
antennae spreads and antennae range for the case
of two antennae.

Theorem 3 Consider a set of n sensors in the
plane with two antennae each. There is an algo-
rithm for directing the antennae so that the result-
ing graph is strongly connected such that the sum
of angles and range of the antennae are as follows:

1. if ϕ2 = π then r2,π ≤ 2 sin(2π
9 ), and

2. if 2π
3 ≤ ϕ2 < π then r2,ϕ2 ≤ 2 sin(π2 −

ϕ2
4 ).

Proof. (Theorem 3) We begin the proof by stating
two simple facts.

Fact 1 (Refer to Figure 2(a).) For any vertices
u, v, w ∈ S such that u and w are adjacent neigh-
bors of v in T ,

1. the angle ûvw is at least π/3,

2. d(u,w) ≤ 2 sin ( duvw
2 ), and

3. the triangle4uvw is empty.

From Fact 1, we can easily derive the following
fact.

Fact 2 (Refer to Figure 2(b).) Let v1, v2, v3, v4, v5
be neighbors of a vertex v ∈ S of degree 5 in T ,
sorted in counterclockwise order. Then,

1. the angles v̂1vv2, v̂2vv3, . . . , v̂5vv1 are in
[π3 ,

2π
3 ].

2. the angles v̂1vv3, v̂2vv4, . . . , v̂5vv2 are in
[ 2π3 , π].

Next we prove the results stated in the theorem
by induction. In all cases (i.e., combination of k
and ϕk) we say that a rooted subtree Tv (v ∈ S)
satisfies Property 1 if for any imaginary point p
with d(v, p) ≤ rk,ϕk

(we use an imaginary point to

u

v

w

(a)

Triangle
is empty

>π/3

v

v v

v

v

v2

3

1

4

5

(b)

Figure 2. Examples for Facts 1 and 2.

simulate the parent or a sibling vertex of v), there
exists a way to direct antennae located at vertices
in Tv such that the resulting graph is strongly con-
nected and p is covered by an antenna located at v.
We have the following lemma.

Lemma 4 For each case in Theorem 3, if the
rooted tree T (rooted at RT ) satisfies Property 1
then there exists a way to direct antennae, where
each antenna has radius rk,ϕk

and each sensor has
k antennae whose angle sum is bounded by ϕk,
such that the resulting graph is strongly connected.

Proof of Part 1: if ϕ2 = π then r2,ϕ2 ≤
2 sin( 2π

9 )

In this part of the proof, let us define R2,ϕ2 :=
2 sin( 2π

9 ). Trivially, for any leaf v ∈ S, Tv has
Property 1 since we can use one antenna (located at
v) of angle 0 and radius R2,ϕ2 to cover any imag-
inary point p with d(v, p) ≤ R2,ϕ2 . For an inter-
nal vertex u, we assume that all rooted subtrees
Tu(1), . . . , Tu(δ(u)−1) have Property 1. Next, we
prove that Tu has Property 1. Based on the degree
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of u in T , we consider the following cases.

Case δ(u) = 1, 2: In this case, u has one child
u(1). In fact, if δ(u) = 1 then u = RT . Accord-
ing to assumption, Tu(1) has Property 1. Therefore,
there is a way to direct antennae in Tu(1) such that
the resulting graph of vertices in Tu(1) is strongly
connected and u is covered by an antenna located
at u(1). Refer to Figure 3(a). We then use two an-
tennae (located at u) of angle 0 and radius R2,ϕ2 .
One antenna covers a given imaginary point p with
d(u, p) ≤ R2,ϕ2 and the other one covers u(1). In
this way, the resulting graph of vertices in Tu is
strongly connected and p is covered by an antenna
located at u.

In the following, without loss of any generality,
we assume that u(1) is the first neighbor of u when
rotating the ray ~up.

Figure 3. Case ϕ2 = π.

Case δ(u) = 3: According to assumption, there
is a way to direct antennae in Tu(1) (resp. Tu(2))
such that the resulting graph of vertices in Tu(1)

(resp. Tu(2)) is strongly connected and u is cov-
ered by an antenna located at u(1) (resp. u(2)). We
can see that min {p̂uu(1), ̂u(1)uu(2), û(2)up} ≤
2π
3 (< ϕ2). Suppose that p̂uu(1) ≤ 2π

3 . Refer to
Figure 3(b). We then use two antennae (located at
u) of radius R2,ϕ2 . One antenna is of angle 2π

3 that

covers the sector between rays ~up and ~uu(1). The
other one (of angle 0) covers u(2). In this way,
the resulting graph of vertices in T is strongly con-
nected and p is covered by an antenna located at
u.

