
Multi-Dimensional Characterization of Temporal Data Mining
on Graphics Processors∗

Jeremy Archuleta Yong Cao Wu-chun Feng Tom Scogland
{jsarch, yongcao, feng, njustn}@cs.vt.edu

Department of Computer Science, Virginia Tech

Abstract

Through the algorthmic design patterns of data parallelism and task parallelism, the graphics processing unit
(GPU) offers the potential to vastly accelerate discovery and innovation across a multitude of disciplines. For ex-
ample, the exponential growth in data volume now presents an obstacle for high-throughput data mining in fields
such as neuroinformatics and bioinformatics. As such, we present a characterization of a MapReduce-based data-
mining application on a general-purpose GPU (GPGPU). Using neuroscience as the application vehicle, the results of
our multi-dimensional performance evaluation show that a “one-size-fits-all” approach maps poorly across different
GPGPU cards. Rather, a high-performance implementation on the GPGPU should factor in the 1) problem size, 2)
type of GPU, 3) type of algorithm, and 4) data-access method when determining the type and level of parallelism.
To guide the GPGPU programmer towards optimal performance within such a broad design space, we provide eight
general performance characterizations of our data-mining application.

1 Introduction

There is a growing trend in scientific computing towards the use of accelerators to the reduce time to discovery. Unlike
current general-purpose multicore CPU architectures, these accelerators combine hundreds of simplified processing
cores executing in parallel to achieve the high-end performance demanded by scientists. Current examples of accel-
erators include the Cell Broadband Engine (Cell BE), field-programmable gate arrays (FPGAs), and general-purpose
graphics processing units (GPGPUs) such as the NVIDIA CUDA-enabled GPU and AMD/ATI Brook+ GPU. Fur-
thermore, upcoming technologies like AMD Fusion and Intel Larrabee point toward a future of accelerator-based
computing platforms.

Current top-of-the-line GPGPUs possess hundreds of processing cores and memory bandwidth that is 10 times higher
than conventional CPUs. The significant increase in parallelism within a GPGPU and the accompanying increase in
performance has been successfully exploited for scientific, database, geometric, and imaging applications, which in
many cases, has resulted in an order-of-magnitude performance improvement over top-of-the-line CPUs. GPGPUs
also provide many other tangible benefits such as improved performance per dollar and performance per watt over
conventional CPUs. Combining high performance, lower cost, and increasingly usable tool chains, GPGPUs are
becoming increasingly more programmable and capable of solving a wider range of applications than simply three-
dimensional triangle rasterization, and as such, is the target platform for our temporal data mining research.

Although temporal data mining is a relatively new area of data mining [15], this technique is becoming increasingly
more important and being widely used in various application fields, such as telecommunication control [7], earth sci-
ence [16], financial data prediction [11], medical data analysis [6], and neuroscience [19]. For example, neuroscientists
would like to identify how the neurons in the brain are connected and related to each other. This usually involves stim-
ulating one area of the brain and observing which other areas of the brain “light up.” Recent technological advances

∗This research was supported in part by an NVIDIA Professor Partnership Award.

1

in electrophysiology and imaging now allow neuroscientists to capture the timing of hundreds of neurons [14, 17].
However, the amount of data captured results in “data overload” and requires powerful computational resources. Cur-
rent technology, like GMiner [18], is a step in the right direction, but limited to a single CPU running a Java virtual
machine (VM), forcing output to be processed post-mortem.

Neuroscientists desire real-time, interactive visualization of the effects of their probes. This capability would open up
an entirely new window of opportunities whereby patients can be tested, diagnosed, and operated upon in a single,
faster procedure. We believe that GPGPUs can provide the performance necessary, and in this paper, characterize
a temporal data-mining application in a multi-dimensional environment. Specifically, we evaluate its performance
across the following five dimensions: 1) type of parallel algorithm, 2) data accesses, 3) problem size, 4) generation of
GPGPU, and 5) the number of threads on the performance of the system.

Our results show that GPGPUs can provide the requisite performance, but that a “one-size-fits-all” approach is un-
suitable for temporal data mining on graphics processors. Instead, the problem size and graphics processor determine
which type of algorithm, data-access pattern, and number of threads should be used to achieve the desired perfor-
mance. This result both corroborates and contrasts with previous similar MapReduce algorithms on graphics proces-
sors. However, while previous work only provided results in an optimal configuration, this paper presents general
characterizations to help explain how a MapReduce-based, data-mining application should harness the parallelism in
graphics processors.

To this end, we first present a background of current CUDA GPU technology and related MapReduce implementations
in Section 2 followed by a detailed description of our temporal data-mining algorithm in Section 3. Section 4 lists
relevant features of our testbed on which all of the tests were conducted with the results and characterizations presented
in Section 5. Lastly, we offer some directions for future work and conclusions in Sections 6 and 7, respectively.

2 Background and Related Work

2.1 Graphics Processors

GPUs have been used for many years to accelerate the rendering of computer graphics. Fed by the increasing demand
for improved 3-D graphics at higher framerates and larger resolutions, GPUs diverged from standard CPUs into exotic
specialized architectures. In recent years, GPUs are transitioning away from being single-purpose devices into a more
general-purpose architecture, capable of doing more than computing pixel values. This transition opens the doors for a
range of applications to be accelerated. We describe here the architectural and programmatic features of state-of-the-art
NVIDIA GPUs.

2.1.1 CUDA Architecture

While the internal organization of an NVIDIA GPU is a closely guarded secret, the state-of-the-art NVIDIA GPUs
present to the programmer a Compute Unified Device Architecture (CUDA), as shown in Figure 1.

