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Abstract

Partitioned Global Address Space (PGAS) languages
provide a unique programming model that can span
shared-memory multiprocessor (SMP) architectures,
distributed memory machines, or cluster of SMPs. Users
can program large scale machines with easy-to-use,
shared memory paradigms.

In order to exploit large scale machines efficiently,
PGAS language implementations and their runtime sys-
tem must be designed for scalability and performance.
The IBM XLUPC compiler and runtime system provide
a scalable design through the use of the Shared Vari-
able Directory (SVD). The SVD stores meta-information
needed to access shared data. It is dereferenced, in
the worst case, for every shared memory access, thus
exposing a potential performance problem.

In this paper we present a cache of remote addresses
as an optimization that will reduce the SVD access over-
head and allow the exploitation of native (remote) direct
memory accesses. It results in a significant performance
improvement while maintaining the run-time portability
and scalability.

1. Introduction

Parallel programming for both multicores and large
scale parallel machines is becoming evermore challeng-
ing; adequate programming tools offering both ease of
programming and productivity are essential. However,
while the productivity of developing applications for
these machines is important, the users of massively
parallel machines are expecting the same level of per-
formance as obtained by manual tuning of MPI appli-
cations.

Partitioned Global Address Space (PGAS) languages,
such as UPC, Co-Array Fortran, and Titanium, extend
existing languages (C, Fortran and Java, respectively)
with constructs to express parallelism and data dis-
tributions. These languages provide a simpler, shared
memory-like programming model, with control over the
data layout. The performance of these languages relies

on two main factors: (i) the programmer to tune for lo-
cality by specifying appropriate data layouts; and (ii) the
compiler and runtime system to efficiently implement
the locality directives. The discussion in this paper will
focus on the UPC language, however, the optimizations
apply to any of the PGAS languages.

The memory model of UPC follows the PGAS model,
with each thread having access to a private, a shared
local, and a shared global section of memory. Threads
have exclusive, low latency, access to the private section
of memory. Typically the latency to access the shared
local section is lower than the latency to access the
shared global section. The UPC memory and threading
model can be mapped to either distributed memory
machines, shared memory machines or hybrid (clusters
of shared memory machines, such as MareNostrum [3]).

In this paper we describe an optimization in the IBM
XLUPC runtime system to exploit hardware features,
such as RDMA, to improve application performance and
maintain a scalable design. The IBM XLUPC runtime
system uses a Shared Variable Directory (see Section 2)
to provide a scalable infrastructure that has been demon-
strated to scale to hundreds of thousands of threads on
the BlueGene/L computer [8]. However, in this scalable
design, nodes keep only local information. To exploit
RDMA, we implemented a cache of remote addresses
on two different platforms: the MareNostrum [3] su-
percomputer, and a cluster of Power5 SMP machines.
We measured the performance of this optimization on a
set of benchmarks, and we demonstrate a reduction in
execution time of up to 40% and 30%, on each of the
platforms, respectively.

The effects of using RDMA are the largest for very
short messages; these are the kinds of performance
improvements that conventional two-sided messaging
systems cannot achieve because of design limitations
(e.g. MPI point to point relies on message matching on
the receiver, which rules out RDMA transfers).

This paper makes the following main contributions:
• describes the Shared Variable Directory (SVD),

which is crucial to the scalability of the UPC Run-
Time System (RTS).

• presents a runtime optimization that improves its
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performance while being scalable and portable.
• introduces a UPC parallel implementation of a

subset of the DIS Stressmark Suite and evaluates
these benchmarks on our system.

The rest of the paper is organized as follows. Sec-
tion 2 describes XLUPC RTS. Section 3 describes the
runtime optimization implemented to speed up com-
munication. Section 4 outlines the experiments and
the results obtained from running the benchmarks on
MareNostrum supercomputer and the AIX cluster. The
related work is presented in Section 5 and finally
conclusions and future work are discussed in Section 6.

2. The IBM XLUPC runtime

The runtime component of the IBM XLUPC com-
piler has multiple roles: it spawns and collects UPC
threads, implements accesses to shared data, performs
pointer arithmetic on pointers to shared objects and
implements all the UPC intrinsic function calls (such as
upc_phaseof, upc_barrier and upc_memget).
The XLUPC runtime defines an external API that is
used by the UPC compiler when generating code.

