
An Upload Bandwidth Threshold

for Peer-to-Peer Video-on-Demand Scalability ∗

Yacine Boufkhad

Paris Diderot University, LIAFA, France.

boufkhad@liafa.jussieu.fr

Fabien Mathieu

Orange Labs, Issy-les-Moulineaux, France.

fabien.mathieu@orange-ftgroup.com

Fabien de Montgolfier

Paris Diderot University, LIAFA, France.

fm@liafa.jussieu.fr

Diego Perino

Orange Labs, Issy-les-Moulineaux, France.

diego.perino@orange-ftgroup.com

Laurent Viennot

INRIA Project-Team “GANG” between INRIA and LIAFA, France.

laurent.viennot@inria.fr

Abstract

We consider the fully distributed Video-on-Demand

problem, where n nodes called boxes store a large set of

videos and collaborate to serve simultaneously n videos

or less between them. It is said to be scalable when Ω(n)
videos can be distributively stored under the condition that

any sequence of demands for these videos can always be

satisfied. Our main result consists in establishing a thresh-

old on the average upload bandwidth of a box, above which

the system becomes scalable. We are thus interested in the

normalized upload capacity u = upload bandwidth
video bitrate of a box.

The number m of distinct videos stored in the system is

called its catalog size.

We show an upload capacity threshold of 1 for scala-

bility in a homogeneous system, where all boxes have the

same upload capacity. More precisely, a system with u < 1
has constant catalog size m = O(1) (every box must store

some data of every video). On the other hand, for u > 1,

an homogeneous system where all boxes have same upload

capacity at least u admits a static allocation of m = Ω(n)
videos into the boxes such that any adversarial sequence of

video demands can be satisfied. Moreover, such an alloca-

tion can be obtained randomly with high probability. This

result is generalized to a system of boxes that have heteroge-

neous upload capacities under some balancing conditions.

∗Research supported by CRC “MARDI II” INRIA – Orange Labs and

by ANR project “ALADDIN”.

1. Introduction

The quest for scalability has yielded a tremendous

amount of work in the field of distributed systems in the

last decade. One of its most recent developments is the

peer-to-peer model, where small capacity entities collabo-

rate to form a system whose overall capacity grows propor-

tionally to its size. In this paper, we address the specific

problem of fully distributed video-on-demand: it consists

in using a set of n entities, called boxes, with storage and

networking capabilities. These boxes are used to manage

a catalog of videos and to play them. When the user of a

box demands a video, the playback of the video should be-

gin after a short start-up delay, even though the video may

be stored on other boxes. We want the system to be doubly

scalable, with respect to the requests and catalog size. The

request scalability means that the systems must be able to

handle up to n simultaneous requests. The catalog scalabil-

ity means that the catalog size (i.e. the number of distinct

videos stored) must be Ω(n). Since the average storage ca-

pacity of a box is considered to be constant, this is the best

that can be achieved.

This fully distributed problem that is considered here is

mainly motivated by the existence of set-top boxes placed

directly in user homes by Internet service providers. As

these boxes may combine both storage and networking ca-

pacities, and are usually always powered on, they become

an interesting target for building a low cost distributed

video-on-demand system that would be an alternative to

more centralized systems. In such a setting, one may ex-

pect that boxes are homogeneous (i.e. have identical capaci-

ties). However, we can extend our results when considering

1

heterogeneous capacities. The model that we propose en-

compasses then various architectures such as a peer-assisted

server or a distributed server serving purely client boxes (i.e.

with no upload capacity).

Historically, first peer-to-peer systems were devoted to

collaborative storage (see, e.g., [9, 10, 19]). The academic

community has then proposed numerous distributed solu-

tions to index the contents stored in a such a system. Most

prominently, one can mention the numerous distributed

hash table proposals (see, e.g., [16, 18, 20, 21]). Extreme

attention has also been paid to content distribution. There

now exists efficient schemes for single file distribution, Bit-

Torrent being one of the most established [7]. However,

those schemes cannot be directly used for content stream-

ing since the file is downloaded in random order, incurring a

very long start-up delay [17]. Several proposals were made

to cooperatively distribute a live stream of data (see, e.g.,

[4, 8, 11, 15, 23, 24]). The main difficulty is then to ob-

tain low delays and a balanced forwarding load. Note that

live streaming solutions cannot be used either for video on

demand since live streaming users play the same portion of

the stream, while viewers of a video may play various parts

of the video stream.

More recently, the problem of collaborative video-on-

demand streaming has been addressed. The main stream of

work deals with peer-assisted video-on-demand, where the

system relies on a server (or a server farm) for storing the

whole catalog. The main problem investigated concerns the

collaborative distribution of a single video [2, 6, 5, 11, 14,

12, 13, 17]. The population of users interested in the same

data is often called a swarm, and the process of exchang-

ing data between them is called swarming. All these solu-

tions thus mainly concern swarming and rely on a server for

sourcing, i.e. for distributing newly requested data. How-

ever, in a fully distributed system, the boxes themselves are

used as sources and a compromise must be found between

sourcing and swarming in bandwidth utilization.

1.1. Model

The upload bandwidth of a box is the data transfer rate

from this box to the others. It is generally assumed to be

the main network bottleneck, so we consider that download

bandwidth is not limited in our model. This assumption is

especially true for DSLs connections, which have a band-

width ratio of at least 4 to 1 of download to upload. Let u
denote the average upload bandwidth. We assume that all

videos have the same average stream rate, which we nor-

malize to 1, so u = 1 corresponds to an upload capacity

equal to the video stream rate.

For convenience, we consider a discrete round-based

model, where the time unit is the time necessary for a box to

establish a connection and start data transfer. New requests

may arrive within any round, and boxes may establish new

connections in the following rounds. The start-up delay

is the maximum number of rounds elapsed between arrival

and the beginning of the playback of the video. A constant

number of rounds only is allowed so that start-up delay re-

mains constant. Furthermore, we suppose that the number

of requests for a given video increases at most exponentially

with time: if f(t) denotes the size of a swarm, i.e. the pop-

ulation of boxes viewing the same video, then we assume

f(t + i) ≤
⌈

max {f(t), 1}µi
⌉

for some µ > 1. We call µ
the maximal swarm growth: the size of a swarm increases

by a factor at most µ at each time round.

We assume that all videos have same duration T , which

is a reasonable approximation if the videos are feature-

length films. Therefore all videos have the same size. We

suppose that the average storage capacity of a box is d
videos. In addition to this storage space dedicated to the

catalog, a box stores the video it is playing, as data arrives,

in a cache called playback cache. More precisely, this cache

contains all the data most recently viewed up to a video file

size. If a box plays videos one after another, the cache then

contains the end of the previous video and the beginning of

the current one.

