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Abstract

In the past few years, there has been a trend of providing
increased computing power through greater number of cores
on a chip, rather than through higher clock speeds. In
order to exploit the available computing power, applications
need to be parallelized efficiently. We consider the solution
of Ordinary Differential Equations (ODE) on multicore
processors. Conventional parallelization strategies distribute
the state space amongst the processors, and are efficient only
when the state space of the ODE system is large. However,
users of a desktop system with multicore processors may
wish to solve small ODE systems. Dynamic iterations, par-
allelized along the time domain, appear promising for such
applications. However, they have been of limited usefulness
because of their slow convergence. They also have a high
memory requirement when the number of time steps is large.
We propose a hybrid method that combines conventional
sequential ODE solvers with dynamic iterations. We show
that it has better convergence and also requires less memory.
Empirical results show a factor of two to four improvement
in performance over an equivalent conventional solver on a
single node. The significance of this paper lies in proposing
a new method that can enable small ODE systems, possibly
with long time spans, to be solved faster on multicore
processors.

1. Introduction

Parallel processing is now widely available due to the
popularity of multicore processors. A desktop, for example,
may have two quad-core processors. It may also be equipped
with a GPU having 100-200 cores. The Cell processor has
eight cores called SPEs, which are meant to handle the
computational workload. Two of these can be combined to
form a 16-core shared memory machine. The Sony PS3 uses
the same chip and makes six SPE cores available for use.
Thus parallel processing is no longer restricted to the HPC
community.

Non-HPC users often have a need to solve smaller prob-
lems than the HPC community does. However, the speed of
solution can still be important. For example, reducing the
time to solve an ODE from a minute to around ten seconds
is a noticeable difference in solution time. Applications will
need to efficiently exploit the available parallelism, in order
to get improved performance. This can be difficult for small
problems, because of the finer granularity.

We will consider the specific problem of solving an Initial
Value Problem involving an ordinary differential equation.
We provide below a simple description of the problem and
the conventional approach to solving it. (Readers with a
background in ODEs can skip the next two paragraphs.)
A first order ODE is given in the form du/dt = f(t, u),
where u, which may be a vector, is the state of a physical
system, and t is often time. Higher order ODEs can be
expressed as a first order ODE system using a standard
transformation [13]. The initial state of the system at some
time, u(t0), is provided in an Initial Value Problem. The
problem is to determine the value of u at subsequent values
of time, up to some time span T .

An ODE solver will iteratively determine these values by
starting with the known value of u at t0, and use u(ti) to
find u(ti+1). Conventional parallelization of this procedure
distributes the components of u amongst different proces-
sors, and all processors update the values of u assigned to
them, at each time step. In order to perform this update, each
processor computes the components of f for the components
of u assigned to it. They will need some components of
u assigned to other processors, and thus communication is
required. In a distributed memory computing environment,
the communication cost is at least the order of a microsecond
using a fast network such as Infiniband. In the shared mem-
ory programming paradigm on symmetric multiprocessor
systems, the thread synchronization overhead is the order
of a microsecond. Therefore, the computation involved on a
processor should be large enough that the parallel overhead
does not become a bottleneck. When the state space is small,
the communication overhead dominates the computation,
and parallelization is not feasible. Thus any improvement



over the sequential performance is of much benefit in such
situations.

For small ODE systems, the solution time is significant
when the number of time steps is large. Parallelization of
the time domain appears promising then. Dynamic iterations
are a class of methods that are often suitable for time
parallelization. Here, we start out with an initial guess for
the entire time domain, and then iteratively improve it until
it converges. Picard iterations, which pre-date modern ODE
solvers, are easy to parallelize along the time domain – each
processor updates a different time interval independently,
followed by a parallel prefix computation to correct the
update. This method is explained further in §2. Dynamic
iterations were well studied in the 1980s and 1990s. How-
ever, they were not suitable for most realistic problems due
to their slow convergence. They also have a high memory
requirement, because the solution at all time steps in the
previous iteration is needed for the update in the next
iteration.