The overall architecture of the XLUPC runtime (Fig-
ure 1) is similar to that of GASNet [6]. It provides a
platform-independent interface that can be implemented
on top of a variety of architectures, SMP or distributed.

The XLUPC runtime is designed for a hybrid mode
of operation on clusters of SMP nodes: UPC threads
communicate through shared memory when available,
and send messages through one of several available
transports where necessary. The Pthreads library is used
to spawn multiple UPC threads on systems with SMP
nodes. Implemented messaging methods include TCP/IP
sockets, LAPI [23], Myrinet/GM transport [19] and the
BlueGene/L messaging framework [1].

In this paper we focus on optimizing the hybrid and
distributed-memory implementations of the runtime.

2.1. The Shared Variable Directory

Shared objects (i.e. data structures accessible from all
UPC threads) form the basis of the UPC language. The
XLUPC runtime recognizes several kinds of shared ob-
jects: shared scalars (including structures/unions/enu-
merations), shared arrays (including multi-blocked ar-
ray [7]), shared pointers (with either shared or private
targets) and shared locks.

All UPC shared objects have an affinity property. A
shared object is affine to a particular UPC thread if
it is local to that thread’s memory. Shared arrays are
distributed in a block-cyclic fashion among the threads,
so different pieces of the array have affinity to different
threads.

Access to shared objects presents a scalability prob-
lem that all UPC implementations share, namely that the
addresses of locally allocated portions of shared objects
are needed by other nodes in order to access shared data.
There are multiple solutions to address this problem:

• Ensure that shared objects have the same addresses
in all nodes. Unfortunately this approach does not
work too well with dynamic objects: it tends to
fragment the address space and it is cumbersome
to implement, sometimes requiring changes to the
system memory allocator.

• A distributed table of size O(nodes×objects) can
be set up to track the addresses of every shared
object on every node. For a large number of nodes
or threads, this can be prohibitively expensive and
thus, directly impacting scalability. It also requires
extensive communication when the virtual to phys-
ical mapping changes on a particular node.

• The third solution involves a distributed symbol
table. Shared objects are known by their han-
dles (unique identifiers for every shared object).
Translation from shared object handles to memory
locations only happens on the home node of the
shared object.

In the XLUPC runtime we opted for the last ap-
proach. Shared objects are organized into a distributed
symbol table called the Shared Variable Directory
(SVD). The SVD manages the life cycle of shared ob-
jects (allocation, freeing, use). On a system with n UPC
threads the SVD consists of n + 1 partitions. Partition
k, 0 ≤ k < n holds a list of those variables affine to
thread k. The last partition (called the ALL partition)
is reserved for shared variables allocated statically or
through collective operations.

Each partition in the SVD is a list of shared objects.
Shared objects that are locally allocated have an associ-
ated control structure containing the memory addresses
in question (Figure 2).

Shared objects are referred to by their SVD handles,
opaque objects that internally index the SVD. An SVD
handle contains the partition number in the directory,
and the index of the object in the partition.

Multiple replicas of the SVD exist in a running
XLUPC system. The SVD often changes at runtime
because of UPC routines for dynamic data allocation,
such as upc_global_alloc, upc_all_alloc,
and upc_local_alloc. The SVD has to be kept in-
ternally consistent. Partitioning greatly aids this process,
because it allows the SVD to be kept consistent with a
minimal effort and without any bottlenecks:

1) UPC threads can allocate and de-allocate shared
variables independently of each other. Each thread
updates its own partition, and sends notifications
to other threads;
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Figure 1: Software organization of XLUPC runtime

2) Because the SVD is partitioned, and each partition
has a single writer, memory allocation events do
not require locks. The ALL partition is only up-
dated by collective memory allocation operations
that are already synchronized.

2.2. The performance compromise of the SVD
design

We consider the SVD essential to the scalability of
the XLUPC runtime. Unfortunately there is a price to be
paid for translating SVD handles to memory addresses
only at the target node.

Modern communication transports (like Myrinet [19]
and LAPI [15]) have one-sided RDMA communication
primitives that require no CPU involvement on the
remote end. However, these primitives typically require
the physical address of the shared object at the target
to be known by the initiator of the communication.
Figure 3 contrasts the implementation of remote GET
when the address of the object is known (b), and when
it is not (a).

RDMA GET and PUT functions cannot be used in a
naive SVD implementation, since SVD lookups require
CPU involvement. This both lengthens communication
latency and burdens the target CPU with work, con-
tributing to the scalability bottleneck.