Core organization: The execution units of a CUDA-capable device are organized into multiprocessors, where each
multiprocessor contains 8 scalar processor execution cores. The multiprocessor architecture is called SIMT (Single
Instruction, Multiple Thread) and executes in a similar manner as a SIMD (Single Instruction, Multiple Data) archi-
tecture. While optimal performance is attained when groups of 32 threads, i.e. a “warp”, follow the same execution
path, individual threads can diverge along different thread paths while maintaining correctness. When divergence oc-
curs within a warp, every instruction of every thread path is executed, with threads enabled or disabled depending on
whether the thread is executing that particular thread path or not. A single instruction is completed by the entire warp
in 4 cycles.

2

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Shared Memory

Constant Cache

Texture Cache

Device Memory

Device

. . .

.
.
.

Processor 1 Processor 2
Instruction

UnitProcessor M

Figure 1: Overview of the NVIDIA Compute Unified Device Architecture (CUDA) [2]

Memory hierarchy: There are several types of memory accessible by an execution core on an NVIDIA GPU.
Located on-chip, each multiprocessor contains a set of 32-bit registers along with a shared memory region which is
quickly accessible by any core on the multiprocessor, but hidden from other multiprocessors. The exact number of
registers available and size of the shared memory depend on the compute capability (i.e., “generation”) of the GPU. In
addition to shared memory, a multiprocessor contains two read-only caches, one for textures and another for constants,
to improve memory access to texture and constant memory, respectively. Local and global memory are located in the
device memory which is located off-chip and furthest from the execution cores (excluding the host machine’s main
memory). It may seem odd that local memory is not in fact local, but logically it serves the same purpose in that it is
an overflow space for what will not fit in registers.

2.1.2 CUDA Programming Model

To enable the developer to harness the computing power of their GPUs, NVIDIA extended the C programming lan-
guage to allow developers to easily offload computationally intensive kernels to the GPU for accelerated performance.
This new programming model is commonly referred to as the CUDA programming model.

Parallelism: When a kernel executes, it is executed simultaneously by N threads in parallel. The programmer can
logically arrange the N threads into one-, two-, or three-dimensional blocks. The index of a thread within this block
and the ID of the thread have a one-to-one mapping to simplify identification. While threads within a thread block
can share data within the same address space, each thread block has its own address space. This arrangement allows
for synchronization between threads but not between thread blocks. To increase the amount of parallelism further,
M “equally-shaped” thread blocks can be executed in parallel increasing the total amount of available parallelism to
M ∗N .

Scheduling: As mentioned above, groups of 32 threads form a warp with multiple warps composing a thread block
and multiple thread blocks forming a kernel. When a kernel is executed, the thread blocks are placed on different
multiprocessors according to available execution capacity [2]. All of the threads (and by association, warps) of one
thread block will execute on the same multiprocessor. A multiprocessor schedules warps with 0-cycle overhead and
executes a single instruction of the warp in 4 cycles. Programmer-controlled placement and scheduling of the warps
and thread blocks on the hardware is not currently available. As we will show in Section 5, this small, but rich feature
could have a huge impact on the realizable performance of applications running on CUDA.

3

2.2 MapReduce

MapReduce is a programming model developed by Google to provide a convenient means for programmers to process
large data sets on large parallel machines [8]. Moreover, the programmers that utilize a MapReduce framework do
not need to have prior experience using parallel systems. While there has been debate on exactly how applicable this
programming model is [9,10], the ability to process large data sets in parallel is an important requirement for real-time
data-mining.

General Algorithm: The general MapReduce algorithm leverages two functional programming primitives, map and
reduce in sequence. First, the map function is applied to a set of inputs consisting of a key/value pair to create a set of
intermediate key/value pairs. Then, the reduce function is then applied to all intermediate key/value pairs containing
the same intermediate key to produce a set of outputs. Due to the functional nature of both map and reduce, each
phase can be executed in parallel in order to utilize the available resources in large data centers. A high-level view of
the parallelism available in the algorithm is shown in Figure 2.

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Map Reduce

Input

Files

Output

Files

Intermediary

Files

Figure 2: High-level view of the parallelism available in a MapReduce programming model

Implementations: The original implementation of MapReduce was built and optimized by Google to run on its
private data centers. Providing the same functionality to the public, Hadoop is an open-source Java implementation that
runs on everyday clusters and is under active development [1]. Specialized variations of the MapReduce framework
also exist for multicore processors [5], the Cell processor [13], and graphics processors [4,12,20]. However, obtaining
high performance within these frameworks is difficult (“... the cost of the Map and the Reduce function is unknown, it
is difficult to find the optimal setting for the thread configuration.” [12]), and often left to the user (“... performance can
be strongly affected by the number of registers ... amount of local memory ... number of threads ... algorithm ... among
other factors. ... We allow the programmer to expose these choices through template parameters... ” [4]).

3 Temporal Data Mining

3.1 Overview

Association rule mining is a common data-mining technique used to discover how subsets of items relate to the
presence of other subsets. Temporal data mining is a restricted variation of association rule mining where temporal
relations between items will also be considered.

A prototypical example of temporal data mining can be found in “market-basket analysis”, where a store might want
to know how often a customer buys product B given that product A was purchased earlier. In other words, the store

4

wishes to know how often {peanut butter, bread} −→ {jelly}. We note that unlike association rule mining, temporal
data mining differentiates {bread, peanut butter} −→ {jelly} from {peanut butter, bread} −→ {jelly}.

In this paper, we focus on one specific area of temporal data mining, called frequent episode mining, where we want
to find frequently appeared sequences of items (episodes) in a time ordered database [3]. We define frequent episode
mining as follows.