Case δ(u) = 4: It is easy to see that either
p̂uu(2) or û(2)up is no more than π(= ϕ2). Sup-
pose p̂uu(2) ≤ π. Refer to Figure 3(c). We then
use two antennae (located at u) of radius R2,ϕ2 .
One antenna is of angle π that covers the sector be-
tween rays ~up and ~uu(2). The other one (of angle
0) covers u(3).

Case δ(u) = 5: Recall that p lies in the sector
between rays ~uu(4) and ~uu(1) (counterclockwise).
We consider two cases depending on the location
of u’s predecessor.

If p(u) lies in the sector between rays ~uu(4) and
~uu(1), then the angle ̂u(4)uu(1) is in [ 2π3 , π] (by

Fact 2). Accordingly,

min { ̂u(1)uu(2), ̂u(2)uu(3), ̂u(3)u(4)} ≤ 4π
9
.

Suppose that ̂u(1)uu(2) ≤ 4π
9 . Refer to Fig-

ure 3(d). We then use two antennae (located at u)
of radius R2,ϕ2 . One antenna is of angle π that
covers the sector between rays ~uu(4) and ~uu(1).
The other one (of angle 0) covers u(3). According
to assumption and d(u(1), u(2)) ≤ 2 sin( 2π

9 )(=
R2,ϕ2), there is a way to direct antennae in Tu(1)

such that the resulting graph of vertices in Tu(1) is
strongly connected and u(2) is covered by an an-
tenna located at u(1).

Otherwise, p(u) does not lie in the sector be-
tween rays ~uu(4) and ~uu(1). Clearly, either the
sector between rays ~uu(1) and ~uu(2) or the sec-
tor between rays ~uu(3) and ~uu(4) does not contain
p(u). Without loss of any generality, assume that
the sector between rays ~uu(1) and ~uu(2) does not
contain p(u) (see Figure 3(e)). By Fact 2, the angle

̂u(4)uu(2) is in [ 2π3 , π]. We then use two antennae
(located at u) of radius R2,ϕ2 . One antenna is of
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angle π that covers the sectors between rays ~uu(4)
and ~uu(2). The other one (of angle 0) covers u(3).

From the above discussions, we can see that Tu
has Property 1. This completes the proof of the re-
sult for the case where k = 2 and ϕ2 = π, that is,
we are able to direct antennae in T such that the re-
sulting graph is strongly connected where radii of
antennae is no more than R2,ϕ2 = 2 sin( 2π

9 ). This
completes the proof of Part 1 of Theorem 3 in all
cases.

Proof of Part 2: if 2π
3 ≤ ϕ2 < π then

r2,ϕ2 ≤ 2 sin(π2 −
ϕ2
4 )

In this part of the proof, let us define R2,ϕ2 :=
2 sin(π2 −

ϕ2
4 ). The proof of the result for this case

is similar to the one for the case ϕ2 = π. Here we
only present the details for an internal vertex uwith
δ(u) ≥ 4. Still, we assume that all rooted subtrees
Tu(1), . . . , Tu(δ(u)−1) have Property 1 and that u(1)
is the first neighbor of u when rotating the ray ~up.

Case δ(u) = 4: There are three cases to consider
depending on the size of the angle ̂u(3)uu(1).

If ̂u(3)uu(1) ≤ ϕ2, then we use two antennae
(located at u) of radius R2,ϕ2 . Refer to Figure 4(a).
One antenna is of angle ϕ2 that covers the sector
between rays ~uu(3) and ~uu(1). The other one (of
angle 0) covers u(2).

Else if ̂u(1)uu(3) ≤ ϕ2, similar to the above.
One antenna is of angle ϕ2 that covers the sector
between rays ~uu(1) and ~uu(3). The other one (of
angle 0) covers p.

Otherwise, ̂u(3)uu(1) > ϕ2 and ̂u(1)uu(3) >
ϕ2. In this case, min {û(3)up, p̂uu(1)} is at most
2π
3 which in turn is ≤ ϕ2. Suppose that û(3)up ≤
ϕ2. We then use two antennae (located at u) of ra-
dius R2,ϕ2 . Refer to Figure 4(b). One antenna is of
angle ϕ2 that covers the sector between rays ~uu(3)
and ~up. The other one (of angle 0) covers u(1).
We can see that min { ̂u(1)uu(2), ̂u(2)uu(3)} ≤
π − ϕ2

2 since ̂u(3)uu(1) > ϕ2. Therefore, ei-
ther u(1) or u(3) is able to cover u(2) with radius
≤ 2 sin(π2 −

ϕ2
4 ).

Figure 4. Case 2π
3 ≤ ϕ2 < π.

