Compact Graph Representations and Parallel Connectivity Algorithms
for Massive Dynamic Network Analysis

Kamesh Madduri
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, USA 94703

Abstract

Graph-theoretic abstractions are extensively used to an-
alyze massive data sets. Temporal data streams from socio-
economic interactions, social networking web sites, commu-
nication traffic, and scientific computing can be intuitively
modeled as graphs. We present the first study of novel high-
performance combinatorial techniques for analyzing large-
scale information networks, encapsulating dynamic interac-
tion data in the order of billions of entities. We present new
data structures to represent dynamic interaction networks,
and discuss algorithms for processing parallel insertions and
deletions of edges in small-world networks. With these new
approaches, we achieve an average performance rate of 25
million structural updates per second and a parallel speedup
of nearly 28 on a 64-way Sun UltraSPARC T2 multicore
processor, for insertions and deletions to a small-world
network of 33.5 million vertices and 268 million edges.
We also design parallel implementations of fundamental
dynamic graph kernels related to connectivity and centrality
queries. Our implementations are freely distributed as part
of the open-source SNAP (Small-world Network Analysis
and Partitioning) complex network analysis framework.

1. Introduction

Graphs are a fundamental abstraction for modeling and
analyzing data, and are pervasive in real-world applications.
Transportation networks (road and airline traffic), socio-
economic interactions (friendship circles, organizational hi-
erarchies, online collaboration networks), and biological
systems (food webs, protein interaction networks) are a few
examples of data that can be naturally represented as graphs.
Understanding the dynamics and evolution of real-world
networks is a “Grand Challenge” science and mathematics
problem [26]. Networks are being studied extensively from
an empirical perspective, and this has led to a variety
of models to characterize their topology and evolution.
Quite surprisingly, it has been shown that several real-
world systems such as the Internet, social interactions, and
biological networks exhibit common structural features such

David A. Bader
College of Computing
Georgia Institute of Technology
Atlanta, USA 30332

as a low graph diameter, unbalanced degree distributions,
self-similarity, and the presence of dense sub-graphs [1, 21].
This is generally referred to as the small-world phenomenon,
and these topological characteristics can be exploited for fast
and efficient algorithm design.

We tackle two challenging aspects of small-world graph
analysis in this paper: the problem scale, and the temporal
nature of interaction networks. Due to technological ad-
vances related to the Internet, sensor networks, experimental
devices, biological sequencing, and science and engineering
simulations, we are experiencing an explosion of informatics
data on several fronts. The network representations of these
data sets may have millions, or even billions, of entities. We
need new algorithms that scale with the problem size, and
are optimized for efficient execution on emerging computer
architectures such as multicore systems. In prior work,
we present efficient implementations for fundamental graph
problems and kernels such as list ranking [3], breadth-
first search and sz-connectivity [4], shortest paths [19],
minimum spanning trees [2], and connected components
[3]. We exploit the small-world topology of the network
to design new parallelization strategies, and demonstrate the
ability to process massive graphs in the order of billions of
entities [6]. However, the previous research has primarily
focused on a static representation of the network. We are
increasingly observing dynamically evolving networks in
real-world systems, with heterogeneity in the data content,
and variable data quality. The challenge here is to design
efficient implementations and algorithms that can handle
structural updates to these complex networks, while solving
graph queries with as little additional work as possible, and
minimizing the size of auxiliary data structures.

This is the first paper to identify, design, and implement
fundamental graph data structures and kernels for analyzing
massive dynamic networks on parallel systems. Our main
results are summarized here:

o We design a new hybrid data structure for dynamic
small-world graphs that efficiently processes updates to
high-degree vertices. We also experiment with several
data representations for a stream of structural updates
(insertions and deletions of edges), and demonstrate

scalable parallel performance on massive networks. For
instance, we achieve an average performance of 25
million structural updates per second, and a parallel
speedup of nearly 28 on the 64-way Sun UltraSPARC
T2 multicore processor (8 cores, and 8 threads per
core), for construction, insertions, and deletions to a
small-world network of 33.5 million vertices and 268
million edges.

o To address connectivity problems in dynamic networks,
we show that a simple implementation of the link-
cut tree helps us process queries in time proportional
to the diameter of the network. We design parallel
approaches for tree construction, updates, as well as
query processing. The implementations scale quite well
on multicore architectures. For instance, constructing a
link-cut tree for a network of 10 million vertices and
84 million edges takes about 3 seconds on the Ultra-
SPARC T2, and we can process connectivity queries
on this network at the rate of 7.3 million per second.

o For answering path-related and centrality queries, we
design an efficient induced subgraph kernel, graph
traversal algorithm, and formulate a betweenness cen-
trality algorithm to deal with time-stamps on the
edges. We demonstrate scalable parallel performance
for small-world instances, achieving a parallel speedup
of 13.1 for breadth-first search on a massive dynamic
network of 500 million vertices and 4 billion edges, on
the IBM p5 570 symmetric multiprocessor system.