To allow the download of a video from multiple sources,

we assume that each video is encoded into c different

streams called stripes, whose combination gives the initial

stream. For scalability reasons, c is assumed to be very low,

i.e. constant or poly-logarithmic. A simple encoding into

c equal rate stripes consists in splitting the video file into

packets. Stripe i is then made of the packets with number

equal to i modulo c. When the upload capacity ub of box b
is not a multiple of 1

c , it can only upload ⌊ubc⌋ stripes.

Finally, we call (n, u, d)-video system a set of n collab-

orating boxes with average upload capacity u and average

storage capacity d. Such a system is homogeneous if all

boxes have same upload capacity and same storage capac-

ity, i.e. for all b, ub = u and db = d. It is proportionally

heterogeneous if ub

db
= u

d for every box b. We say that an

(n, u, d)-video system achieves catalog size m if it is pos-

sible to store m distinct videos on the boxes so that any se-

quence of requests of at most one video per box can be sat-

isfied as long as the maximal swarm growth µ is respected.

An allocation is the process of storing stripe replicas into

boxes statically. (The only data that changes frequently in

a box is the data stored in its cache). We define the mini-

mal chunk size ℓ as the minimal amount of data of a given

video stored in a box. When splitting videos into c stripes,

we get ℓ = 1
c . The scalability condition for c translates

into ℓ = Ω(1), i.e. a video cannot be split into infinitely

small pieces as n increases. (All parameters of the model

are summarized in Table 1).

n Number of boxes in the system.

m Number of distinct videos stored in the system (catalog size).

db Storage capacity of box b (in number of videos).

d Average storage capacity of boxes.

k Number of duplicates copies of a video with random allocation (k ≈ dn/m)

ub Upload capacity of box b (in number of full video streams).

u Average upload capacity of boxes.

c Number of stripes per video (a video can be viewed by downloading its c stripes simultaneously).

µ Swarm growth bound: if a swarm has size p at round t, its size is less than µp at round t + 1.

ℓ Minimal chunk size: a box stores at least ℓ of a given video (ℓ = 1/c when storing complete stripes).

Table 1. Key parameters

1.2. Related work

It has been proposed that boxes cache the last videos

they have played [1, 13, 14]. However, these solutions still

assume that a centralized server stores the whole catalog.

Such solutions do not tackle the problem of competition be-

tween sourcing and swarming that we encounter in a fully

distributed system.

To the best of our knowledge, Suh et al. [22] made the

first attempt to investigate the possibility of a server-free

video-on-demand architecture. The primary copies of the

catalog are replicated on set-top boxes that are used for

video-on-demand. However, the focus is mainly on sourc-

ing: the videos are sufficiently replicated so that all requests

are satisfied through these original copies. Additionally,

the scalability of the catalog is not investigated at all. In-

deed, the system is tailored for boxes with upload band-

width lower than playback rate and a constant catalog size

(each box stores a constant portion of each video).

Following this seminal work, we studied in a preliminary

work [3] the conditions for catalog scalability under the

assumption that requests concern pairwise distinct videos

and that the system is homogeneous. The focus is thus

still on sourcing. A distributed video-on-demand system

is sketched relying on existing single video distribution al-

gorithm for handling multiply requested videos. Sourcing

and swarming are thus treated separately and the resulting

bound misses the interplay between the two competing al-

gorithms.

1.3. Our results

In this work, we address the full problem when mixing

both sourcing and swarming and exhibit a tight threshold.

Additionally, we consider heterogeneous systems where

boxes may have different capacities one from another.

First note that u ≥ 1 is a natural requirement if all boxes

may play videos at the same time. Suppose u < 1. As

minimal chunk size is ℓ, each box b stores data of at most
db

ℓ videos. Set dmax = maxb{db}. If m > dmax

ℓ , then for

each box b, there always exists a video v not possessed by

b, i.e. b stores no data at all from v. Consider a sequence

of requests where each box always plays a video it does

not possess. The aggregated download rate then becomes

n whereas the aggregated upload rate is un < n which is

not sufficient. As a consequence we must have m ≤ dmax

ℓ .

Catalog size is thus constant as long as dmax = O(1) and

ℓ = Ω(1).

In contrast, our main result states that it is indeed possi-

ble to have a linear catalog size as soon as u > 1. In de-

tails, we propose in Section 2.1 a random video allocation

scheme where each video is split into c stripes of rate 1
c .

Each stripe is replicated a constant number k = O(logu d′)
of times where d′ = max {d, u, exp(1)}. Replicas and

stored statically on randomly chosen boxes, yielding a cat-

alog size of dn
k . We show that in the case of a homoge-

neous system the graph linking each stripe to the boxes

storing it at a given time has some expander property with

high probability. A min-cut max-flow argument is then

used in Sections 2.2 and 2.3 to prove that any sequence

of demands can always be satisfied as long as u > 1.

Theorem 1 in Section 3 formally states that catalog size

Ω
(

(u−1)2 log u+1

2

u3

1
µ2

dn
log d′

)

(linear in n since µ, d′ and u are

constant) can be achieved under these conditions. Finally,

the result is generalized to the case of a heterogeneous sys-

tem in Section 4. A solution is proposed to overcome the

difficulty caused by the boxes having upload less than 1. It

consists in relaying the demands of these boxes through the

boxes having enough upload bandwidth.

Our approach consists in applying together maximum

flow arguments and the probabilist method to show that a

valid allocation of videos can be found with high probabil-

ity. For that purpose we have to show that all the graphs

of “who give what” encountered in the infinite sequence

of requests have some expander property. This is possible

through the combination of algorithmic arguments concern-

ing restrictions on how requests are made and probabilistic

arguments on how videos are allocated. This result does not

yield directly a practical distributed algorithm. However, it

shows that scalable video on demand is theoretically feasi-

ble for u > 1. Moreover the preloading scheme we propose

mimics in some manner a classical peer-to-peer balancing

strategies such as encountered in Splitstream [4] or in Bit-

Torrent [7]: nodes first download pairwise distinct chunks

of data so that they can exchange their chunks afterwards.

(In our setting, a chunk corresponds to one time round of a

stripe). Our analysis could give new insights in such con-

texts.

2. Preliminaries

We now present the basic requirements for achieving a

given sequence of requests by considering the graph link-

ing each request to the boxes that possess the corresponding

data. We first briefly present how videos can be randomly

placed in the system when using c stripes of rate 1
c per video

and k replicas per stripe.