In this paper, we propose a hybrid scheme that com-
bines conventional sequential ODE solvers with dynamic
iterations. We show that the convergence is faster with this
scheme. This scheme also guarantees progress – in each
iteration, at least one time interval converges. Thus, in the
worst case, the total computation time is no worse than that
of a sequential solver, apart from a small parallelization
overhead. Of course, we hope to improve on a sequential
solver in a typical case. We show later that we obtain
significant improvement in performance on some sample
ODE systems, compared with an equivalent conventional
solver. We also compare it with Picard iterations. The hybrid
method converges about twice as fast as Picard iterations.

The outline of the rest of this paper is as follows. In
§2 we explain dynamic iterations, and Picard iterations in
particular. We then describe the new approach in §3 and
discuss its correctness and convergence. We demonstrate its
effectiveness in §4. We discuss other time parallelization
techniques in §5. We summarize our conclusions and present
future work in §6.

2. Dynamic Iterations
The modern development of dynamic iterations for the

solution of Initial Value Problems started with the work on
Waveform Relaxation for the solution of large differential-
algebraic equations in VLSI circuit simulations [7]. Many
variants of the original method were then developed in
the 1980s and 1990s. A unified definition of this class of
methods is presented in [3]. It is also shown there that Picard
iterations, which pre-date waveform relaxation by almost a
century, can be considered a special case of this class of
methods. We use the notation of [3] in the description below.
Consider an initial value problem,

u̇ = f(t, u), u(0) = u0, (1)

where u ∈ <n, f : <×<n → <n, and u̇ := du/dt. Dynamic
Iterations solve (1) recursively using the following equation.

u̇m+1 − g(um+1, um) = f(t, um), um+1(0) = u0. (2)

The recursion is normally started using the initial guess
u0(t) = u0. If g is defined such that g(u, u) = 0, then it can
be shown that if the iteration converges, then it converges
to the exact solution, provided (2) is solved exactly [3]. In
practice, numerical methods are used to solve (2), and the
approximations used affect the results, as shown in §4.

Different methods differ in their choice of g, which
influences the convergence behavior and also the ease of
parallelization. Picard iterations choose g(y, z) = 0. We
discuss other common choices of g in §5. Dynamic iterations
converge under fairly weak conditions [3], and so can be
applied in most practical situations. The Picard method can
also be parallelized efficiently, as explained below.

Picard iterations recursively solve (2) as follows. Initially,
u0 is stored at discrete time points. In the (m+1)th iteration,
f(t, um) is computed at those time points. Then f is
numerically integrated using some quadrature method. This
leads to the following expression for determining um+1,
when the integration is exact.

u(t)m+1 = u0 +

∫

t

0

f(s, um(s)) ds. (3)

The above equation can be rewritten as follows.

um+1
i+1 = um+1

i
+

∫

ti+1

ti

f(s, um(s)) ds. (4)

Here, ti is a sequence of time points. There may be several
time points at which um are known, in the time interval
[ti, ti+1]. The integral in (4) is evaluated using a quadrature
rule.

The above method is parallelized easily. Each processor
i, 0 ≤ i < P is responsible for determining the values of
um+1 in the interval (ti, ti+1], using the values of um. Each
of them first evaluates the integrals in (4) for their time
points using a quadrature method, for which they will need
some boundary values of um available on neighboring pro-
cessors. Then, a parallel prefix computation on the integral
for tis is performed to compute the cumulative integrals
from t0 to ti. After this, each processor can independently
compute the values of um+1 for which they are responsible.
If the time interval (ti, ti+1) contains sufficient time points
at which u are evaluated, then the computation cost will be
much larger than the prefix cost, and thus the parallelization
will be efficient.

While the parallel overhead is often small, the efficiency
of parallelization of any dynamic iteration should be com-
pared against an equivalent conventional ODE solver (that
is, having the same error order as the quadrature), rather
than against the dynamic iteration on one processor, in order
to get an idea of the effectiveness of dynamic iterations.