Let D = {d1, d2, ..., dn} be an ordered database of items where di is a member of the alphabet I = {i1, i2, ..., im}.
An episode, Aj , is a sequence of k items < ij1 , ij2 , . . . , ijk

>. There is an appearance of the episode Aj in database
D, if there exists a sequence of indices < r1, r2, . . . , rk > in increasing order that ij1 = dr1 , ij2 = dr2 , . . . , ijk

= drk
.

The count of a episode, count(Aj), is the total number of appearance of Aj in D. The task of frequent episode mining
is to find all the episodes, Aj , for which the count(Aj)/n is greater than a given threshold α.

The standard algorithm for frequent episode mining can be described as below.

Algorithm 1 Frequent Episode Mining(D,α).
Input: supporting threshold α, sequential database D = {d1, d2, ..., dn}
Output: frequent episode set A = A1, A2, . . . Am

1: k ← 1, S ← ∅
2: level k ← 1, A′

k ← {{i1}, {i2}, . . . {im}}, (generate candidate episode for level 1)
3: while A′ 6= ∅ do
4: Calculate count(A′

kj
) for all episodes A′

kj
in A′

k (counting step)
5: Eliminate all non-frequent episodes, count(A′

j)/n ≤ α, from A′
k (elimination step)

6: SA ← SA ∪A′
k

7: A← A + A′; k ← k + 1
8: Generate candidate episode set A′

k from A′
k−1 (generation step)

9: end while
10: return SA

Algorithm 1 generates candidate episode set for each level (the length of an episode), counts the number of appear-
ances for all the candidate episodes, eliminates non-frequent ones, and generate the candidate episode set for the next
level.

While the elimination and generation steps takes care to only include useful subsets, the computational demands of
the counting step can potentially grow exponentially as a function of the size of a subset Aj and the alphabet I , as
shown in Table 1. One method to decreasing the runtime is to limit the length of Aj from n to q at the cost of losing
information for all Aj with length greater than q.

Episode Length 1 2 3 4 ... L
Episodes N N(N − 1) N(N − 1)(N − 2) N(N − 1)(N − 2)(N − 3) ... L!

(N−L)!L

Table 1: Potential number of episodes with length L from an alphabet I of size N

Alternatively, the runtime can be decreased through advanced algorithms and/or distributing the computational demand
among multiple processors [21]. With the recent advances of graphics processors to more general computing platforms
with large I/O bandwidth, parallel association rule mining on these platforms appears to be a natural fit. While several
data mining algorithms exist on the GPU, to the best of our knowledge, this paper presents the first temporal data
mining algorithm ported to a GPU.

3.2 Core Algorithm

The core algorithm to discover the presence of an episode Aj =< a1, a2, ..., aL > can simply be implemented as a
finite state machine as shown in Figure 3. Each item ai in the episode is a state with transitions to ai+1, a1, and to itself

5

depending on the value of the next character c. Because we are counting all episodes present in the database, when the
final state is reached, a counter keeping track of the total number of episodes found is incremented and the finite state
machine is reset back to start where the process repeats until all of the characters in the database are compared.

a2a1 finalstart a L-1

c = a1

c != a1,2,3 c != a1,2,…,L-1c != a1,2c != a1

c = a2 c = a3
c = aLc = aL-1

other

Figure 3: Finite state machine to discover the presence of an episode

3.3 Parallelism on CUDA

Due to the wide range of parallelism available and the inability of a programmer to explicitly control the scheduling
and placement of thread blocks on the multiprocessors in an NVIDIA GPU, we implemented four algorithms using
the CUDA programming model. These four algorithms can be generally classified as the cartesian product of (1)
thread-level parallelism or block-level parallelism, and (2) with or without local buffering following a MapReduce
programming model. The algorithms are shown graphically in Figure 4.

3.3.1 MapReduce

At a high-level, our algorithms follow a MapReduce programming model to achieve efficient parallelism. Using the
observation that counting for the number of appearance of Ak is independent from counting for Al, the map function
returns the number of appearance for Aj for a given Aj in the database D. The reduce function is dependent on the
whether thread or block parallelism is used as described below.

3.3.2 Thread-Level Parallelism

Our first two algorithms implement strict thread-level parallelism to assign one thread to search for one episode, Aj ,
in the database D. Using one thread to search for one episode causes the reduce function to be an identity function
simply outputting the value produced by the map function.

Algorithm 1: without Buffering Since each thread will scan the entire database, our first algorithm places this
database in the read-only texture memory such that each thread will be able to utilize the high bandwidth available on
the graphics processor. With each thread starting from the same point in the database, the spatial and temporal locality
of the data-access pattern should be able to be exploited by the texture cache on each multiprocessor. Furthermore,
threads are assigned to thread blocks in order until the maximum number of threads per thread block is reached. For
example, if the maximum number of threads per thread block is 512, then threads 1-512 are assigned to the thread
block 1, threads 513-1024 to the second thread block, and so on, until no threads are left.

Algorithm 2: with Buffering Our second algorithm also uses thread-level parallelism, but instead of using texture
memory, this algorithm buffers portions of the database in shared memory in order to minimize the thread contention
for the memory bus. Following this approach, a thread copies a block of data to a shared memory buffer, processes
the data in the buffer, then copies the next block of data to the memory buffer, and so on, until the entire database is
processed. The scheduling of threads to thread blocks follows the same approach in Algorithm 1.

6

Texture Memory

Texture Cache

Thread Level Without Buffering (Algo 1)

T1 T3 T4 Tn
. . .T2

Block 1

. . .

Texture Memory

Texture Cache

Thread Level Without Buffering (Algo 1)

T1 T3 T4 Tn
. . .T2

Block 1

. . .

. . .

(a) Algorithm 1: each thread searches for a unique episode using
data stored in texture memory

Texture Memory

Shared Memory

T1 T3 T4 Tn

Thread Level Buffering (Algo 2)

. . .

Time t1

. . .