2.1. Random allocation

Random allocation consists in storing k ≥ 1 replicas of

each stripe into k boxes chosen randomly, either indepen-

dently or according to a random permutation. For the sake

of simplicity, we assume that k = dn/m is an integer. A

random independent allocation consists in selecting inde-

pendently for each stripe replica a box with probability pro-

portional to its storage capacity. (The process is stopped as

soon as a replica falls in a completely filled-up box). Alter-

natively, a random permutation allocation consists in copy-

ing each stripe into k boxes such that each box contains

exactly dc stripe replicas. We model this through a random

permutation π of the kmc = dnc stripe replicas into the

dnc storage slots of the n boxes together: replica i is stored

in slot π(i) (the d1c first slots fall into the first box, the d2c
next slots into the second box, and so on). The highest cat-

alog size is obtained for the smallest possible value of k.

We call random allocation the process consisting in en-

coding each video into c stripes and storing k replicas of

each stripes randomly on boxes, either according to a ran-

dom permutation, or a random independent allocation.

2.2. Connection matching

We model the problem of finding connections for down-

loading the video stripes at a given time as a maximum

flow problem. We suppose that mc distinct stripes are

stored in the system according to a random allocation as

described above. Let W denote the set of boxes and con-

sider the set Y of requested stripes at time t. We can write

Y = {(s1, t1, b1), . . . , (sp, tp, bp)} with p ≤ nc, where

(si, ti, bi) corresponds to a request for stripe si made by

box bi at time ti ≤ t. We let S(Y) = {s1, . . . , sp} de-

note the multiset of all requested stripes (some stripes may

be requested multiple times). A connection matching is a

matching of requests against boxes possessing the necessary

video data so that each box b has degree at most ubc. Wiring

connections according to such a matching allows to satisfy

requests at round t + 1 as each stripe has rate 1
c . Finding

such a connection matching is modeled as a maximal flow

computation in the following bipartite graph.

We define G as the bipartite graph from Y to W where

each request x is linked to each box possessing data neces-

sary for x at t+1. More precisely, each x = (si, ti, bi) ∈ Y
corresponds to a request for stripe si made at time ti. It thus

requires data at position t − ti in the stripe. In addition to

boxes storing the stripe according to the random allocation,

this data is also possessed by the boxes b that have requested

(sj , tj , bj) with sj = si, bj = b and t − T ≤ tj < ti since

each box caches the last video data played in a time win-

dow of length T . (We assume that the system has fulfilled

all requests up to time t). A connection matching is indeed

a subset of links C ⊆ E(G) inducing a sub-graph where

each stripe request has degree 1 and each box b has degree

at most ubc.

2.3. Maximum flow feasibility

We can characterize the existence of a connection match-

ing as follows. Let B(x) denote the neighbors of a request

x ∈ Y in G, i.e. the set of boxes possessing data for x at

time t. More generally, for a subset X ⊆ Y of requests,

let B(X) = ∪x∈XB(x) denote the set of boxes possessing

data for any request x ∈ X . For a set E ⊆ W of boxes,

let UE =
∑

b∈E ub denote its overall capacity. We can then

state the following lemma (which is a simple generalisation

of Hall’s theorem).

Lemma 1 (Min-cut max-flow) A connection matching for

satisfying requests at the next time round exists iff for all

X ⊆ Y , UB(X) ≥
|X|
c where UB(X) =

∑

b∈B(X) ub.

In the homogeneous case, this states that G must be a
1
uc -expander, i.e. for all X ⊆ Y , |B(X)| ≥ 1

uc |X|.
Proof. The condition is clearly necessary as the sum of the

degrees of the boxes in B(X) in a connection matching

is at least |X|, and the overall upload capacity of B(X)

must be at least
|X|
c . On the other hand, consider the flow

network obtained by adding a source node a and a sink

node z as follows. An edge with capacity ub is added from

a to each box node b ∈ W . An edge of capacity 1
c is added

from each box b to each request x ∈ Y such that b ∈ B(x).
An edge with capacity 1

c is added from each request in Y
to z. Considering the cut A = {a} ∪ W ∪ Y , Z = {z}, we

see that the maximal flow is at most
|Y |
c . We show that it

is indeed equal to this value, i.e. there exists a connection

matching. Consider a cut A,Z with a ∈ A and z ∈ Z.

Let X ⊆ Z denote the set of all request nodes x such that

x ∈ Z and B(x) ∩ A = ∅ and assume UB(X) ≥ |X|
c . For

all request x ∈ A, edge xz crosses the cut. For all request

x ∈ Z \ X , there exist b ∈ B(x) ∩ A and edge bx crosses

the cut. For each box b ∈ B(X), edge ab crosses the cut

and its weight is ub. The capacity of the cut is thus at

least
|Y −X|

c +
∑

b∈B(X) ub ≥ |Y |
c . The classical min-cut

max-flow theorem allows to conclude. �

We call request obstruction a subset X of requests such

that UB(X) < |X|
c . We are indeed interested in the multiset

M(X) of stripes requested in X . We extend this notion to

any multiset of stripes: we call obstruction a multiset σ of

stripes such that there exists a sequence of video demands

that has been satisfied up to time t and where a subset X of

requests at time t satisfies M(X) = σ and UB(X) < |X|
c .

Clearly, Lemma 1 implies that any sequence of demands

can always be satisfied iff there exists no obstruction.

We can then bound the probability that a given random

allocation can be defeated as follows. We denote by Nk

the random variable defined as the number of obstructions

(among all possible subsets of at most nc stripes) in a per-

mutation allocation chosen uniformly at random from the

set Ak of all possible random allocations for a given k (and

a given type of allocation: permutation or independent). Let

O be the set of multisets of stripes with cardinality at most

nc. For some allocation a and a multiset of stripes σ, we

denote by I(a, σ) the indicator variable that is equal to 1 if

σ is an obstruction and 0 otherwise. Using the first moment

method, we can bound P (Nk > 0) (the probability that a

random allocation admits at least one obstruction):

P (Nk > 0) ≤ E(Nk)

=

∑

a∈Ak

∑

σ∈O I(a, σ)

|Ak|

=
∑

σ∈O

∑

a∈Ak
I(a, σ)

|Ak|
=

∑

σ∈O

P (σ) (1)

where P (σ) is the probability for some multiset of

stripes σ to be an obstruction in a randomly chosen alloca-

tion. As we shall see, for sufficiently high values of u and k,

the expectation of the number of obstructions is bounded by

O
(

1
nλ

)

for some positive λ and then with high probability

the number of obstructions in a randomly chosen allocation

is zero.

3. Homogeneous Video Systems

We can now state our main theorem in the homogeneous

case. We extend it to the proportionally heterogeneous case

in the next section.