In the next section we outline an optimization that
allows the use of RDMA operations while preserving
the SVD design, by caching the remote addresses of
shared objects on an as-needed basis.

3. Remote Address Cache

The goal of the remote address cache (hereafter
address cache) is to enable small message transfers
via RDMA, and thus reduce latency and improve the
performance of the XLUPC runtime system. It does

this by caching remote addresses as needed by com-
putation. Unlike a full table of remote addresses, the
cache’s memory requirements can be controlled and
offset against performance.

The address cache is implemented as a hash
table. Each entry in the cache correlates a universal SVD
handle and a node identifier ID with the physical base
address for the shared variable identified by the SVD
handle on the remote node ID. During a GET or PUT
operation the initiating node consults the address
cache for the base address on the target node. A
cache hit guarantees that the final remote address (base
address + offset) can be calculated on the initiator node,
allowing the message transfer to be executed as an
RDMA operation.

Conversely, if the address lookup in the cache fails the
operation cannot be executed as an RDMA operation.
However, the slower operation can be harnessed to
retrieve the remote base address for the next operation
to the same node. We have modified the default (non-
RDMA) one-sided messaging protocol to retrieve the
base address of the remote shared object during the
transfer by piggybacking it either on the data stream
or on the ACK message.

To ensure the correctness of RDMA transfers, the
remote node has to guarantee that the remote memory
address has not changed between accesses. To ensure
that the physical address (typically required by RDMA
operations) of a shared array is fixed, we need to
pin the array in memory [28], [24]. To this end we
augmented the address cache with a table of registered
(pinned) memory locations. The pinned address table is
tagged by local virtual addresses and contains physical
addresses in the format needed by RDMA operations.

Figure 4 portrays a typical runtime snapshot. In the
figure the address cache of node A caches two remote
addresses on node B. Both these entries exist in the
pinned address table of node B. Node C also caches
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Figure 2: Shared Variable Directory in a distributed memory machine. Gray boxes represent the local memory of each of n
UPC threads, each with a copy of the SVD. The SVD has n + 1 partitions; each partition has a list of control blocks, one each
for shared objects known locally. Addresses are only held for the local or ALL partitions. Distributed shared array “All-0” has
a different local address on every node.

(a) Default GET (b) RDMA GET

Figure 3: Protocols for GET: (a) when the remote address is unknown a Request To Send (RTS) message needs to be sent
before every data transfer. Acknowledge message may be required depending on the implementation (i.e. to signal completion
or to carry the remote address if data transfer is performed thought one-sided communication). And (b) with RDMA operation
when the remote address is known.

one of these entries, as well as another entry on node
A (shaded appropriately to show the correspondence).

3.1. Implementation details

In our implementation, before an address can be
tagged in another node’s address cache it needs to
be pinned locally. Nevertheless, the pinning strategy is
not the goal of this paper and for the sake of simplicity
a greedy “pin everything” approach is presented here.
We resolve that: (i) the entire memory allocated for a
shared object is pinned at once on a particular node. For
example, if any element of a shared array A is accessed
on node n, all of the memory related to array A is
pinned on that node, making it all available for RDMA

operations. And also, (ii) once a shared object is pinned
it remains pinned until it is freed. The address cache is
eagerly invalidated when a shared object is deallocated.

These decisions simplify the implementation of the
address cache, because the cache tags can simply be the
SVD handles and consistency of the remote address
cache is not an issue.

However, these assumptions limit the implementation
in two important respects. First, it does not deal with
network transports that limit the amount of contiguous
memory pinned by a single call, and also limits on the
total amount of memory pinned are ignored. We have
successfully implemented a more elaborated technique
to deal with both these issues obtaining similar results.
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Figure 4: Example snapshot of address cache on three nodes.

A detailed explanation can be found in [10].

3.2. Considerations for a LAPI based imple-
mentation

The LAPI implementation of the XLUPC low level
messaging API uses Active Messages (LAPI_Amsend)
(as shown in Figure 5 (a)). Implementation of the re-
mote address cache required only trivial changes in the
messaging library to enable the process of populating
the address cache. Cache hits result in messages
that bypass the standard messaging system completely
and use RDMA directly.

LAPI limits the amount of memory that can be
assigned to a single registered memory handle (a con-
figuration parameter, 32 MBytes on our machines).