. . .

T2 T1 T3 T4 Tn
. . .

Time t2

T2 T1 T3 T4 Tn
. . .

Time tm

T2

Block 1

(b) Algorithm 2: each thread searches for a unique episode but uses
shared memory to buffer the data first

Texture Memory

Texture Cache

T1 T3 T4 Tn
. . .T2

Block Z

. . .

Texture Cache

T1 T3 T4 Tn
. . .T2

Block Y

Texture Cache

T1 T3 T4 Tn
. . .T2

Block X

Block Level Without Buffering (Algo 3)

(c) Algorithm 3: threads within a block search for the same episode
with different blocks searching for different episodes using data in
texture memory

Shared Memory

T1 T2 T3 T4 Tn

. . .

. . . T1 T2 T3 T4 Tn
. . . T1 T2 T3 T4 Tn

. . .

Time t1 . . .Time t2 Time tm

.

Block Z

Texture Memory

Block Level Buffering (Algo 4)

. . .

Shared Memory

T1 T2 T3 T4 Tn
. . . T1 T2 T3 T4 Tn

. . . T1 T2 T3 T4 Tn
. . .

Time t1 . . .Time t2 Time tm

Block Y

.
Shared Memory

T1 T2 T3 T4 Tn
. . . T1 T2 T3 T4 Tn

. . . T1 T2 T3 T4 Tn
. . .

Time t1 . . .Time t2 Time tm

.

Block X

. . .

(d) Algorithm 4: threads within a block search for the same episode
with different blocks searching for different episodes but uses
shared memory to buffer the data first

Figure 4: Available Parallelism for each of the four algorithms

3.3.3 Block-Level Parallelism

At a higher level of parallel abstraction, the CUDA programming model enables parallelism at the block level. At
this level, our two block-level algorithms assign one block to search for one episode. Within a block, the threads
collaborate to perform the search by having each thread search a portion of the database. With multiple threads
searching for the same episode, the reduce function cannot be the identity function. Instead, the reduce function sums
the counts from each thread. However, since an episode might span across threads, an intermediate step to check for
this possibility occurs between the map and reduce functions. An example of an episode spanning threads is shown in
Figure 5.

Algorithm 3: without Buffering Similarly to Algorithm 1, we implement this version of our block level parallel
algorithm without buffering of the database. Instead, the threads within each block access the data through texture
memory. However, unlike Algorithm 1, each of the t threads within a block start at a different offset in the database
while threads with the same ID in different blocks start at the same offset. The total number of threads available using
Algorithm 3 is t ∗ e where e is the number of episodes to be searched for.

Algorithm 4: with Buffering The final algorithm we discuss in this paper uses block level parallelism with buffering
of the database to shared memory. The starting offset for each thread in Algorithm 4 is relative to the buffer size and not
the database size as in Algorithm 3. Therefore, thread Ti will always access the exact same block of shared memory
addresses for the entire search – the data at those addresses will change as the buffer is updated. The total number of
available threads is identical to Algorithm 3.

7

C

A B C B C A

0 0 0

A B C B C A

0 0 0

0

A B C B

1 1

2

0

C

Episodes

Found:

Episodes

Found:

(a) Searching for B =⇒ C without
taking spanning into account

C

A B C B C A

0 0 0

A B C B C A

0 0 0

0

A B C B

1 1

2

0

C

Episodes

Found:

Episodes

Found:

(b) Searching for B =⇒ C while taking
spanning into account

Figure 5: Example scenario where searching for B =⇒ C results in a different number of episodes found depending
on whether spanning is taken into account or not

Graphics Card GeForce 8800 GTS 512 GeForce 9800 GX2 GeForce GTX 280
GPU G92 2xG92 GT280
Memory (MB) 512 2x512 1024
Memory Bandwidth (GBps) 57.6 2x64 141.7
Multiprocessors 16 16 30
Cores 128 128 240
Processor Clock (MHz) 1625 1500 1296
Compute Capability 1.1 1.1 1.3
Registers per Multiprocessor 8196 8196 16384
Threads per Block (Max) 512 512 512
Active Threads per Multiprocessor (Max) 768 768 1024
Active Blocks per Multiprocessor (Max) 8 8 8
Active Warps per Multiprocessor (Max) 24 24 32

Table 2: Summary of the architectural features of GeForce 8800 GTS 512, GeForce 9800 GX2, and GeForce GTX
280 NVIDIA graphics cards.

4 Experimental Testbed

To analyze the performance characteristics of MapReduce on graphics processors, we performed the same series of
tests on three variations of NVIDIA graphics cards representing recent and current technology. An overview of the
architectural features are shown in Table 2. We present here a more detailed description of each card along with
the host machine in which the tests were performed. A complete list of the specifications for the different compute
capability levels of the GPUs found in these cards can be found in Appendix A of [2].

4.1 Host

The host machine used for these tests consists of an E4500 Intel Core2 Duo operating at 2.2 GHz with 4 GB (2x2GB)
of 200 MHz DDR2 SDRAM (DDR2-800). The operating system in use is the 64-bit version of the Ubuntu GNU/Linux
7.04 (Feisty Fawn) distribution running the 2.6.20-16-generic Linux kernel as distributed through the package man-
agement system. Programming and access to the GPUs used the CUDA 2.0 toolkit and SDK with the NVIDIA driver

8

version 177.67. Furthermore, all processes related to the graphical user interface (GUI) were disabled to limit external
traffic to the GPU.