Under this criteria, note that if the computations converge
in N iterations, then the efficiency cannot be greater than
1/N . For example, N = 5 will lead to relative efficiency
less than 20%. Thus, dynamic iterations are suitable when
conventional methods give poor parallel efficiency.

Dynamic iterations have generally not found widespread
use because they were slow to converge, making them
uncompetitive with conventional solvers. For example, fig. 1
shows four iterations being needed for convergence (just
from a visual perspective) for a simple equation. However,
we believe that with the popularity of multicore processors,
it is time to re-evaluate the usefulness of dynamic iterations.
As mentioned earlier, we now have a situation where users
can solve small problems in parallel. Conventional solvers
are not effective for this, and so any gain in speedup is
a benefit, even if the efficiency is low. For example, an
efficiency of 20% on eight cores gives a speedup of 1.6
over a conventional solver.

3. A Hybrid Scheme

We will present our method as an intuitive improvement
to the Picard method to deal with one of the latter’s short-
coming, and then we will analyze its convergence properties.

Apart from slow convergence, another problem with the
Picard method, of somewhat less importance, is its large
memory requirement. In order to simulate n time steps, the
value of um needs to be stored for the n time points. Usually
one divides the total time span into smaller windows, and
waits for convergence of the entire window before moving
to the next window. However, the number of time steps in
each window can still be high. This can affect performance
through increased cache misses.

In the proposed method, only the results at certain time
points ti are stored. The time steps are usually small for
stability and accuracy reasons. However, because the result
of the exact solution at each time step is not always required,
we need not to store the results at all intermediate time steps,
whereas Picard iterations need the intermediate values inside
each interval [ti, ti+1]. Of course, the granularity of the
tis in the hybrid method should be at least as fine as the
resolution desired by the user.

We first note that the exact solution of eqn. (1) is given
by the following.

ui+1 = ui +

∫

ti+1

ti

f(s, u(s)) ds. (5)

If we compare with the Picard recurrence, eqn. (4), we see
that Picard iterations replace u with um in the integral,
because that is the latest approximation to u available to it.
In our method, we have um available only at the points ti.
In our method, processor i will solve the exact ODE eqn. (1)
with initial condition û(i)(ti) = um

i
, up to time ti+1. The

hat on u indicates that this is a solution to the exact ODE

with a possibly wrong initial condition, and the subscript (i)
indicates that this problem is solved on processor i. Note that
û(i)(ti+1) = û(i)(ti) +

∫

ti+1

ti

f(s, û(i)(s)) ds. Thus we get
the following expression.

û(i)(ti+1)− um

i
=

∫

ti+1

ti

f(s, û(i)(s)) ds, (6)

where we have used the initial condition û(i)(ti) = um

i
.

We replace the integral in the Picard iterations recurrence,
eqn. (4) with the integral above, and this integral, in turn,
can be replaced by the left hand side of the expression above
to give the following recurrence for the hybrid method.

um+1
i+1 := um+1

i
+ û(i)(ti+1)− um

i
. (7)

The parallelization is similar to that of the Picard method,
and is shown in Algorithm 3.1. The û(i)(ti+1) are computed
by solving an ODE, independently on each processor. Then
a parallel prefix computation is performed as in the Picard
method and the new approximation um+1

i+1 is computed. An
intuitive way of thinking about this method is as follows. If
um

i
were accurate, then ûi(ti+1) would be the exact solution

for time ti+1. However, we observe an error in the value of
um+1

i
−um

i
between two successive iterations at time ti. We

add this as a correction factor to ûi(ti+1).

Algorithm 3.1: HYBRID-METHOD(u0
i

= u0,
Number of processors P)

repeat

do































for each processor i ∈ {0..P − 1}

do







ûm

(i)(ti+1)← Solve ODE

(with initial condition um

i
)

∆i ← ûm

(i)(ti+1)− um

i

Gi ← Parallel prefix on ∆i

um+1
i+1 ← Gi + u0

until Convergence

We next show that if the iterations converge, then they
converge to the exact solution, provided the ODE is solved
exactly in each iteration. Of course, the ODE is actually
solved numerically, with approximation errors. We evaluate
the effect of these in §4.