3.3. Considerations for the Myrinet/GM imple-
mentation

GM is a message-based communication system for
Myrinet [19]. The XLUPC runtime Myrinet port was
implemented on top of GM instead of MX, mainly
because GM is currently the driver installed on our
testing platform (the MareNostrum supercomputer [3]).
Moreover, GM provides one-sided support and primi-
tives to directly expose the RDMA capabilities of the
hardware.

However, three considerations need to be taken into
account: first, Myrinet requires memory registration for
any data transfer, and it is handled by the programmer
in GM. Second, the largest message GM can send or
receive is limited by the amount of DMAable memory
the GM driver is allowed to allocate by the operating
system. (1 GByte on our test machines). Finally, mem-
ory registration is an expensive operation; memory de-
registration even more so.

Our original XLUPC Myrinet port implements mul-
tiple transfer protocols depending on message size [20].
Short messages are copied to avoid memory registration
costs. Long messages are transferred with an MPI-
like rendezvous protocol with memory registration/de-
registration embedded into the phases of the protocol.
As an optimization a cache of registered memory re-
gions was implemented [26] with lazy memory de-
registration.

Again, the changes required in the messaging library
to enable the remote address cache were trivial (Figure 5
(b)) and very similar to the ones in LAPI.

4. Evaluation

The scalability of the XLUPC runtime with the
Shared Variable Directory has been demonstrated in our
previous work [8]. In this paper we aim to demon-
strate the effect of the address cache on mes-
saging performance. Our experiments were performed
on comparatively smaller machines: 512 nodes of the
MareNostrum supercomputer and a 28-node Power5
cluster running AIX.

We defined a confidence coefficient of 95% and ran
each experiment multiple times to reduce the standard
error. We assumed experiments to be independent, there-
fore the formulas associated with a normal distribution
apply [14].

4.1. Evaluation environment: MareNostrum

MareNostrum [3] is a cluster of 2560 JS21 blades,
each with two dual core IBM PPC 970-MP processors
sharing 8 GBytes of main memory. The processors are
equipped with a 64 KByte instruction/32 KByte data
L1 cache and a 1024 KBytes of L2 cache and run the
SLES9 (Linux) operating system.

5
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(a) LAPI (b) GM

Figure 5: Enabling address cache population in the standard XLUPC implementation of GET (changes shown in italics),
in (a)LAPI and (b)GM. The initiating process sends an Active Message that triggers the execution of a header handler on the
passive target. The header handler performs address translation and memory registration. The reply sent back to initiator process
contains requested user’s data plus the address. GM requires different protocols for different message sizes.

The MareNostrum’s interconnection network is
Myrinet with a 3-level crossbar, resulting in 3 different
route lengths (1 hop, when two nodes are connected to
the same crossbar aka. linecard, and 3 hops or 5 hops
depending on the number of intervening linecards). As
mentioned before, we implemented the XLUPC runtime
transport on top of the Myrinet/GM messaging library.

4.2. Evaluation environment: Power5 cluster

The second machine we performed our experiments
on is a 28-node cluster of Power5 servers. Each node is
with 16 GBytes of RAM and 8 2-way SMT Power5
cores running at 1.9 GHz. The nodes are connected
with an IBM High-Performance Switch (HPS). The
operating system is AIX 5.3; we used the LAPI library
provided as part of the Parallel Operating Environment
on the system as the basis for the XLUPC transport
implementation.

4.3. Microbenchmarks

Our first set of experiments sought to quantify the
maximum benefit obtainable by the address cache. We
wrote and executed microbenchmarks to compare GET
roundtrip latencies and PUT overheads of the XLUPC
runtime with and without cache operation.

Figure 6 shows the relative gains (i.e. execution time
reduction) caused by deploying the address cache

for PUT and GET on both LAPI and Myrinet/GM
transports. We see three distinct modes on all platforms.

• For very small messages (up to 1 KByte in size)
the gains in GET roundtrip latency (left panel of
Figure 6) are in 30% and 16% range respectively
for GM and LAPI. This is the optimization that we
had been targeting.

• For medium message size range messages
(1 KByte to 16 KByte) there are even larger gains
(around 40%). This is likely due to the rising
cost of memory copies in the non-cached case.
The gain is more visible on LAPI, fadding out
at 2 MByte, than on Myrinet because the rated
bandwidth of the HPS switch is 8x that of Myrinet.
Roundtrip latencies of both networks are in the
4-8 microsecond range. Thus, a fixed amount of
overhead reduction (of the order of the roundtrip
latency) affects the HPS switch for much higher
message sizes than Myrinet.