4.2 Cards

4.2.1 NVIDIA GeForce 8800 GTS 512 with NVIDIA G92 GPU

To evaluate a recent generation of the NVIDIA CUDA technology, we ran our tests on an GeForce 8800 GTS 512
graphics card with NVIDIA G92 GPU and 512 MB of onboard GDDR3 RAM. NVIDIA lists the G92 GPU as having
compute capability 1.1, where compute capability determines the features and specifications of the hardware. Infor-
mally speaking, different compute capabilities signify different hardware generations. The GeForce 8800 GTS 512
contains sixteen multiprocessors with each multiprocessor containing eight 1625 MHz execution cores, 8196 registers,
and 16 KB of shared memory. The warp size is 32 threads with warps scheduled in intervals of four cycles. There can
be at most 512 threads per block with 768 active threads per multiprocessor implying that two blocks of 512 threads
can not be active simultaneously on the same multiprocessor. Furthermore, there can be at most eight active blocks
and twenty-four active warps per multiprocessor. The texture cache working set is between six and eight KB per
multiprocessor.

Beginning with compute capability 1.1, the GPU supports atomic operations between threads on 32-bit words in
shared or global memory allowing programmers to write thread-safe programs. It is worth recalling, however, that
this improvement does not allow for threads in different blocks to synchronize as each block is independent of other
blocks.

4.2.2 NVIDIA GeForce 9800 GX2 with NVIDIA G92 GPU

We also evaluated an NVIDIA GeForce 9800GX2 which contains two NVIDIA G92 GPUs and two units of 512MB
of GDDR3 RAM. Essentially, the 9800GX2 is two 8800 GTS 512 cards merged onto a single graphics card with the
execution cores running at 1500 MHz instead of 1500 MHz as in the 8800 GTS 512. Additionally, the 9800 GX2 has
a modest 10% increase in memory bandwidth over the 8800 GTS 512 (64 GBps versus 57.6 GBps).

4.2.3 NVIDIA GeForce GTX 280 with NVIDIA GT200 GPU

The most recent generation of CUDA technology has compute capability 1.3. For our tests we used an GTX 280
graphics card with GT200 GPU. With 1024 MBs of GDDR3 RAM and 30 multiprocessors, this card has the largest
amount of device memory, number of processing cores (240), and memory bandwidth (141.7 GBps) of the cards
tested. Furthermore, this GPU has 100% more registers per multiprocessor (16384), 33% more active warps (32),
and 25% more active threads (1024) than the G92 GPUs in addition to supporting double-precision floating-point
numbers.

5 Results

We present here several performance characterizations of our algorithms running on different graphics cards at dif-
ferent episode levels with varying numbers of threads per block. At episode level L, an algorithm is searching for
an episode of length L where {I1, I2, ..., IL−1 =⇒ IL}. In the results presented, L ∈ {1, 2, 3}, Il a member of the
set of upper-case letters in the English alphabet (i.e., Il ∈ {A,B, ..., Z}), and the database contains 393, 019 let-
ters. In our experiments, level 1 contained 26 episodes, level 2 contained 650 episodes, and level 3 contained 15,600
episodes.

9

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 0 64 128 192 256 320 384 448 512

Ex
ec

ut
io

n
Ti

m
e

R
el

at
iv

e
to

 L
ev

el
1

Number of threads per block

Execution Time of Algorithm1 on GTX280

Level1
Level2
Level3

(a)

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 64 128 192 256 320 384 448 512

Ex
ec

ut
io

n
Ti

m
e

R
el

at
iv

e
to

 L
ev

el
1

Number of threads per block

Execution Time of Algorithm2 on GTX280

Level1
Level2
Level3

(b)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 64 128 192 256 320 384 448 512

Ex
ec

ut
io

n
Ti

m
e

R
el

at
iv

e
to

 L
ev

el
1

Number of threads per block

Execution Time of Algorithm3 on GTX280

Level1
Level2
Level3

(c)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 64 128 192 256 320 384 448 512
Ex

ec
ut

io
n

Ti
m

e
R

el
at

iv
e

to
 L

ev
el

1
Number of threads per block

Execution Time of Algorithm4 on GTX280

Level1
Level2
Level3

(d)

Figure 6: Impact of Problem Size on the GTX280 on Different Algorithms

A single test consists of selecting a single episode level, algorithm, card, and block size with the execution time
counted as the amount of time between the moment the kernel is invoked, to the moment that it returns. Although
we restricted access to the GPU by disabling all non-vital graphical services, to minimize the effect of errant GPU
calls, each test was performed ten times with the average used to represent the test time. However, the minimum and
maximum execution times are also displayed to show the range of times that the execution can take, which in some
cases is quite large.

While the complete results from our tests are shown in Appendix A, we detail below some characterizations from
these tests with respect to three higher-level criteria – level, algorithm, and card – and their impact on execution time.
We also note that because some of the low-level architectural information of the NVIDIA GPUs is unavailable to the
public, that the characterizations presented are general in nature; we discuss plans to uncover some of these low-level
architectural features in Section 6.

5.1 Impact of Level on Execution Time

To understand the impact of the problem size on execution time, we performed a series of tests where the hardware
and algorithm remained constant, but the level, L, varied. Because the number of episodes to search for increases
exponentially as a function of L as shown earlier in Table 1, the scalability of an algorithm with respect to problem
size is important.

5.1.1 Characterization 1: Thread Parallel Algorithm has O(C) Time Complexity Per Episode

Algorithm 1 and 2 are constant time algorithms per episode. Whether performing 26, 1560, or 25,320 searches, the
amount of time to complete each individual search is essentially the same. Since a search for each episode is com-

10

pletely independent of other searches, and each search is assigned to one thread, there is no added complexity needed
during the reduce phase to identify episodes that span thread boundaries. In addition, the search is based on a simple
state machine the complexity of searching for a single episode in a single dataset stays constant regardless of the level.
Therefore, the entire execution time can be spent performing the map function across the entire database. We explain
in Section 5.2 whether Algorithm 1 or Algorithm 2 has an overall faster execution time for various levels.