Assume that the iterations converge. At convergence,
um+1

i
= um

i
, for i ∈ [1, n]. From eqn. (7), we get

um+1
i+1 = û(i)(ti+1). Processor 0 starts from the exact

initial condition, and thus um+1
1 = û0(t1) is exact. But

um+1
1 = um

1 due to convergence, and thus um

1 is exact.
Thus process 1 started from the exact solution in determining
û1(t2) and thus um+1

2 = û1(t2) is exact. We can proceed in
this manner, using an inductive argument to show that um+1

is exact.



We now consider the issue of how fast the method
converges. We first explain why we intuitively expect it
to have better convergence than Picard iterations. We then
prove that it converges in a finite number of steps, if the
ODE solution is exact. We will demonstrate in §4.2 that it
has good convergence properties in practice.

We saw above that the difference between Picard it-
erations and the hybrid method is in how the term
∫

ti+1

ti

f(s, u(s)) ds is estimated, without knowing the true
solution u. Picard iterations perform a quadrature using the
approximation um. The hybrid method starts with a point
on um, but uses the exact differential equation. Thus, we
can expect its solution to be better than that of Picard
iterations, which use the old approximation throughout the
time domain.

We also show that the hybrid method always progresses.
That is, in each step, at least one additional time interval
converges. Note that processor 0 starts with the exact initial
condition and thus converges after the first iteration. In the
second iteration, the initial condition for processor 1 is exact,
and so its solution u2

2 is exact. Using an inductive argument,
ui

i
is exact. Thus the method converges in n iterations if

there are n time intervals. Of course, this would not give
any speedup over an equivalent sequential solver, and we
would hope to do better in practice. However, it does provide
a guarantee that in the worst case, the performance will
not be worse than an equivalent conventional sequential
solver, if the parallelization overheads are small. Note that
the memory consumption of this solver on each processor
is small – roughly the same as a sequential solver. It is
independent of the number of time steps in a time interval,
unlike dynamic iterations.

We consider three variants of this method. (i) We solve for
the entire time domain by dividing the time span T into T/P
intervals on P processors. (ii) We use windows of a certain
width W , with the number of windows being much larger
than P . The processors wait for convergence of the first
P windows (one window per processor) before proceeding
with the next set of P windows. This type of windowing has
been shown by others to be more effective than solving for
the entire time domain in dynamic iterations [16]. (iii) We
notice that after the first few processors have converged, they
don’t perform useful work by repeating the calculations. So,
these processors will be used for computing new windows.
We call this method sliding windows. Note that a processor
cannot be considered as having converged until it has locally
converged and all the processors handling smaller values of
time have also converged.

4. Empirical Evaluation

4.1. Experimental Setup

The experimental tests were performed on an Intel Xeon
cluster. Each node has two 2.33 GHz Quad-core CPUs with
8 GB shared memory. OpenMPI 1.2 is used for inter-process
communications. Both the sequential and parallel code are
compiled with optimization level −O3. All the speedup and
relevant results are obtained on 8 cores on a single node.

We use an assembly timing routine, which accesses the
time-stamp counter through the rdtsc instruction, for our
timing results. The resolution of the timer is 0.05µs. It
is sufficiently good for the timing purpose in this paper,
where the timing results are at least the order of a few
microseconds.

The results are presented by solving three ODE systems.
They are: (i) ODE1: u′′ = −ω2u, with ω = 1, u(0) = 0,
u′(0) = 1 for t ∈ [0, 6.4]; (ii) ODE2 – Airy equation: u′′ =
−k2ut, with k = 1, u(−6) = 1, u′(0) = 1 for t ∈ [−6, 2];
(iii) ODE3 – Duffing equation: u′′ + δu′ + (βu3 + ω2

0u) =
γ cos(ωt+φ), with γ = 2.3, φ = 0, δ = 0.1, β = 0.25, ω0 =
1, u(−6) = 1, u′(0) = 1 for t ∈ [−6, 2]. The Airy equation
is commonly seen in physics and astronomy. The Duffing
equation describes the motion of a damped oscillator.