• As expected, differences between cached and un-
cached behavior diminish as message size in-
creases and communication becomes bandwidth
dominated instead of overhead dominated.

With PUT messages (right panel of Figure 6), in
GM we do not see any benefit of using the address
cache for small message transfers, up to 2 KBytes.
PUT execution time is not significantly affected by ad-
dress translation overheads, and the load on the remote
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Figure 6: Latency improvement by using the address cache in both platforms: LAPI(o) and GM (x) considering different
message sizes. The Y axis represents the performance benefit in terms of execution time reduction by using the address
cache, expressed in percentage ( 100(Z−W )

Z
, with Z being the average regular latency, and W being the average latency by

making use of the address cache. X axis shows the message size.

Latency comparision of xlupc_distr_get with and 
without the cache of svd addresses in GM  

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

message size (in bytes)

tim
e 

(in
 u

se
cs

)

without cache
with cache

Latency comparision of xlupc_distr_get with and 
without the cache of svd addresses in LAPI  

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

message size (in bytes)

tim
e 

(in
 u

se
cs

)

without cache
with cache

Figure 7: GET latency with and without the address cache in both platforms: GM and LAPI, considering short message
sizes. The Y axis represents the latency. The X axis is the message size.

CPU is not measured on this microbenchmark.

The situation is different for LAPI, where we see a
net decrease in performance of up to 200% by using
the address cache. The cause of this performance
decrease is the IBM switching hardware, which offers
excellent throughput in RDMA mode, at the cost of
higher latency. In a GET operation the higher latency
is offset by the fact that the remote node’s CPU time
is not part of the roundtrip time; in the case of PUT
the remote CPU’s operation is overlapped with the
next send. Following these results, we disabled the
address cache for the PUT operations in LAPI.

Figure 7 shows another view of the GET roundtrip
latency data: the absolute latencies in microseconds for
small message GET operations with and without address
caching on both our test platforms.

4.4. DIS Stressmark Suite

We have implemented a subset of the DIS Stressmark
Suite [2] and ran it with and without address caching.
DIS benchmarks have been chosen over e.g. the NAS
benchmarks because they recreate the access patterns
of data-intensive real applications, whereas most NAS
benchmarks are compute- rather than data-intensive.
Four of the benchmarks have been implemented and
evaluated (Figure 9):

• The Pointer Stressmark is repeatedly following
pointers (hops) to randomized locations in memory
until a condition becomes true. The entire process
is performed multiple times. Each UPC thread
runs the test separately with different starting and
ending positions on the same shared array.

• The Update Stressmark is a pointer-hopping
benchmark similar to the Pointer Stressmark. The
major difference is that in this code more than one
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remote memory location is read - and one remote
location is updated - in each hop. All this is done
by UPC thread 0, while the other threads idle in a
barrier. This benchmark is designed to measure the
overhead of remote accesses to multiple threads.

• The Neighborhood Stressmark is a stencil code
prototype. It deals with data that is organized in
multiple dimensions. It requires memory accesses
to pairs of pixels with specific spatial relation-
ships.Computation is performed in parallel based
on the locality of the shared array. The two-
dimensional pixel matrix is block-distributed in a
row major fashion. Accesses are local or remote
depending on stencil distances and pixel positions.

• The Field Stressmark emphasizes regular access
to large quantities of data. It searches an array
of random words for token strings, that delimit
the sample sets, from which simple statistics are
collected. The delimiters themselves are updated in
memory. When all instances of a token are found
and statistics computed, the process is repeated
with a different token.
The string array is blocked in memory (i.e. with a
block size of d N

THREADS e, with N being the array
size). Because the array is updated in every run,
the outermost loop (which iterates over multiple
tokens) cannot be parallelized. Parallelization is
done instead in the inner loop, where each UPC
thread searches the local portion of the data string
for tokens. Because a token may span the boundary
of two segments affine to different threads, the
threads must overlap their search spaces by at least
the width of a token to guarantee that all tokens
are found.
Since token lengths are typically much smaller than
the string array’s blocking factor, most accesses in
the algorithm are local.