Since these algorithms are constant time per search, we actually find that they are effectively constant time for up to a
rather large number of searches when executed on the GPU as can be seen in Figures 6(a) and 6(b). By this we mean
that 26, 650, or even several thousand searches complete in the same amount of time on the GPU, reasons for this will
become more clear in Characterizations 4 and 7.

5.1.2 Characterization 2: Buffering Penalty in Thread Parallel Can be Amortized

Algorithm 2 uses buffering to combine the memory bandwidth of all threads in a block and reduce contention on
texture memory. This does not however, come without a cost. The initial load time is high, and since only one block
may be resident on a multiprocessor during this time, no computation is done during the load. As more threads are
added to a block Algorithm 2 exponentially decreases in execution time as shown in Figure 6(b). This characteristic
shows that Algorithm 2 is able to make use of the processing power of a greater number of threads, largely thanks
to the fact that the load time is either equal to or lower than the time taken for lower numbers of threads. Since that
cost stays constant or drops slightly, and all threads can access the resulting shared memory block without additional
cost, the more threads one has, the faster results will be calculated up to the point where scheduling overhead on the
multiprocessor overwhelms the computation time.

5.1.3 Characterization 3: Block Parallel Does Not Scale with Block Size

Unlike Algorithm 2, Algorithms 3 and 4 actually lose performance per episode as the number of threads per block and
level increase. Figures 6(c) and 6(d) show a general trend of larger execution times as the number of threads increase
with Algorithm 4 at an almost constant slope when solving the problem size at Level 3. Furthermore, the change in
execution time between Level 1 and Level 2 and between Level 2 and Level 3 is also increasing. These two trends are
due to the extra complexity of finding episodes that span thread boundaries and the cost of loading more blocks than
can be active on the card simultaneously.

As the number of threads increases, the number of boundaries increases. As the level increases, the likelihood that an
episode spans the boundary between threads increases. With the number of boundaries increasing and the probability
that an episode will span a boundary increasing as well, the necessary computation needed to be performed after the
map function and before the reduce function and therefore longer overall execution times increase to match.

5.2 Impact of Algorithm on Execution Time

While the scalability of an algorithm with respect to problem size is important, it is often the case that a user wishes
to examine a problem of specific size and only has access to one type of hardware. That is, a user wants to solve the
same problem on the same card and can only vary the algorithm and number of threads to use for that algorithm. In
this case, the user would want to use the fastest algorithm for the specific problem. Our characterizations below are
limited to the GTX280 as it has the highest compute capability of the cards tested.

5.2.1 Characterization 4: Thread Level Alone not Sufficient for Small Problem Sizes (L = 1)

When evaluating small problem sizes, low levels, there are not enough episodes to generate enough threads to utilize
the resources of a card. Add parallelism through blocks and then throw in threads on top. See Figure 7(a). Since

11

 0

 50

 100

 150

 200

 250

 300

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Execution Time of Level1 on GTX280 using Different Algorithms

Algorithm1
Algorithm2
Algorithm3
Algorithm4

(a)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Execution Time of Level2 on GTX280 using Different Algorithms

Algorithm1
Algorithm2
Algorithm3
Algorithm4

(b)

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Execution Time of Level3 on GTX280 using Different Algorithms

Algorithm1
Algorithm2
Algorithm3
Algorithm4

(c)

Figure 7: Impact of Algorithm on the GTX280 at different problem sizes

episodes are fixed and there is 1 thread per episode, adding more than 26 threads to Algorithm 1 or Algorithm 2,
contributes nothing but contention which is why Algorithms 1 and 2 have an uptrend as threads increase. Algorithms
3 and 4, on the other hand, are orders of magnitude faster as they create 26 blocks and add threads to help search for
same episode. So they display a decreasing trend but plateau because there is still not enough work.

Algorithm 4 on the GTX280 is sub-millisecond making true real-time data mining possible.

5.2.2 Characterization 5: Block Level Depends on Block Size for Medium Problem Sizes (L = 2)

Figure 7(b). With a medium problem size, there is enough parallelism at thread level to outperform block level at low
numbers of threads (16 on GTS512) and therefore a reasonable number of blocks. That is Algorithms 1 and 2 decrease
the number of blocks as the number of threads per block increases because there are a fixed number of episodes, and
thus a fixed number of threads, so the number of blocks changes with the number of threads per block. At level 2, the
blocks will vary as a function of threads per block starting with 650/16 and decreasing to 650/512, unlike at level 1
where a value of threads per block greater than 16 will only result in 1 block.

Eventually, Algorithm 4 outperforms Algorithm 3 at a specific thread level (240), but never achieves the best execution
time which is Algorithm 3 at 64 threads. An explanation of this is hard to pinpoint exactly as the internal workings and
scheduling of the GTX280 are not publicly available. However, we believe that Algorithm 3, using texture memory
and heavy caching will see optimal bandwidth reached at low numbers of threads and contention since the contention
will only increase as more threads are added. The buffering to local memory is a one time penalty which, as we
mentioned in Characterization 2, is amortized over the large number of threads accessing the shared memory in read-
only fashion.

12

5.2.3 Characterization 6: Thread Level Parallelism is Sufficient for Large Problem Sizes (L = 3)

The GTX280 has 30 multiprocessors with a maximum of 1024 active threads per multiprocessor for a total of 30, 720
active threads available. When L = 3, there are 25, 230 episodes to be searched. As seen in Figure 7(c), the thread
level parallel algorithms (Algorithm 1 and 2) are significantly faster than the block level algorithms (Algorithms 3 and
4). This performance difference can be attributed to the fact that Algorithms 1 and 2 can have more episodes being
searched simultaneously than Algorithms 3 and 4 for a given number of threads per block. Algorithms 3 and 4 are
limited to 240 episodes being searched due to the limitation of 8 active blocks on each of the 30 multiprocessors in the
GTX280 and each block searching for a single episode. Algorithms 1 and 2 on the other hand, can have up to 240 ∗ t
active episodes as each thread within a block will search for a unique episode. The actual number of active episodes
for Algorithms 1 and 2 are determined by the resources that each thread consumes and the available resources on each
multiprocessor.