In this paper, a single step 4th order Runge-Kutta Method
is implemented as the ODE solver used in the hybrid
method. We use the Simpson’s rule to evaluate the quadra-
ture in the Picard method. The accuracy of the Simpson’s
rule is also order 4. All computations were in double
precision.

The exact solutions to each of the three ODEs are shown
in fig. 2, 3, 4. The exact solution to the first ODE can
be expressed in the simple symbolic form, y = sin(ωt).
However, there are no closed-form solutions to the second
and third ODEs in the real domain. In order to get good
approximations to the exact solutions, we used the following
procedure. We solved the ODEs using a sequential ODE
solver. We then solved them again with a time step size
that was an order of magnitude smaller, and determined
the largest difference in values at any given time point.
We repeated this with smaller time steps, until this largest
difference was the order of 10−10. This solution was then
used as an approximation to the exact solution. In §4.2, we
chose the time step size such that the global error is of the
order of 10−6. Therefore, the accuracy in the approximated
exact solution is sufficient for the comparisons in this paper.

In the results below, we use the terms tolerance and
error. The latter refers to the absolute difference between
the exact solution and the computed solution. The tolerance
is a parameter to the ODE solver. When using dynamic
iterations, the solution is considered to have converged if the
absolute difference between solutions at successive iterations
is smaller than this value. When used with a sequential ODE



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

t

y

Figure 1. Convergence of Picard iteration for the solu-
tion of u̇ = u, u0 = 1.
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Figure 2. ODE1: y′′ = −ω2y

solver, the tolerance has the conventional meaning. The error
may be larger than the tolerance.

The speedup results compare the time of dynamic it-
erations with the time for a sequential 4th order Runge-
Kutta Method. Speedup is close to linear when we compare
with a sequential implementation of dynamic iterations.
However, in order to realistically evaluate the usefulness
of dynamic iterations, we need to compare them against
a conventional solver. The total computational work of a
sequential solver is less than that of dynamic iterations, and
so the speedup results are lower than if compared with a
sequential implementation of dynamic iterations.
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Figure 3. ODE2: y′′ = −k2yt
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Figure 4. ODE3: y′′ + δy′ + (βy3 + ω2
0) = γ cos(ωt + φ)

4.2. Experimental Results

We first explain our choice of time step size. If the time
step size is smaller than necessary, then the granularity of the
computation is coarser than necessary, and thus the commu-
nication overheads are artificially made small, relative to the
computational effort in its parallel implementation. In order
to avoid this, we first evaluate the accuracy of the sequential
ODE solver for different time step sizes, and choose one
that gives good accuracy. For stability, a step size of 0.005
is sufficient. However, a much smaller step size is usually
required for accuracy. Fig. 5 shows the comparison of the
errors from ode45 function in Matlab (with parameters of
absolute error = 10−6 and relative error = 10−6) and dlsode
function in ODEPACK. We need a step size of 10−7 for the
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Figure 6. Speedup result of the three ODEs using
different variants of the hybrid method. The window size
is 105 time steps and the tolerance is 10−6.

sequential ODE solver to have the same order of accuracy as
ode45 in Matlab when solving ODE1. Similar experiments
were performed for ODE2 and ODE3 and their step sizes
were also determined as 10−7.

As mentioned in §3, the hybrid method can have three dif-
ferent variants – without windowing, with windowing, and
with sliding windows. We wish to compare the effectiveness
of each of these variants. Fig. 6 shows the speedup results
using the three variants on the ODEs. The window size is
105 time steps for both the windowing methods. We can
see that sliding windows yields a better speedup than fixed
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Figure 7. Average number of iterations using different
window sizes and tolerances with sliding windows.

windows. The non-window method does not perform well
for such small numbers of processors, because it requires
more than eight iterations, on eight cores, to converge for the
given time span. Given these observations, we will only use
results from the sliding windows method for comparisons
with the sequential solver as well as with Picard iterations,
in the following discussions.