4.5. Cache size considerations

Cache size is an important metric that may affect
overall application performance. The space needed by
the address cache depends on both the number of
shared variables declared by the UPC application and
the communication pattern in the running application.
Most UPC applications (with a few notable exceptions)
declare a relatively small number of shared variables
and have static and well defined communication patterns
that result in insignificantly small caches even on large
machines.

Our selected subset of benchmarks covers both types
of applications. Field and Neighborhood follow the well
defined communication patterns of typical UPC appli-
cations. As it is shown for Neighborhood in figure 8

(b), it results in insignificantly small caches, only a few
cache entries are used and the hit ratio keeps constant
as we scale. Whereas Pointer and Update belong to
the group of rare UPC applications that unpredictably
access remote memory locations along the whole shared
memory space, which results in address caches that
grow with the number of nodes. Figure 8 (a) shows for
Pointer hit ratio degradation as we scale, with a prompt
starting point as cache size is reduced. For this kind of
applications we have a compromise between memory
usage and speedup.

The Address Cache is currently implemented as a
dynamic hash table. Its size is allowed to increase on
demand to a fixed limit of 100 entries. The next section
shows a considerably performance improvement, even
for applications following an unpredictable communi-
cation pattern.

Concerning the Pinned Address Table, its appropriate
size depends exclusively on the number of shared vari-
ables. It is our experience that in most UPC programs
(i.e. the NAS benchmarks, the HPC Challenge bench-
marks, a suite of NSA benchmarks and others) the num-
ber of shared variables is relatively small. Shared vari-
ables enhance productivity but decrease performance;
most good UPC programs therefore limit their number.
Our experiments show that a table of 10 entries is more
than enough for well defined UPC applications.

4.6. Stressmark evaluation on MareNostrum

We evaluated the 4 Stressmarks on a 512 blade subset
of the MareNostrum computer, with 4 UPC threads
running on each blade. A representative subset of our
experiments is shown in Figure 9.

Since UPC threads running in the same blade share
memory, remote communication between these threads
does not involve the network hardware. This can affect
measured performance improvements, since no benefit
from the address cache can be expected when the
network hardware is not in use.

The Pointer Stressmark shows good performance,
between 30% and 60% improvement depending on the
total number of remote accesses in the benchmark.
The performance of the Pointer Stressmark is gated by
network latencies and overheads; any reduction in these
results in performance gains. In hybrid execution mode
the network device is shared by all UPC threads running
on a blade; the improvement caused by smaller CPU
overheads was augmented by smaller network device
overheads; with four threads competing for the same
network device any improvement in network device
access time is magnified fourfold. Since in cached mode
the DMA is doing the work of data transfer, the four
threads spend much less time queueing up for access to

8
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Figure 8: Address Cache Size Evaluation using DIS Stressmark Suite. The vertical axes show the percentage of hits on the
Address Cache. The horizontal axes of the graphs show the threads and nodes used. Each line represents a different cache
configuration in terms of cache size. Results are shown considering a random thread.
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Figure 9: Address Cache Evaluation on GM (a) and LAPI (b) using DIS Stressmark Suite The vertical axes show performance
improvement when using the remote address cache: 100(Z−W )

Z
, where Z and W are the regular and address-cache-enabled

runtimes respectively. The horizontal axes of the graphs show the threads and nodes used.

the network device. This effect could not be appreciated
in the microbenchmark because it ran on 1 active thread
in each node.

The Update Stressmark shows a 11% to 22% per-
formance improvement when the address cache is
enabled, which corresponds to the performance mea-
sured by the PUT and GET microbenchmarks. We
do not see performance improvement caused by two
threads per node, because only thread 0 initiates com-
munication.

The Neighborhood Stressmark shows 10% to 20%
improvement. The stencil used in this experiment (with
a stencil distance of 10) causes about 3

16 of memory
accesses to be potentially remote, depending on the
number of nodes, therefore the improvement is mostly

along the lines we expected based on the microbench-
mark.

The Field Stressmark shows a 35% to 40% per-
formance improvement. We analyzed the behavior of
this benchmark using the Paraver performance analysis
toolkit [3]. The trace showed that the remote GET and
PUT access times at the “overhangs” were abnormally
large when address cache was not in use. As a
reminder, each thread in the benchmark scans the local
portion of a distributed array. The scan extends into
“overhangs” that belong to the two neighboring threads.
With normal XLUPC runtime operation the remote
node’s CPU is part of every remote access; but the
Myrinet/GM transport does not overlap communication
and computation. While a CPU is busy with the local
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portion of its array the network does not make progress,
and other CPUs requesting data are forced into long
waits.