5.3 Impact of Card on Execution Time

The other major decision which can affect performance is the hardware itself on which the algorithm will run. Some
users may have a variety of hardware and wish to know which will return results the fastest, or still others may wish to
determine the optimal card for their problem when considering a new purchase. The characterizations below showcase
two of the major factors which come into play in determining the right card for the job.

 160

 170

 180

 190

 200

 210

 220

 230

 240

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Algorithm1 on Level2 on 8800GTS512 and 9800GX2 and GTX280

8800GTS512
9800GX2
GTX280

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Algorithm3 on Level1 on 8800GTS512 and 9800GX2 and GTX280

8800GTS512
9800GX2
GTX280

(b)

Figure 8: Impact of Card

5.3.1 Characterization 7: Thread Level Dependent on Shader Frequency for Small to Medium Problems

Algorithms 1 and 2 are greatly dependent on the Shader Frequency for small and medium problem sizes, and scale
essentially linearly by that measure as one can see in Figure 8(a). The frequencies of the three cards tested are 1625
MHz , 1500 MHz, and 1296 Mhz the frequencies matching the range of times very closely. This trend is due to the
fact that levels 1 and 2 are incapable of filling enough multiprocessors for the number of processors or contention to
become a determining factor in performance. In the appendix one can see the same test at level 3 produces a very
different picture, where the 30 core 280 GTX outperforms the 16 cored 9800GX2 and the 8800GTS512 for nearly all
thread counts.

5.3.2 Characterization 8: Block Level Algorithms Affected by Memory Bandwidth

Algorithm 3 can be greatly effected by Memory Contention when scaled to large problem sets. Total threads accessing
memory is “active episodes (or active blocks)” times threads per block. Given the massive number of blocks, the

13

algorithm holds a very high thread count per multiprocessor over a long period, and produces a great amount of
memory contention. The two cards which perform slower, actually have less processors to contend for memory, but
have memory bandwidth in the range of 62 to 64 GBps, whereas the GTX 280 has a far greater 141GBps producing
the results seen in Figure 8(b).

6 Future Work

Although we offer eight characterizations, there is still some work to be done as real-time, data-mining analysis is the
overall goal. To this end, we plan to study the effects of larger episodes (e.g., L >> 3) and its effect on the constant-
time, thread-level algorithms as well as the effect of pipelining multiple phases of the overall algorithm together as
searching for candidates of episode length 3 can proceed while episode lengths of 2 and 4 are also computed.

We are also looking at the effect of feature changes on the algorithm execution time. One feature is episode expiration
where A ⇒ B iff B.time() − A.time() < Threshold. Currently, there is no expiration on the episodes which
makes spanning boundaries likely. With episode expiration, we expect the reduce phase in Algorithms 3 and 4 will be
decreased as less episodes will span boundaries.

In addition, though we characterized the performance of an algorithm solving a specific problem on a certain card,
it is difficult to conclude exactly how many threads per thread block should be used. That is, while being able to
identify general performance, we cannot identify optimal performance which is important to neuroscientists hoping
for the possibility of real-time data mining. We plan to pursue a series of micro-benchmarks to discover the underlying
hardware and architectural features such as scheduling, caching, and memory allocation. We are aware of the CUDA
Occupancy Calculator, but it is insufficient in identifying optimal performance as it only shows the utilization of a given
multiprocessor. Unfortunately, 30 multiprocessors of occupancy 66% might perform better than 15 multiprocessors at
100% occupancy.

7 Conclusion

The ability to mine data in real-time will enable scientists to perform research in ways that have only been dreamed
about. However, as the sheer volume of data grows, the algorithms used to mine this data need to keep pace or the
utility of the data is lost. This is unacceptable in the field of neuroscience, where the inability to understand the data
in real-time can have fatal consequences.

One approach to this problem of “data overload” is to create new parallel algorithms capable of extracting the compu-
tational performance available on accelerators. In this paper, we have developed and characterized the performance of
a parallel temporal data mining application on NVIDIA CUDA graphics processors.

As one might expect, the best execution time for large problem sizes always occurs on the newest generation of the
hardware, the NVIDIA GeForce GTX 280 graphics card. What is surprising however, is that the oldest card we tested
was consistently the fastest for small problem sizes. Beyond that, the extent to which the type and level of parallelism,
episode length, and algorithm impact the performance of frequent episode mining on graphics processors is surprising
as well. Furthermore, as our results showed, a MapReduce-based implementation must dynamically adapt the type
and level of parallelism in order to obtain the best performance. For example, when searching for episodes of length 1,
an algorithm using blocks with 256 threads and buffering to shared memory achieves the best performance. However,
episodes of length 2 require block sizes of 64 without buffering, and episodes of length 3 should use 96 threads per
block with every thread searching for a unique episode.

Lastly, due to the ever-increasing volume of data and demand for high performance in neuroscience and bioinformatics,
we have provided 8 performance characterizations as a guide for programming temporal data mining applications on
GPGPUs.

14

References

[1] Hadoop: Open source implementation of MapReduce, 2008.

[2] NVIDIA CUDA Compute Unified Device Architecture - Programming Guide, Version 2.0, 2008.

[3] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining Association Rules between Sets of Items in
Large Databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data,
1993.