The hybrid method with sliding windows requires three
MPI function calls per iteration. MPI Scan is used for
the parallel prefix summation, MPI Allreduce is called in
testing for convergence, and MPI Isend/MPI Recv is used
to transfer the latest updated value between certain pro-
cessors. Across 8 cores on the same node, MPI Scan and
MPI Isend/MPI Recv take less than 1µs and MPI Allreduce
takes less than 10µs. The computation time per step for
the three sample ODEs are 0.10µs, 0.11µs and 0.44µs.
For speedup results shown in the following discussions, the
window size is at least 103 time steps. In that case, the
granularity of the computation is of the order of a hundred
microseconds, and the overall communication overhead at
most the order of 10%.

We now discuss the choice of window size. As mentioned
before, the window size affects the granularity of the paral-
lelism. For exact ODE solvers, smaller granularity indicates
relatively larger communication overhead. Thus the speedup
can be expected to decrease with decrease in window size.
In the hybrid method, the window size can also affect the
number of iterations as well as the numerical accuracy of
the solution. We experimented with three different window
sizes, 105 time steps, 104 time steps and 103 time steps.
Fig. 7 compares the average number of iterations per window
for the solutions to converge. As we can see, if we use the
same order of error tolerance for all the window sizes, the
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Figure 9. Accuracy of the solution using different win-
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smaller the window size is, the faster the method converges.
Fig. 8 compares the speedup when different window sizes
and tolerance are used to solve the three ODEs. However
there is a trade-off with the accuracy of the solution. Fig. 9
shows how the accuracy is affected by different window
sizes and local error tolerances. The error is about two orders
larger when the window size is decreased by one order
of magnitude, when the tolerance is 10−6. By comparing
the effect of different window sizes and tolerances on both
speedup and accuracy, we chose the window size of 103

time steps. Similar conclusions were also drawn for ODE1
and ODE2.
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Figure 10. Errors using different window sizes in the
Picard method with tolerance equal to 10−10 to solve for
ODE3.

The window size also affects the accuracy and the con-
vergence rate of Picard iterations. Fig. 10 shows the error
versus the window size for ODE3. The step size used for
the quadrature integration is the same as that of the ODE
solver for our modified method. The solid line uses the
same window size of 103 and tolerance of 10−10. As we
can see the accuracy is about 1 order lower than that of
our method. Fig. 11 shows the comparison of the number
of iterations of the Picard method to the hybrid method
for the equivalent parameters of window size, stepsize and
tolerance. The y-axis is the ratio of the number of iterations
required by Picard iterations versus the number of iterations
required by the hybrid method. The convergence rate is
slower in Picard iterations in all the three cases. However,
note that this improvement in convergence rate does not
directly translate to a proportional improvement in speedup,
because the Runge-Kutta method evaluates the ODE at 5
points for each time step, while the Picard iteration, using
Simpson’s rule, only calls the function f in equation (1)
once for each time step.

5. Related Work

We discussed dynamic iterations using the Picard method
in §2. Other methods can be derived by a different choice
of g in equation (2). Two important cases are the Waveform
Jacobi method and the Waveform Gauss-Seidel method. The
definitions of g for these are provided in [3].

The Waveform Jacobi recurrence is like that of equa-
tion (3), except that in the evaluation of the j th component
of f , the j th component of um is replaced by the j th
component of um+1. This decomposes the ODE with n
variables into n ODEs where one variable is updated in each
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Figure 11. Ratio of the average number of iterations.
Picard method vs. the hybrid method compared for the
same window size and tolerance.

ODE. In the evaluation of f , the value of um(s) is used for
all other variables.