By contrast, when the address cache is in use, RDMA
operations are used for remote accesses. These require
no cooperation from the remote node’s CPU; therefore
remote access wait times decrease significantly, and
performance improves.

4.7. Stressmark evaluation on Power5 cluster

We have also run the four Stressmarks on the P5
cluster. We chose several thread/node configurations.
Figure 9 (b) shows the results with up to 448 UPC
threads.

The Pointer Stressmark, Update Stressmark and
Neighborhood Stressmark, show results comparable to
the measurements on MareNostrum.

The behavior of the Field Stressmark on the LAPI
transport is markedly different from the GM measure-
ment. LAPI allows overlap of computation and com-
munication, therefore wait times for PUT and GET
operations on remote arrays are not excessive even
without address cache operation. Since the ratio
of remote and local operations is relatively low in this
benchmark, the effects of the address cache are
not measurable.

5. Related Work

Previously existing UPC implementations, such as the
Berkeley UPC compiler [5] or MuPC[30] from Michi-
gan Technological University [18], map UPC threads
to O/S processes, and each thread maps the entire
memory space to the same virtual address, forcing
virtual addresses to be identical on all threads. This
solution results in memory fragmentation (especially
when individual threads allocate memory). The XLUPC
runtime system prevents this problem by means of the
SVD, which allows virtual addresses to be different on
each node and allowing UPC threads to be mapped to
Pthreads that share memory directly.

Another problem affected by shared variable directo-
ries and remote address caching is the handling of mem-
ory registration costs on pinning-based networks like
Myrinet [19], VIA or Infiniband [21]. MPI implementa-
tions like OpenMPI [22] and MVAPICH [27] as well as
one-sided messaging systems like ARMCI [20] follow
a differential approach based on message size, switch-
ing between preallocated registered memory buffers
(Bounce Buffers) for short messages and dynamic mem-
ory registration and de-registration as part of each data
transfer (Rendezvous) for large ones. The crossover

point between the protocols is dependent on the under-
lying network hardware and software, requiring tuning
for each machine.

Since on Myrinet/GM the de-registration cost is the
most expensive, most existing Myrinet/GM communica-
tion layers, including Myricom’s own MPICH-GM [19],
use Rendezvous and omit the de-registration step.

Another solution to handling memory registration
costs is the Pin-Down cacheused in PM [25] and
Sockets-GM [19]. The idea of a cache has also been
used in UPC for remote data [29].

Berkeley UPC’s strategy for on-demand registration
of shared memory regions, called Firehose [4], dis-
tributes the largest amount of memory that can be
registered among all nodes. Every node keeps track both
of remote regions in other nodes it is using and its own
areas used by other nodes.

The Shared Variable Directory concept and remote
addresses caching could potentially be applied to every
shared-memory programming model that wants to run
on a distributed memory system (e.g. OpenMP on a
Software Distributed Shared Memory system). Several
combinations of OpenMP runtime plus SDSM sys-
tems have been implemented [12]. The most significant
ones are the OpenMP translator developed by Hu et
al. [13] on top of Treadmarks [17], OpenMP on the
SCASH system [11], and ParADE [16]. There is also
NanosDSM [9] which uses sequential-semantic memory
consistency.

6. Conclusions and future work

In this paper, we have shown how the IBM XLUPC
compiler and runtime system provide a scalable design
through the use of the Shared Variable Directory (SVD).
We have addressed the potential performance problem
encountered by short remote memory accesses that need
to be dereferenced in the SVD. We have presented a
mechanism to cache remote addresses that reduces the
SVD access overhead and allows the exploitation of
RDMA operations in the network hardware for very
short messages, improving latency and scalability.

We have evaluated our proposed optimization on two
different platforms: the MareNostrum supercomputer
and a Power5 cluster of SMPs, using microbenchmarks
and four benchmarks of the DIS Stressmark Suite. Our
results demonstrate an average reduction in execution
time of up to 40% and 30% respectively on the two
architectures. The overhead of unsuccessful attempts
to cache remote addresses is relatively small, typically
1.5% and never worse than 2%.

In the future, we plan to extend the range of our
scalability experiments to confirm that the performance
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benefits we measured on relatively small machine con-
figurations continue into the range of tens of thousands
of processors and measure the benefits of the address
cache on applications as opposed to benchmarks.
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