Theorem 1 Given u > 1, consider a homogeneous

(n, u, d)-video system. With high probability, a ran-

dom permutation allocation with c > 2µ2−1
u−1 and k ≥

5ν−1 log d′

log u′
for ν = 1

c+2µ2−1 − 1
uc , u′ = 1

c ⌊uc⌋ and

d′ = max {d, u, exp(1)} allows to successfully satisfy

any sequence of requests with maximal swarm growth µ.

As a consequence, the system can achieve catalog size

Ω
(

(u−1)2 log u+1

2

u3

1
µ2

dn
log d′

)

.

The result holds also for a random independent allo-

cation with same bounds for c and k (in both cases, we

rely on the bound given in Lemma 3 below). However,

in the random independent case, box storage loads may

be unbalanced. To avoid to exceed the capacity of any

box with high probability, we have to additionally require

c = Ω(log n). For large n, we have u′ ≥ u
2 , ν−1 ∼ uc

u−1

and k = O
(

u
u−1

log d′

log u
2

log n
)

is then sufficient to obtain

catalog size Ω
(

(u−1) log u
2

u
d

log d′

n
log n

)

.

Relying on Section 2, we use a scheme where boxes store

and upload full stripes. We assume in the sequel a choice

of c satisfying c > 2µ2−1
u−1 , or equivalently u > 1 + 2µ2−1

c .

As a box can upload only ⌊uc⌋ stripes, its effective upload

capacity is u′ = ⌊uc⌋
c ≥ u − 1

c > 1 + 2(µ2−1)
c . The proof

mainly relies on two arguments. First, a request strategy is

proposed to cope with highly demanded videos. Second, a

randomized argument bounds the probability that a request

for various videos cannot be satisfied by the boxes storing

them according to the random allocation scheme.

Indeed, we use the following preloading strategy for re-

questing stripes. Consider a box b where the user demands

a video v during the interval [t− 1, t[. A preloading request

(s, t, b) for one stripe s of v is first issued at time t. Then

c − 1 postponed requests are made for the c − 1 remaining

stripes of v at time t + 1. The start-up delay for playing

a video is thus 3 time rounds. (Note that the downloading

of a video now lasts during one more round time. For the

sake of simplicity, we assume that this additional time round

is counted in the duration T). By convention, we say that

the box enters the swarm of v at time t (when it begins to

download some data). To balance preloading requests, we

use a counter for each video v to give successive numbers to

boxes entering the swarm of v. The pth box then preloads

stripe number p modulo c so that all stripes of a video are

equally preloaded. We will see that this strategy allows to

manage a large swarm growth µ as long as the number of

stripes is sufficiently large (c > 2µ2−1
u−1).

On the other hand, we rely on Equation 1 that consists

in bounding P (σ) for every multiset σ of size at most nc.

We obtain an upper bound of P (σ) that depends only on the

number of stripes in σ and the number of pairwise distinct

stripes among them. For that purpose, we estimate the num-

ber of boxes that can serve the requests made during a time

interval [t − T, t] thanks to the following lemma.

Lemma 2 At time t, consider any subset X of stripe re-

quests made in [t − T, t]. Let i = |X| denote the size of

X and let i1 denote the number of pairwise distinct stripes

requested in X . Then the set B(X) of boxes that can serve

requests in X satisfies |B(X)| ≥ i−(c+2µ2−1)i1
c+2(µ2−1) .

Proof. We consider the requests in X video by video. Sup-

pose that some video v has some stripes requested in X .

Let X(v) ⊆ X denote the requests for stripes of v. Let

i(v) denote the number of requests in X(v) and i1(v) de-

note the number of distinct stripes requested in X(v). (We

thus have i =
∑

v i(v) and i1 =
∑

v i1(v)). Let tv de-

note the latest time a request of X(v) was made. We define

Xpre
t′ (v) (resp. Xpost

t′ (v)) as the preloading (resp. post-

poned) requests in X(v) made at some time t′. We mainly

consider Xpre
tv−1(v), Xpost

tv
(v), and Xpre

tv
(v). On the other

hand, the definition of tv implies Xpost
tv

(v) ∪ Xpre
tv

(v) 6= ∅.

Let X ′(v) = X(v)−Xpre
tv−1(v)−Xpost

tv
(v)−Xpre

tv
(v) de-

note the remaining requests in X(v).
Let x0(v), x1(v) and x2(v) the number of boxes that

have entered the swarm of v before tv−1, at tv−1 and at tv
respectively. To derive a lower bound on |B(Xtv

(v)post ∪
Xpre

tv
(v))|, we estimate separately the contribution to this

bound of boxes that entered the swarm at time tv − 1 and

before tv − 1.

Note that our preloading strategy implies that requests

in Xpre
tv−1(v) ∪ Xpost

tv
(v) (resp. Xpre

tv
(v)) are made by

boxes that entered the swarm of v at tv − 1 (resp. tv).

As each box makes at most one preload request, we have

x1(v) ≥ |Xpre
tv−1(v)| and x2(v) ≥ |Xpre

tv
(v)|. Let i2(v) de-

note the number of distinct stripes requested in Xpost
tv

(v).

(We have i2(v) ≤ i1(v)). There are thus at least
|Xpost

tv
(v)|

i2(v)

boxes making these requests as a box requests a given stripe

only once. We thus have x1(v) ≥
|Xpost

tv
(v)|

i2(v) . Thanks to our

preloading strategy,
⌊

x1(v)
c

⌋

≥

⌊

|Xpost
tv

(v)|

c·i2(v)

⌋

≥
|Xpost

tv
(v)|

c·i2(v) −

1 boxes preload any stripe requested in Xpost
tv

(v). As

boxes preloading distinct stripes are distinct, we deduce

the contribution of boxes entering the swarm at tv − 1 (1):

|B(Xpost
tv

(v))| ≥ i2(v)

(

|Xpost
tv

(v)|

c·i2(v) − 1

)

≥
|Xpost

tv
(v)|

c −

i2(v) ≥
|Xpost

tv
(v)|

c − i1(v).
On the other hand, requests in Xpre

tv
can be served by

boxes that entered the swarm of v before tv−1. The number

x0(v) of such boxes is at least
|X′(v)|
i1(v) . This gives the follow-

ing bound (2): |B(Xpost
tv

(v) ∪ Xpre
tv

(v))| ≥ |X′(v)|
i1(v) . More-

over, the bound µ on swarm growth implies x0(v)+x1(v)+
x2(v) ≤

⌈

µ2x0(v)
⌉

≤ µ2x0(v) + 1. We thus get an other

bound (3): |B(Xpost
tv

∪Xpre
tv

)| ≥ x0(v) ≥ x1(v)+x2(v)−1
µ2−1 ≥

|Xpre
tv−1

|+|Xpre
tv

|−1

µ2−1 . Note that the boxes considered in (1) are

distinct from those considered in (2) and (3) since they en-

tered the swarm later. The boxes previously considered in

(1) and (2) are currently in the swarm of v. The boxes con-

sidered in (3) have entered the swarm of v at tv − T or af-

ter. (Note that they effectively still have the data at position

t − tv in their cache as tv − T + (t − tv) ≥ t − T .)