The Waveform Gauss-Seidel recurrence is like that of
equation (3), except that in the evaluation of the j th
component of f , all components of um with index less than
or equal to j are replaced by the corresponding components
of um+1. This decomposes the ODE with n variables into n
ODEs where one variable is updated in each ODE. The ODE
for the first component is solved as in Waveform Jacobi.
The ODE for the second component uses the values of the
first component of um+1(s) evaluated before, and the values
of um(s) for the third and higher indexed components,
in each evaluation of f . This process continues, with the
ODE for each component using the values of um+1(s) for
components with smaller indices, and um(s) for components
with larger indices, in each evaluation of f .

Note that, despite the use of an ODE solver instead
of quadrature by these methods, they are quite different
from the hybrid-scheme. Their basic goal is to decouple
the computation of each component of the system. They
have high memory requirement as that of Picard iterations,
because um needs to be stored for all time steps.

Each iteration of Waveform Jacobi can be parallelized
by having the ODE for each component solved on a dif-
ferent processor. This is advantageous for large systems,
especially when different time steps can be used for different
components. However, the communication cost can be high,
because the components of u at all time points will need
to be sent to other processors. Parallelizing it along the
time domain is difficult in general. Some special cases can,
however, be parallelized in time [3].

A wavefront approach is used to parallelize Waveform

Gauss-Seidel [3]. The idea behind this is basically pipelin-
ing. Note that once the first time step of the first component
of um+1 has been completed, the first time step of the second
component can be started, while the second time step of
the first component is simultaneously started. If we need to
perform m iterations with d variables for n time steps, then
the m× n× d evaluations of f are performed in parallel in
d+m×n time, if d ≤ n. This method appears to parallelize
well. However, note that a sequential ODE solver can solve
the same problem with n evaluations of f . Thus, even with
parallelization, this method is not faster than an equivalent
conventional solver1.

The above processes of splitting the ODE into subcom-
ponents can be generalized by keeping blocks of variables
that are strongly coupled together. The blocks may also
overlap [4].

When (2) is solved exactly, the solution converges su-
perlinearly [3], [10] on a finite time interval. However,
numerical methods have to be used to solve it in practice.
Theoretical results on convergence for discrete version of
dynamic iterations are presented in [2], [3]. Estimates of
suitable window sizes for good convergence are provided
in [5]. In realistic situations, this class of methods has often
been found to converge slowly, which is a major limitation
of these methods in practice.

Different strategies have been proposed to speed up the
convergence of dynamic iterations. Coarse time step size for
the earlier iterations, and finer time steps for later iterations,
is proposed in [10]. A two-step-size scheme for solving
Picard iterations is proposed in [6]. A fine step size is used
for a fixed number of iterations in all the sub-systems to
smooth the iterations. A coarse step size is then used to
solve the residue of the solution restricted to the coarse
time-mesh. Multigrid techniques have also been used for
accelerating convergence [8], [17]. Reduced order modeling
techniques have been combined with dynamic iterations, in
order to help propagate the change in one component of the
system faster to the rest of the system in [11].

A different approach to time parallelization uses a coarse-
grained model to guess the solution, followed by correction.
The Parareal method can be considered an example of
this [1], [9]. Dynamic data-driven time parallelization [14],
[15], [18] uses results from prior, related, runs to construct
a coarse-grained model.

Conventional parallelization of ODEs is through distribu-
tion of the state space, as mentioned earlier. The difficulty
with small systems is that the computation time per time
step is small. For example, each step in our computation
takes the order of a tenth of a microsecond using the

1. However, this method may be useful for other reasons, such as when
widely different time steps can be used for different components. But the
order in which variables are solved has to be chosen carefully, to prevent
the variable with small times steps from becoming a bottleneck to variables
that depend on it [3].



Runge-Kutta method. This will be even smaller when the
state space is distributed across the cores. On the other
hand, MPI communication overhead is of the order of
microseconds. One could also use threads on multicore
processors. However, the thread synchronization overhead
is then significant, as mentioned earlier. In fact, a parallel
OpenMP implementation took almost an order of magnitude
more time than a sequential ODE solver, for the three ODEs
considered in this paper.