[4] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. A Map Reduce Framework for Programming Graph-
ics Processors. In Third Workshop on Software Tools for MultiCore Systems (STMCS 2008), 2008.

[5] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y. Ng, and Kunle Olukotun.
Map-Reduce for Machine Learning on Multicore. In Advances in Neural Information Processing Systems (NIPS)
19, 2006.

[6] Rajai El Dajani, Maryvonne Miquel, Marie-Claire Forlini, and Paul Rubel. Modeling of Ventricular Repolarisa-
tion Time Series by Multi-layer Perceptrons. In AIME ’01: Proceedings of the 8th Conference on AI in Medicine
in Europe, pages 152–155, London, UK, 2001. Springer-Verlag.

[7] Gautam Das, King ip Lin, Heikki Mannila, Gopal Renganathan, and Padhraic Smyth. Rule Discovery from Time
Series. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, pages
16–22. AAAI Press, 1998.

[8] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In OSDI ’04,
2004.

[9] David J DeWitt and Michael Stonebraker. MapReduce: A major step backwards, 2008.

[10] David J DeWitt and Michael Stonebraker. MapReduce II, 2008.

[11] Martin Gavrilov, Dragomir Anguelov, Piotr Indyk, and Rajeev Motwani. Mining the stock market (extended
abstract): which measure is best? In KDD ’00: Proceedings of the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 487–496, New York, NY, USA, 2000. ACM.

[12] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong Wang. Mars: A MapReduce
Framework on Graphics Processors. In PACT08: IEEE International Conference on Parallel Architecture and
Compilation Techniques 2008, 2008.

[13] Marc De Kruijf. Mapreduce on the cell broadband engine architecture. Technical report, 2007.

[14] Debprakash Patnaik, P. S. Sastry, and K. P. Unnikrishnan. Inferring Neuronal Network Connectivity using Time-
constrained Episodes. CoRR, abs/0709.0218, 2007.

[15] John F. Roddick and Myra Spiliopoulou. A Survey of Temporal Knowledge Discovery Paradigms and Methods.
IEEE Transactions on Knowledge and Data Engineering, 14(4):750–767, 2002.

[16] Michael Steinbach, Steven Klooster, Pang ning Tan, Christopher Potter, and Vipin Kumar. Temporal Data Mining
for the Discovery and Analysis of Ocean Climate Indices. In Proceedings of the KDD Temporal Data Mining
Workshop, pages 2–13, 2002.

[17] K. P. Unnikrishnan, Debprakash Patnaik, and P. S. Sastry. Discovering Patterns in Multi-neuronal Spike Trains
using the Frequent Episode Method. CoRR, abs/0709.0566, 2007.

[18] K.P. Unnikrishnan, P.S. Sastry, and Naren Ramakrishnan. GMiner, http://neural-code.cs.vt.edu/gminer.html.

[19] Pablo Valenti, Enrique Cazamajou, Marcelo Scarpettini, Ariel Aizemberg, Walter Silva, and Silvia Kochen. Au-
tomatic detection of interictal spikes using data mining models. Journal of Neuroscience Methods, 150(1):105–
110, 2006.

15

[20] Jackson H.C. Yeung, C.C. Tsang, K.H. Tsoi, Bill S.H. Kwan, Chris C.C. Cheung, Anthony P.C. Chan, and
Philip H.W. Leong. Map-reduce as a Programming Model for Custom Computing Machines. In IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2008.

[21] Mohammed J. Zaki. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency, 7(4):14–25,
1999.

16

Appendix

A Complete Results

 120
 140
 160
 180
 200
 220
 240
 260
 280
 300

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Algorithm1 on Level1 on 8800GTS512 and 9800GX2 and GTX280

8800GTS512
9800GX2
GTX280

(a)

 160

 170

 180

 190

 200

 210

 220

 230

 240

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Algorithm1 on Level2 on 8800GTS512 and 9800GX2 and GTX280

8800GTS512
9800GX2
GTX280

(b)

 200

 300

 400

 500

 600

 700

 800

 900

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Algorithm1 on Level3 on 8800GTS512 and 9800GX2 and GTX280

8800GTS512
9800GX2
GTX280

(c)

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Algorithm2 on Level1 on 8800GTS512 and 9800GX2 and GTX280

8800GTS512
9800GX2
GTX280

(d)

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Algorithm2 on Level2 on 8800GTS512 and 9800GX2 and GTX280

8800GTS512
9800GX2
GTX280

(e)

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Algorithm2 on Level3 on 8800GTS512 and 9800GX2 and GTX280

8800GTS512
9800GX2
GTX280

(f)

 0

 2

 4

 6

 8

 10

 12

 14

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Algorithm3 on Level1 on 8800GTS512 and 9800GX2 and GTX280

8800GTS512
9800GX2
GTX280

(g)

 0

 50

 100

 150

 200

 250

 300

 350

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Algorithm3 on Level2 on 8800GTS512 and 9800GX2 and GTX280

8800GTS512
9800GX2
GTX280

(h)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Algorithm3 on Level3 on 8800GTS512 and 9800GX2 and GTX280

8800GTS512
9800GX2
GTX280

(i)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Algorithm4 on Level1 on 8800GTS512 and 9800GX2 and GTX280

8800GTS512
9800GX2
GTX280

(j)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Algorithm4 on Level2 on 8800GTS512 and 9800GX2 and GTX280

8800GTS512
9800GX2
GTX280

(k)

 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600
 1700
 1800

 0 64 128 192 256 320 384 448 512

Ti
m

e
(m

s)

Number of threads per block

Algorithm4 on Level3 on 8800GTS512 and 9800GX2 and GTX280

8800GTS512
9800GX2
GTX280

(l)

Figure 9: Overview of all of the tests

17