We can now consider all videos that are requested in

X . The set of boxes considered in bounds (1) and (2)

are disjoint since these boxes request distinct videos. The

boxes considered in bound (3) may concern at most two

videos as a box enters at most two swarms during a period

T (when one video is played after another). We thus get

the following lower bound: |B(X)| ≥
∑

v

|Xpost
tv

|

c −

i1(v) + max
{

|X′(v)|
i1(v) ,

|Xpre
tv−1

|+|Xpre
tv

|−1

2(µ2−1)

}

. Using

max(A,B) ≥ i1(v)A+2(µ2−1)B
i1(v)+2(µ2−1) for any A,B, we obtain:

|B(X)|≥
∑

v

|Xpost
tv

|

c −i1(v)+
|X′(v)|+|Xpre

tv−1
|+|Xpre

tv
|−1

i1(v)+2(µ2−1) . Us-

ing 1
c ≥ 1

c+2(µ2−1) and 1
i1(v)+2(µ2−1) ≥ 1

c+2(µ2−1) , we get:

|B(X)|≥
∑

v

|Xpost
tv

|

c+2(µ2−1)−i1(v)+
|X′(v)|+|Xpre

tv−1
|+|Xpre

tv
|−1

c+2(µ2−1) .

As i(v) = |X(v)| = |X ′(v)| + |Xpre
tv−1| + |Xpost

tv
|+

|Xpre
tv

|, we get |B(X)| ≥
∑

v
i(v)−(c+2(µ2−1))i1(v)−1

c+2(µ2−1) ≥
i−(c+2µ2−1)i1

c+2(µ2−1) . �

The following lemma bounds from above the probabil-

ity that a set of pairwise distinct stripes are allocated to the

same set of p boxes in a random permutation allocation. It

is also trivially satisfied if stripe replicas are placed accord-

ing to a random independent allocation rather than a random

permutation.

Lemma 3 Consider a random permutation allocation of

kmc = dnc stripe replicas into the dnc memory slots of

n boxes. The probability that ki given replicas fall into p

given boxes with dpc ≥ ki is less than
(

p
n

)ki
.

Proof. Drawing uniformly at random a permutation of the

kmc = dnc stripe replicas amounts to choose uniformly

at random a slot for the first replica, then a slot for the

second among the remaining slots and so on. The ki
replicas are ordered. Let Ea denotes the event that the

ath replica falls into one of the pdc slots of the p boxes.

P (∩a≤kiEa) = P (E1).P (E2|E1)...P (Ea|E1 ∩ E2... ∩

Ea−1)... = pdc
ndc . pdc−1

ndc−1 ... pdc−a+1
ndc−a+1 ... ≤

(

p
n

)ki
(since

pdc−i
ndc−i ≤

pdc
ndc for p ≤ n). �

We can now bound the probability that a multiset of at

most nc stripes is an obstruction.

Lemma 4 Let σ be a multiset of stripes of size i ≤ nc.

Let i1 be the number of pairwise distinct stripes in σ.

The probability P (σ) of σ to be an obstruction is at most

P (σ) ≤
(

u′nce
i

)i
(

i
u′cn

)ki1
. In addition, P (σ) = 0 when

i1 ≤ νi.

Note that the assumption on c implies uc > c+2µ2 − 1.

We thus have 0 < ν < 1 as ν = 1
c+2µ2−1 − 1

uc .

Proof. Consider a sequence of video demands where σ =
M(X) for some subset X of requests at time t. We then

consider two cases :

1. Either i1 ≤ iν, implying i − (c + 2µ2 − 1)i1 ≥

i c+2µ2−1
uc ≥ i (c+2µ2−1)−1

uc−1 as uc > c + 2µ2 − 1. As

a box uploads full stripes, its effective upload capacity

is u′ = 1
c ⌊uc⌋ ≥ 1

c (uc − 1). According to Lemma 2,

we thus have UB(X) ≥
i
c

(c+2µ2−1)−1
c+2(µ2−1) = i

c . X cannot

be an obstruction set in this case and then P (σ) = 0.

2. or i1 > νi. Any set E of boxes with UE ≤ i
c

satisfies |E| ≤ i
u′c and is included in some subset

of size
⌊

i
u′c

⌋

. The number of such sets is at most
(

n
⌊i/(u′c)⌋

)

≤
(

u′nc
i

)

. We use this very coarse bound

so that the lemma will remain valid in the heteroge-

neous case. By considering all such sets and using

Lemma 3 for the replicas of the i1 distinct stripes of

s, we obtain P (UB(X) < i
c) ≤

(

nu′c
i

)

(

i/(u′c)
n

)ki1
≤

(

u′nce
i

)i
(

i
u′nc

)ki1
. The last inequality is obtained by

using the standard upper bound of the binomial coeffi-

cient
(

b
a

)

≤
(

be
a

)a
.

�

Proof.[of Theorem 1] From Equation (1), and since the

probability that a multiset σ is an obstruction depends only

on i = |σ| the total number of stripes and i1 the number of

distinct ones, and using Lemma 4, one can write

P (Nk >0)≤
∑nc

i=1

∑min{i,mc}
i1=⌈νi⌉ M(i, i1)

(

u′nce
i

)i
(

i
u′nc

)ki1

where M(i, i1) is the number of multisets of cardinal-

ity i taken from sets of stripes of cardinality i1 and

ν = 1
c+2µ2−1 − 1

uc as in Lemma 4. Note that i1 is bounded

by the catalog size: i1 ≤ mc.

We have M(i, i1) =
(

mc
i1

)(

i−1
i1−1

)

≤
(

nc+mc
i

)

2i ≤
(

4d′nce
i

)i

where d′ = max {d, u, e} ≥ 1 since nc + mc ≤

nc + dnc
k ≤ 2d′nc as k ≥ 1 (we use

(

b
a

)

≤
(

b+c
a+c

)

for c ≥ 0

and
(

b
a

)

≤ 2b). Notice also that
(

i
u′nc

)ki1 ≤
(

i
u′nc

)νki
.