6. Conclusions

We have shown that hybrid dynamic iterations yield sig-
nificantly better performance than an equivalent sequential
method. This is important because conventional paralleliza-
tion is not feasible for small ODEs. The loss in efficiency
in the hybrid scheme is primarily due to the number of
iterations required for convergence. The other parallelization
overheads are small. Thus, they provide substantial benefit
when effective, and are not much worse than the sequential
computation when less effective.

We have considered three variants of this method: (i) solv-
ing for the entire interval, (ii) using windows, and (iii) using
sliding windows. The former two have been studied by
others for dynamic iterations (see [5], [12], [16] for win-
dowing). We demonstrated through the speedup results that
the parallel efficiency of the third is better. We also showed
that the convergence behavior of the hybrid method is better
than Picard iterations. Furthermore, our method has smaller
memory requirements than dynamic iterations. This can lead
to better cache performance.

This paper has demonstrated the potential of hybrid dy-
namic iterations in providing a scalable solution for small
ODE systems on modern computing platforms. We propose
the following future work to further establish this technique.
We are currently working on completing the following
simple extensions of this paper. (i) We are evaluating more
ODEs. (ii) We are implementing this approach on GPUs
(including double precision) and on the Cell. The hybrid
method’s smaller memory requirement is especially useful
on these platforms because of the small local store on the
Cell and the small set of registers and shared memory on
the GPU. (iii) We plan to replace the Runge-Kutta method,
which requires multiple evaluations of f at each time step,
by a multi-step method, which requires only one function
evaluation at each step. Our plans for the future are as
follows. (i) We wish to use an adaptive ODE solver instead
of the fixed time-step Runge-Kutta method that we have
currently used. This may require load balancing, when the
time steps sizes on different processors are different. (ii) Our
error tolerance condition is currently very simple, and just
based on the absolute difference between different iterations.
Conventional solvers use error estimates to determine the
tolerance. We need to develop theoretical results to enable us

to estimate the error, based on the time steps size, tolerance,
and window width. We are also planning a Matlab interface
so that the Matlab ode45 solver can be replaced by our
solver when a GPU is available.

Acknowledgments

This work was funded by NSF grant # DMS 0626180.
We also thank Xin Yuan at Florida State University for
permitting use of his Linux cluster. A.S. expresses his
gratitude to Sri Sathya Sai Baba for his help and inspiration.

References

[1] L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zerah.
Parallel-in-time molecular-dynamics simulations. Physical
Review E (Statistical, Nonlinear, and Soft Matter Physics),
66:57701–57704, 2002.

[2] M. Bjorhus. A note on the convergence of discretized
dynamic iterations. BIT Numerical Mathematics, 35:291–296,
1995.

[3] C. W. Gear. Waveform methods for space and time paral-
lelism. Journal of Computational and Applied Mathematics,
38:137–147, 1991.

[4] R. Jeltsch and B. Pohl. Waveform relaxation with overlapping
splittings. SIAM Journal on Scientific Computing, 16:40–49,
1995.

[5] B. Leimkuhler. Estimating waveform relaxation convergence.
SIAM Journal on Scientific Computing, 14:872–889, 1993.

[6] B. Leimkuhler. Timestep acceleration of waveform relaxation.
SIAM Journal on Numerical Analysis, 35:31–50, 1998.

[7] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-
Vincentelli. The waveform relaxation method for time-
domain analysis of large scale integrated circuits. IEEE Trans-
actions on Computer-aided Design of Integrated Circuits and
Systems, 1:131–145, 1982.

[8] Ch. Lubich and A. Ostermann. Multi-grid dynamic iterations
for parabolic equations. BIT Numerical Mathematics, 27:216–
234, 1987.

[9] Y. Maday and G. Turinici. Parallel in time algorithms
for quantum control: Parareal time discretization scheme.
International Journal of Quantum Chemistry, 93:223–238,
2003.

[10] O. Nevanlinna. Remarks on Picard Lindelöf iteration. BIT
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