Case δ(u) = 5: Recall that p lies in the sector
between rays ~uu(4) and ~uu(1) (counterclockwise).
There are two cases to consider depending on the
location of u’s predecessor.
In the first case, if p(u) does not lie in the sector
between rays ~uu(4) and ~uu(1), then ̂u(4)uu(1) ≤
2π
3 ≤ ϕ2 (Fact 2).

• If the angle ̂u(4)uu(2) ≤ ϕ2 then one antenna
is of angle ϕ2 that covers the sector between
rays ~uu(4) and ~uu(2). The other one (of angle
0) covers u(3). (See Figure 4(c).)

• Otherwise, ̂u(4)uu(2) > ϕ2. It implies
that min { ̂u(1)uu(2), ̂u(2)uu(3)} ≤ π − ϕ2

2 .
Therefore, we can use one antenna (of angle
ϕ2) to cover the sector between rays ~uu(4)
and ~uu(1) and the other one (of angle 0) to
cover u(2). Either u(4) or u(2) has one an-
tenna to cover u(3). (See Figure 4(d).)

In the second case, p(u) also lies in the sector be-
tween rays ~uu(4) and ~uu(1) and there are two cases
to consider.

1. If min {û(3)up, ̂u(4)uu(1), p̂uu(2)} ≤ ϕ2,
w.l.a.g., we assume that û(3)up ≤ ϕ2. Then
we can use one antenna located at u (of
angle ϕ2) to cover the sector between rays
~uu(3) and ~up and the other one (of an-

gle 0) to cover u(1). Either u(3) or u(1)
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has one antenna to cover u(2) (note that
min {d(u(1), u(2)), d(u(3), u(2))} ≤

√
2

since ̂u(1)uu(3) ≤ π). u(2) (resp. u(4)) has
one antenna to cover u.

2. Otherwise, û(3)up, ̂u(4)uu(1), p̂uu(2) are
larger than ϕ2. We have û(3)up ≤ π and
p̂uu(2) ≤ π since ϕ2 ≥ 2π

3 and ̂u(2)uu(3) ≥
π
3 . Without loss of generality we may assume

that û(4)up ≤ p̂uu(1). Then û(4)up ≤ ϕ2

since ϕ2 ≥ 2π
3 .

(a) If û(4)up ≥ ϕ2
2 , then p̂uu(1) ≥ ϕ2

2 . We
can see that

û(3)up ≤ π, p̂uu(2) ≤ π

⇒ ̂u(1)uu(2) ≤ π − ϕ2

2
,

̂u(3)uu(4) ≤ π − ϕ2

2

⇒ d(u(1), u(2)) ≤ 2 sin
(π

2
− ϕ2

4

)
,

d(u(4), u(3)) ≤ 2 sin
(π

2
− ϕ2

4

)
.

Therefore, we use one antenna (of an-
gle ϕ2) to cover the sector between rays
~uu(4) and ~up and the other one (of angle

0) to cover u(1). Also, u(1) (resp. u(4))
has one antenna to cover u(2) (resp.
u(3)). See Figure 4(e).

(b) Otherwise, û(4)up < ϕ2
2 . We can see

that ̂u(4)uu(1) ≥ ϕ2 ⇒ p̂uu(1) >
ϕ2
2 ⇒ ̂u(1)uu(2) < π − ϕ2

2 ⇒
d(u(1), u(2)) < 2 sin

(
π
2 −

ϕ2
4

)
.

i. If ̂u(2)uu(3) ≤ ϕ2
2 then we use one

antenna (of angle ϕ2
2 ) to cover the

sector between rays ~uu(4) and ~up
and the other one (of angle ϕ2

2 ) to
cover the sector between rays ~uu(2)
and ~uu(3). Also, u(2) has one an-
tenna to cover u(1). See Figure 4(f).

ii. Otherwise, ̂u(2)uu(3) > ϕ2
2 .

Then, ̂u(3)uu(4) < π − ϕ2
2 ⇒

d(u(3), u(4)) < 2 sin
(
π
2 −

ϕ2
4

)
.

Therefore, we use one antenna (of
angle ϕ2) to cover the sector be-
tween rays ~uu(4) and ~up and the
other one (of angle 0) to cover u(1).
Also, u(1) (resp. u(4)) has one an-
tenna to cover u(2) (resp. u(3)).
See Figure 4(d).

This completes the proof of Part 2 of Theorem 3 in
all cases and therefore the proof of the main theo-
rem is now complete.

4 More than two Antennae

In this section we consider the case of more than
two antennae. To begin with, observe that since ev-
ery set of points in the plane has a Euclidean span-
ning tree of degree at most 5, it is easy to see that
for any set S of points in the plane, with five anten-
nae per sensor, we can strongly connect the sensors
using a range of at most 1. Therefore it remains to
consider the cases of three and four antennae.