The probability P (Nk > 0) is then at most
∑nc

i=1(1 −

ν)iφ(i) where φ(i) =
(

i
u′nc

)κi
δi with κ = νk−2 and δ =

4d′e2

u′
. We finally get P (Nk > 0) ≤ (1 − ν)nc

∑nc
i=1 φ(i).

It is easy to check that as a function of i the term φ(i) of

the sum decreases from φ(1), reaches a minimum at φ(i⋆)

with i⋆ = u′nc
eδ1/κ then increases to φ(nc). Using this fact,

we bound P (Nk > 0) by considering separately the sum

for i ≤ i⋆ and i > i⋆ and by replacing each term with

the maximum term on its side. On one hand, we have

(1− ν′)nc
∑⌊i⋆⌋

i=u′c φ(i) ≤ (1− ν′)nc.nc.φ(1) = O(1
nκ−2).

On the other hand, we have (1−ν)nc
∑nc

⌊i⋆⌋+1 φ(i) ≤ (1−

ν)nc.nc.φ(nc) = O(n2(u′−κδ)nc) as φ(nc) =
(

δ
u′κ

)nc
.

Finally, we get P (Nk > 0) = O(1
nκ−2)+O(n2(u′−κδ)nc).

The first term is O(1
n) for κ ≥ 3, i.e. k ≥ 5ν−1. The

second term vanishes exponentially for u′−κδ < 1, i.e.

κ > logu′ δ or equivalently k > ν−1
(

2 + logu′

4d′e2

u′

)

=

ν−1 logu′(4e2d′u′) on the number of replicas per stripe.

Finally, the probability that an obstruction ex-

ists is O(1
n) for k ≥ ν−1 max

{

5, logu′(e4d′u′)
}

.

In particular, k ≥ 5ν−1 logu′ d′ is sufficient since

logu′ d′ ≥ max {1, logu′ e}. For k ≥
⌈

5ν−1 logu′ d′
⌉

, the

system thus achieves catalog size m = Ω
(

νdn
logu′ d′

)

with

high probability.

For c =
⌈

2 · 2µ2−1
u−1

⌉

, we have c ≥ 2
u−1 as µ ≥ 1, and

u′ ≥ u − 1
c ≥ u+1

2 . Using (u − 1)c ≥ 2(2µ2 − 1)
and c < (2µ2 − 1)(2

u−1 + 1), we then obtain

ν−1 ≤ 8µ2 u3

(u−1)2 , k = O
(

µ2u3

(u−1)2
log d′

log u+1

2

)

and

m = Ω
(

(u−1)2 log u+1

2

u3µ2

dn
log d′

)

. �

4. Balanced Heterogeneous Video Systems

The main difficulty in an heterogeneous system occurs

when many boxes with upload less than 1 play the same

video since their capacity is not sufficient to replicate the

data between themselves. Let u∗ > 1 be an upload thresh-

old under which a box is considered to have deficient up-

load, i.e. less than u∗. We introduce the upload deficit with

respect to u∗ as the quantity ∆(u∗) =
∑

b|ub<u∗ u∗ − ub

which is the overall bandwidth missing to poor boxes, i.e.

boxes with capacity less than u∗. A box b is said to be rich

when ub ≥ u∗. In this section, we are interested in hetero-

geneous systems satisfying:

u > 1 +
∆(1)

n

One can see that u ≥ 1 + ∆(1)
n is an intuitive lower bound

for scalability by considering the following request sce-

nario. Suppose that all rich boxes watch a video they do

not possess and poor boxes start to play the same video v at

maximum growth rate. Either v is widely replicated among

the poor boxes, or rich boxes will have to send the data to

the poor boxes that cannot upload within themselves. In

the latter case, this requires an additional overall upload of

roughly ∆(1).

We say that a system can be u∗-upload-compensated if

for any poor box b we can reserve an upload capacity u∗ −
ub + 1 − ub on a rich box r(b) with ur(b) ≥ u∗ + (u∗ +
1− 2ub).Several reservations may fall in a box a as long as

ua ≥ u∗ +
∑

b|r(b)=a(u∗ +1−2ub). Note that this requires

at least u ≥ u∗ + ∆(1)
n .

Another difficulty may come from the unbalance be-

tween storage capacity and upload capacity. Indeed, it may

be useless to have very high storage capacity in boxes with

low upload capacity and vice versa. A system is u∗-storage-

balanced with respect to u∗ if 2 ≤ db

ub
and db

ub
≤ d

u∗
for all b.

As a particular case, a proportionally heterogeneous system,

where ub

db
= u

d for all box b, is always u∗-storage-balanced

for d ≥ 2 and u∗ ≤ u. Note that a system with 2 ≤ db

ub
for

all box b can always be considered as u∗-storage-balanced

for u∗ ≤ u by artificially reducing the storage capacity of

each box to d′b = τub with τ = minb
db

ub
at the cost of

reducing the average storage capacity to τu.

We say that a video system is u∗-balanced if it is u∗-

storage-balanced and can be u∗-upload-compensated. The

maisn idea behind the requirement of compensated sys-

tems is to relay stripes for each poor box b (i.e. with

ub < u∗) through a rich box r(b) with sufficient upload

capacity according to the u∗-upload-compensated assump-

tion. The strategy for making requests is then the following.

A poor box b whose user demands a video during the inter-

val [t − 1, t] processes as follows: at time t, it asks r(b) to

issue a request for its preloading stripe (selected as before),

this is considered as a preloading request. At time t + 1,

r(b) forwards this preloading stripe to b. This relies on the

upload statically reserved on r(b) and this is not considered

as a request. At time t + 2, it requests cb =
⌊

cub − 4µ4
⌋

of the c − 1 remaining stripes (cb = 0 if ub ≤ 2µ4

c). At

time t + 3, it asks r(b) to request the c − 1 − cb remaining

stripes (these are postponed requests). At time t + 3, r(b)
forwards these c − 1 − cb stripes to b. (in addition to the

preloading stripe). Again this relies on the upload reserved

on r(b) and this is not considered as requests. The strategy

for a rich box a (i.e. ua ≥ u∗) whose user demands a video

at time t remains similar except that the postponed requests

are made at time t + 2 instead of t + 1. In both cases we

say that the box enters the swarm at t (the time of the first

request). From the point of view of requests, a scenario of

user demands results in a sequence identical to the sequence

obtained previously if we scale the time round duration by a

factor of 2. For this time scale, the bound on swarm growth

becomes µ2 instead of µ.