The techniques discussed in this paper directly impact
several important real-world applications, such as graph
database operations for biological networks (approximate
matching [25], summarization, and clustering), queries on
massive dynamic interaction data sets in intelligence and
surveillance [9, 18], and Web algorithms. The parallel im-
plementations of these dynamic graph kernels are freely
available as part of the open-source SNAP complex network
analysis framework [6].

This paper is organized as follows. We give a brief
introduction to complex network analysis, and discuss prior
work related to dynamic graph algorithms in Section 1.1. To
evaluate our new algorithms, we conduct an extensive exper-
imental study, and the test setup is detailed in Section 1.2.
Sections 2 and 3 present details of our new dynamic graph
representations and kernels respectively, and we also analyze
their performance on several emerging multithreaded and
multicore architectures. We conclude with a discussion of
research challenges in this area in Section 4.

1.1. Related Work

For tractable analysis of massive temporal data sets, we
need new algorithms and software implementations that
supplement existing approaches for processing static graphs.

Innovative algorithmic techniques from the areas of stream-
ing algorithms, dynamic graph algorithms, social network
analysis, and parallel algorithms for combinatorial problems
are closely related to the problems we are trying to solve,
and we give a brief overview of research in these domains.

Data Stream and Classical Graph Algorithms. The data
stream model [20] is a powerful abstraction for the statistical
mining of massive data sets. The key assumptions in this
model are that the input data stream may be potentially
unbounded and transient, the computing resources are sub-
linear in data size, and queries may be answered with only
one (or a few) pass(es) over the input data. The bounded
memory and computing-resource assumption makes it in-
feasible to answer most streaming queries exactly, and so
approximate answers are acceptable. Effective techniques
for approximate query processing include sampling, batch-
processing, sketching, and synopsis data structures. Com-
plementing data stream algorithms, a graph or network
representation is a convenient abstraction in many appli-
cations — unique data entities are represented as vertices,
and the interactions between them are depicted as edges.
The vertices and edges can further be typed, classified, or
assigned attributes based on relational information from the
heterogeneous sources. Analyzing topological characteristics
of the network, such as the vertex degree distribution, cen-
trality and community structure, provides valuable insight
into the structure and function of the interacting data entities.
Common analysis queries on the data set are naturally ex-
pressed as variants of problems related to graph connectivity,
flow, or partitioning.

Since classical graph problems are typically formulated in
an imperative, state-based manner, it is hard to adapt existing
algorithms to the data stream model. New approaches have
been proposed for solving graph algorithms in the streaming
model [15], but there are no known algorithms to solve
fundamental graph problems in sub-linear space and a
constant number of data stream passes. The semi-streaming
model is a relaxation to the classical streaming model, that
allows O(n polylog n) space and multiple passes over data.
This is a simpler model for solving graph problems and
several recent successes have been reported [11]. However,
this work is far from complete; we require faster exact
and approximate algorithms to analyze peta- and exascale
data sets and to experimentally evaluate the proposed semi-
streaming algorithms on current architectures.

Dynamic Graph Algorithms. While the focus of stream-
ing algorithms is on processing massive amounts of data
assuming limited computational and memory resources, the
research area of dynamic graph algorithms [12] in graph
theory deals with work-efficient algorithms for temporal
graph problems. The objective of dynamic graph algorithms
is to efficiently maintain a desired graph property (for

instance, connectivity, or the spanning tree) under a dynamic
setting, i.e. allowing periodic insertion and deletion of edges,
and edge weight updates. A dynamic graph algorithm should
process queries related to a graph property faster than recom-
puting from scratch, and also perform topological updates
quickly. The dynamic tree problem is a key kernel [27] in
several dynamic graph algorithms; Eppstein et al.’s sparsi-
fication [13] and Henzinger et al.’s randomization methods
[14] are novel algorithmic techniques proposed for process-
ing temporal graphs. A fully dynamic algorithm handles both
edge insertions and deletions, whereas a partially dynamic
algorithm handles only one of them. Dynamic graph algo-
rithms have been designed for the all-pairs shortest paths,
maximum flow, minimum spanning forests and other graph
applications [10]. Recent experimental studies [28] have
evaluated the performance trade-offs involved in some of
these kernels and techniques.

Large-scale Network Analysis and Parallel Computing.