Three antennae per sensor

Theorem 5 For any set S of points in the plane,
with three antennae per sensor, we can strongly
connect the sensors using a range of at most

√
3.

Proof. Assume we have three antennae with an-
gles 0 at each sensor. The proof is by induction
on the height of the tree. The inductive hypothe-
sis that must be maintained throughout is the fol-
lowing: “Given a rooted directional tree we can as-
sign antennae so that the resulting graph is strongly
connected while the out degree of the root never
exceeds 2.” Assuming the inductive hypothesis is
true we argue as follows. Take as root any vertex,
say u, of an MST. Vertex u has at most d ≤ 5
subtrees, with corresponding roots u1, u2, . . . , ud,
respectively. By the induction hypothesis we can
assign antennae in the subtrees so that the resulting
graphs are strongly connected and the vertices ui
use at most two antennae each. It follows that we
can direct the remaining antenna at ui towards the
root u.
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It remains to show how to direct two antennae
from u to its d children so that the range being used
does not exceed

√
3. By the previous construction,

if it is satisfied for all the subtrees of u it must also
be satisfied for the tree rooted at u. Therefore it re-
mains to examine the initial cases of the induction
hypothesis. To this end consider a tree consisting of

u

(a)

u

(b)

u

(c)

Figure 5. Directing antennae among
u and its children so as to guarantee
that the maximum range does not ex-
ceed

√
3. Notice that in all three cases

the out degree of u is 2.

the root u and the d vertices u1, . . . , ud adjacent to
u. The result is trivial if d ≤ 2. If d = 3 then as de-

picted in Figure 5(a) we find an angle between two
children of u forming an angle≤ 2π/3 and connect
them with a directed edge. If d = 4 then as depicted
in Figure 5(b) we find two adjacent angles among
three children of u each forming an angle ≤ 2π/3
and connect them with directed edges. Finally, if
d = 5 then as depicted in Figure 5(c) we find three
angles among the children of u each forming an an-
gle ≤ 2π/3 and connect them with directed edges.
This completes the proof of Theorem 5.

Four antennae per sensor

Theorem 6 For any set S of points in the plane,
with four antennae per sensor, we can strongly con-
nect the sensors using a range of at most

√
2.

Proof. This is similar to the proof of Theorem 5.
Assume we have four antennae with angles 0 at
each sensor. The proof is by induction on the height
of the tree. The inductive hypothesis that must be
maintained throughout is the following: “Given a
rooted directional tree we can assign antennae so
that the resulting graph is strongly connected while
the out degree of the root never exceeds 3.” As-
suming the inductive hypothesis is true we argue as
follows. Take as root any vertex, say u, of an MST.
Vertex u has at most d ≤ 5 subtrees, with corre-
sponding roots u1, u2, . . . , ud, respectively. By the
induction hypothesis we can assign antennae in the
subtrees so that the resulting graphs are strongly
connected and the vertices ui use at most three an-
tennae each. It follows that we can direct the re-
maining antenna at ui towards the root u.

It remains to show how to direct two antennae
from u to its d children so that the range being used
does not exceed

√
2. By the previous construction,

if it is satisfied for all the subtrees of u it must also
be satisfied for the tree rooted at u. Therefore it re-
mains to examine the initial cases of the induction
hypothesis. To this end consider a tree consisting of
the root u and the d vertices u1, . . . , ud adjacent to
u. The result is trivial if d ≤ 3. If d = 4 then as de-
picted in Figure 6(a) we find an angle between two
children of u forming an angle ≤ π/2 and connect
them with a directed edge. Finally, if d = 5 then as
depicted in Figure 6(b) we find two angles among

9



u

(a)

u

(b)

Figure 6. Directing antennae among
u and its children so as to guarantee
that the maximum range does not ex-
ceed

√
2. Notice that in both cases the

out degree of u is 3.

the children of u each forming an angle ≤ π/2 and
connect them with directed edges. This completes
the proof of Theorem 6.

5 Conclusion

We gave several tradeoffs between the total an-
tenna spread and range when each sensor has k an-
tennae, k = 2, 3, 4, so as to guarantee the result-
ing network is strongly connected. In addition to
studying tradeoffs arising from results obtained in
this paper several problems remain open. Lower
bounds are lacking from our study and it remains
open to prove NP completeness results for the case
of multiple antennae per sensor. Another interest-
ing question concerns ensuring that for a given inte-
ger c the resulting network is strongly c-connected,
i.e., it remains strongly connected after the deletion
of any c− 1 nodes.

In a real network, one has to consider interfer-
ence from nearby links to be able to judge the con-
nectivity of the network. In this study the system
model assumes that there is no interference. It is a
challenge work to obtain similar results that can be
applied to the real world.
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