Note that an upload bandwidth (c − cb)
1
c < 1 − ub +

4µ4+1
c is statically allocated to b and cannot be used for

answering requests. We will assume c ≥ 10µ4

u∗−1 , implying

u∗ ≥ 1 + 10µ4

c , the reserved upload u∗ + 1− 2ub is clearly

sufficient for this allocation. There still remains a reser-

vation of u∗ − ub − 4µ4+1
c > 0 since ub < 1 + 4µ4+1

c ,

u∗ > 1 + 10µ4

c and µ > 1. Additionally, we require that

each stripe forwarded by r(b) to b is also cached by r(b).
If storage capacity has to be used, the storage capacity of

the box is reduced this is the reason behind the u∗-storage-

balance condition that dr(b) ≥ 2ur(b) since the capacity of

r(b) is reduced by a factor at most 2 in total. Note that a

poor box b caches all stripes whereas r(b) caches only the

stripes it forwards which include the preloading stripe of b.

We can now extend Theorem 1 to balanced heteroge-

neous systems.

Theorem 2 For any fixed u∗ > 1, consider a u∗-balanced

(n, u, d)-video system. With high probability, a random per-

mutation allocation with c > 4µ4

u∗−1 and k ≥ 5ν−1 log d′

log u′

for ν = 1
c+2µ4−1 − 1

c+3µ4 , u′ = c+3µ4

c and d′ =

max {d, u∗, exp(1)} allows to successfully satisfy any se-

quence of requests with maximal swarm growth µ. For

c =
⌈

10µ4

u∗−1

⌉

and u∗ ≤ 2, it can achieve catalog size

Ω

(

(u∗−1)2 log u∗+3

4

µ4

dn
log d′

)

.

The proof of this theorem follows the same steps as

for Theorem 1. We claim that Lemma 2 can be gen-

eralized in this setting. The main arguments are the

following. Remaining reserved upload capacities are

pairwise disjoint and are disjoint from box capacities

(a rich box a is considered to have upload capacity

ua −
∑

b|r(b)=a(u∗ + 1 − 2ub) ≥ u∗). A stripe preloaded

by a poor box b is cached by both b and r(b). It can thus

be uploaded
⌊

c(u∗ − ub −
4µ4+1

c)
⌋

+ ⌊cub⌋ ≥ c + 3µ4

times according to the bound on c and using µ > 1. Boxes

considered in the bound (1) of the proof of Lemma 2

concern preloaded stripes. We can thus count an upload

at least c+3µ4

c for each such box with it associated rich

box. The same is true for postponed stripes that are

forwarded through r(b). Each time we count the cache

of b in |B(X)| for these forwarded stripes in the proof

of Lemma 2, we thus have a similar upload capacity of

c + 3µ4 stripes. The only difficulty comes from postponed

stripes downloaded directly by a box b. This represents

at most cb ≤ cub − 4µ4 stripes. However, b can upload

⌊cub⌋ ≥ cub − 1 ≥ cb + 3µ4 stripes. In any case, if i1(v)
stripes of a video v are requested in X and b is counted in

|B(X)| in the proof of Lemma 2, b and r(b) have upload

capacity at least i1(v) + 3µ4. (This is also true for rich

boxes.) When we sum up box uploads instead of counting

them, we obtain UB(X) ≥
∑

v

(

|Xpost
tv

|

c −i1(v)

)

c+3µ4

c +

|X′(v)|+|Xpre
tv−1

|+|Xpre
tv

|−1

i1(v)+2(µ4−1)
i1(v)+3µ4

c , and thus

UB(X) ≥
∑

v

(

|Xpost
tv

|

c+2(µ4−1)−i1(v)

)

c+3µ4

c +

|X′(v)|+|Xpre
tv−1

|+|Xpre
tv

|−1

c+2(µ4−1)
c+3µ4

c . We finally get

UB(X) ≥
i−i1(c+2(µ4−1)+1

c+2(µ4−1)

(

1 + 3µ4

c

)

.

We claim that Lemma 4 stills holds. The rest of the proof

of Theorem 1 can then be immediately applied to this case.

Following the proof of Lemma 4, Case 1 comes directly

from the generalization of Lemma 2: we get UB(X) ≥ i
c

for i1 ≤ νi with ν = 1
c+2µ4−1 − 1

c+3µ4 . Case 2 relies

on the u∗-storage-balanced assumption. Consider a rich

box a. Let Ur =
∑

b|r(b)=a u∗ + 1 − 2ub denote the total

upload that has been reserved on a. Some of the upload

reserved for poor box b with r(b) = a is statically reserved

(at most (c − cb)
1
c < 1 − ub + 4µ4+1

c) and the other part

can be used to answer any requests concerning allocation

stripes, i.e. stored according the random allocation on a.

(Note that this remaining upload cannot be used to serve

requests concerning cached stripes except those of b). The

statically reserved upload Us on a is thus bounded by Us ≤
∑

b|r(b)=a 1 − ub + 4µ4+1
c The upload available on a for

answering allocation stripes is thus u′
a = ua − Us ≥ ua −

Ur +
∑

b|r(b)=a(u∗ +1− 2ub)− (1−ub + 4µ4+1
c) ≥ ua −

Ur + (
∑

b|r(b)=a u∗ − 4µ4+1
c) − (

∑

b|r(b)=a ub). As Ur =

(
∑

b|r(b)=a u∗+1)−2(
∑

b|r(b)=a ub), we obtain u′
a ≥ ua−

1
2Ur + (

∑

b|r(b)=a u∗ − 4µ4+1
c) − 1

2 (
∑

b|r(b)=a u∗ + 1) ≥

ua − 1
2Ur + 1

2 (
∑

b|r(b)=a u∗ − 1 − 8µ4+2
c). The bound

on c implies u∗ ≥ 1 + 10µ4

c and thus u′
a ≥ ua − 1

2Ur ≥
max

{

u∗, ua

2

}

. As the system is u∗-storage-balanced, we

have da

ua
≤ d

u∗
. By using only storage d′a ≥ da

2 , we may

still assume
d′

a

u′

a
≤ d

u∗
. The overall storage is at least half

used, and catalog is reduced by a factor at most 2 by this

operation. On the other side, a poor box b can use all its

upload capacity for allocation stripes.

For each box b, we truncate its upload to a multiple of 1
c .

(We may again loose a negligeable fraction of the storage

in this operation.) As mentionned previously, a poor box b

together to r(b) can upload
⌊

c(u∗ − 2µ4

c − ub)
⌋

+ ⌊cub⌋ ≥

c + 3µ4 ≥ u′c stripes (counting only on remaining re-

served upload). A rich box can upload at least ⌊u∗c⌋ ≥
c+10µ4 −1 ≥ u′c stripes (without using reserved upload).

The average upload thus remains at least u′. We then vir-

tually split b into a collection of elementary sub-boxes with

upload capacity 1
c and storage capacity db

ubc ≤ d
u′c . A set

E of boxes with overall upload capacity UE ≤ i
c thus con-

tains at most i elementary sub-boxes. We thus consider the
(

unc
i

)

sets of i elementary sub-boxes. Such a set E′ corre-

sponds to a storage space DE′ ≤ d
u′c i. Lemma 3 can clearly

be generalized to bound the probability that the ki1 repli-

cas of the stripes considered fall into these memory slots by
(

di/(u′c)
dn

)ki1
. We thus finally obtain the same bound.

Using c =
⌈

10µ4

u∗−1

⌉

and u∗ ≤ 2, we can obtain ν−1 =

O
(

µ4

(u∗−1)2

)

and u′ ≥ u∗+3
4 . This yields catalog size

Ω

(

(u∗−1)2 log u∗+3

4

µ4

dn
log d′

)

.

5. Conclusion

In this paper, we show an average upload bandwidth

threshold for enabling a scalable fully distributed video-on-

demand system. Under that threshold, scalable catalog can-

not be achieved. Above the threshold, linear catalog size

is then possible and the problem of connecting nodes to

serve demands reduces to a maximum flow problem. A

similar threshold is shown for heterogeneous systems. In-

terestingly, our bound on catalog size measures the trade-

off between video quality and catalog size when the up-

load bandwidth is fixed: for higher video bit-rate, we obtain

better quality, but the normalized upload u tends to 1 and

our lower bound on catalog size tend to 0 proportionally to

(u − 1)2 log u+1
2 ∼ (u − 1)3.

References

[1] M. S. Allen, B. Y. Zhao, and R. Wolski. Deploying video-

on-demand services on cable networks. In Proc. of the

27th Int. Conf. on Distributed Computing Systems (ICDCS),

pages 63–71, Washington, DC, USA, 2007. IEEE Computer

Society.

[2] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena,

and P. Rodriguez. Exploring VoD in P2P swarming systems.

In INFOCOM, pages 2571–2575, 2007.

[3] Y. Boufkhad, F. Mathieu, F. de Montgolfier, D. Perino, and

L. Viennot. Achievable catalog size in peer-to-peer video-

on-demand systems. In Proc. of the 7th Int. Workshop on

Peer-to-Peer Systems (IPTS), pages 1–6, 2008.

[4] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Row-

stron, and A. Singh. Splitstream: High-bandwidth multi-

cast in cooperative environments. In Proc. of the 19th ACM

Symp. on Operating Systems Principles (SOSP), 2003.

[5] B. Cheng, X. Liu, Z. Zhang, and H. Jin. A measurement

study of a Peer-to-Peer Video-on-Demand system. In Sixth

Int. Workshop on Peer-to-Peer Systems (IPTPS), pages 1–6,

2007.

[6] Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai. Im-

proving VoD server efficiency with BitTorrent. In MUL-

TIMEDIA ’07: Proc.of the 15th Int. Conf. on Multimedia,

pages 117–126, New York, NY, USA, 2007. ACM.

[7] B. Cohen. Incentives build robustness in BitTorrent. In

Workshop on Economics of Peer-to-Peer Systems, 2003.

[8] A. Gai and L. Viennot. Incentive, resilience and load bal-

ancing in multicasting through clustered de bruijn overlay

network (prefixstream). In Proc.of the 14th IEEE Int. Conf.

on Networks (ICON), volume 2, pages 1–6. IEEE Computer

Society, September 2006.

[9] P. K. Gummadi, S. Saroiu, and S. D. Gribble. A measure-

ment study of Napster and Gnutella as examples of peer-

to-peer file sharing systems. Computer Communication Re-

view, 32(1):82, 2002.

[10] S. B. Handurukande, A.-M. Kermarrec, F. L. Fessant,

L. Massoulié, and S. Patarin. Peer sharing behaviour in

the eDonkey network, and implications for the design of

server-less file sharing systems. SIGOPS Oper. Syst. Rev.,

40(4):359–371, 2006.

[11] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. Insights

into pplive: A measurement study of a large-scale p2p iptv

system. In In Proc. of IPTV Workshop, Int. World Wide Web

Conf., 2006.

[12] C. Huang, J. Li, and K. W. Ross. Can internet video-on-

demand be profitable? SIGCOMM Comput. Commun. Rev.,

37(4):133–144, 2007.

[13] Y. Huang, Z. Fu, D. Chiu, J. Lui, and C. Huang. Challenges,

design and analysis of a large-scale p2p vod system. In ACM

Sigcomm 2008, 2008.

[14] V. Janardhan and H. Schulzrinne. Peer assisted VoD for set-

top box based IP network. In Peer-to-Peer Streaming and

IP-TV Workshop (P2P-TV), pages 1–5, 2007.

[15] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:

High bandwidth data dissemination using an overlay mesh,

2003.

[16] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer

information system based on the xor metric. In IPTPS ’01:

First Int. Workshop on Peer-to-Peer Systems, pages 53–65,

London, UK, 2002. Springer-Verlag.

[17] N. Parvez, C. Williamson, A. Mahanti, and N. Carlsson.

Analysis of bittorrent-like protocols for on-demand stored

media streaming. In Proc.of the 2008 ACM SIGMETRICS

Int. Conf., pages 301–312, 2008.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Schenker. A scalable content-addressable network. In

SIGCOMM, pages 161–172, New York, NY, USA, 2001.

ACM.

[19] M. Ripeanu. Peer-to-peer architecture case study: Gnutella

network. In Proc. of the 1st IEEE Int. Conf. on Peer-to-Peer

(P2P 2001). IEEE Computer Society, 2001.

[20] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decen-

tralized object location, and routing for large-scale peer-to-

peer systems. In Middleware, pages 329–350, 2001.

[21] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.

Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a scal-

able peer-to-peer lookup protocol for internet applications.

IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

[22] K. Suh, C. Diot, J. F. Kurose, L. Massoulié, C. Neu-

mann, D. Towsley, and M. Varvello. Push-to-Peer Video-

on-Demand system: design and evaluation. IEEE Jour-

nal on Selected Areas in Communications, special issue on

Advances in Peer-to-Peer Streaming Systems, 25(9):1706–

1716, December 2007.

[23] D. Tran, K. Hua, and T. Do. Zigzag: An efficient peer-to-

peer scheme for media streaming, 2003.

[24] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava. On

peer-to-peer media streaming. In Proc. of the 22nd Int. Conf.

on Distr. Comp. Systems (ICDCS), pages 363–371, 2002.