The analysis of complex interaction data is an active research
area in the social science and statistical physics communi-
ties. Modeling of networks (such as the small-world network
model) and quantitative measures to better understand these
complex networks (for instance, identification of influential
entities, communities, and anomalous patterns) are well-
studied [21]. Computations involving these sparse real-world
graphs only manage to achieve a tiny fraction of the peak
system performance on the majority of current computing
platforms. The primary reason is that sparse graph analysis
tends to be highly memory-intensive: codes typically have a
large memory footprint, exhibit low degrees of spatial and
temporal locality in their memory access patterns (compared
to other workloads), and there is very little computation to
hide the latency to memory accesses. Further, on current
workstations, it is infeasible to do exact in-core compu-
tations on large-scale graphs (by large-scale, we refer to
graphs where the number of vertices and edges are in the
range of hundreds of millions to tens of billions) due to the
limited physical memory and running time constraints. In
such cases, emerging manycore and multithreaded architec-
tures with a significant amount of shared physical memory
(say, 4-32 GB or more) are a natural platform for the design
of efficient multithreaded graph algorithms and processing
massive networks. For instance, recent experimental studies
on breadth-first search for large-scale sparse random graphs
show that a parallel in-core implementation is two orders of
magnitude faster than an optimized external memory imple-
mentation [4]. Parallel multicore and manycore processors
are the building blocks for petascale supercomputers, and
are now ubiquitous in home computing also.

1.2. Experimental Setup

In our experimental studies, we use the Recursive MATrix
(R-MAT) [8] random graph generation algorithm to generate
input data sampled from a Kronecker product that are
representative of real-world networks with a small-world
topology. The R-MAT generator creates directed as well as
undirected graphs with n = 2% vertices and m edges, and
allows shaping parameters. We set these parameters a, b, c,
and d to 0.6, 0.15, 0.15, and 0.10. This generates graphs with
a power-law degree distribution, and the out-degree of the
most connected vertex is O(no'ﬁ). We also assign uniform
random time-stamps to edges for our experimental study.

We present performance results primarily on two single-
socket Sun multithreaded servers, a Sun Fire T5120 system
with the UltraSPARC T2 processor, and a Sun Fire 2000
system with the UltraSPARC T1 processor. The Sun Ul-
traSPARC T2 is an eight-core processor, and the second-
generation chip in Sun’s Niagara architecture family. Each
core is dual-issue and eight-way hardware multithreaded.
Further, the hardware threads within a core are grouped into
two sets of four threads each. There are two integer pipelines
within a core, and each set of four threads share an integer
pipeline. Each core also includes a floating point unit and a
memory unit that are shared by all eight threads. Although
the cores are dual-issue, each thread may only issue one
instruction per cycle and so resource conflicts are possible.
In comparison to the T2, the UltraSPARC T1 (the T2’s
predecessor) has only 4 threads per core, one integer pipeline
per core, and one floating point unit shared by all eight
cores. The 1.2 GHz UltraSPARC T2 cores share a 4 MB L2
cache, and the server has a main memory of 32 GB. The
UltraSPARC T1 has 8 cores running at 1 GHz. The cores
share a 3 MB L2 cache, and the main memory size is 16 GB.
We build our codes with the Sun Studio 12 C compiler on
the UltraSPARC T2 with the following optimization flags:
-fast -xtarget=ultraT2 -xchip=ultraT2 -xipo -m64 -xopenmp
-xpagesize=4M, and with Studio 11 on the UltraSPARC
T1 with flags: -fast -xtarget=ultraTl -xchip=ultraTl -xipo
-xarch=v9b -xopenmp -xpagesize=4M.

Our implementations can be easily ported to other mul-
ticore and symmetric multiprocessor (SMP) platforms. We
also execute experiments on an IBM pSeries SMP system,
the Power 570. The Power 570 is a 16-way symmetric multi-
processor of 1.9 GHz Power5 processors with simultaneous
multithreading (SMT), a 32 MB shared L3 cache, and 256
GB shared memory.

2. Graph Representation

We represent the interaction data as a graph G = (V, E),
where V is the set of vertices representing unique interacting
entities, and F is the set of edges representing the interac-
tions. The number of vertices and edges are denoted by n

and m, respectively. The graph can be directed or undirected,
depending on the input interaction data set. We will assume
that each edge e € E has a positive integer weight w(e). For
unweighted graphs, we use w(e) = 1. A parh from vertex s
to t is defined as a sequence of edges (u;,u;1+1), 0 <@ <,
where ug = s and u; = t. The length of a path is the sum of
the weights of edges. We use d(s,t) to denote the distance
between vertices s and ¢ (the minimum length of any path
connecting s and ¢ in (7). Let us denote the total number
of shortest paths between vertices s and ¢ by o4, and the
number of those passing through vertex v by o4 (v).

We model dynamic interaction data by augmenting a
static graph G with explicit time-ordering on its edges. In
addition, vertices can also store attributes with temporal
information, if required. Formally, we model dynamic net-
works as defined by Kempe et al. [17]: a temporal network
is a graph G(V, E) where each edge e € E has a time-
stamp or time label \(e), a non-negative integer value
associated with it. This time-stamp may vary depending
on the application domain and context: for instance, it can
represent the time when the edge was added to the network
in some cases, or the time when two entities last interacted
in others. If necessary, we can define multiple time labels per
edge. We can similarly define time labels &(v) for vertices
v € V, capturing, for instance, the time when the entity was
added or removed. It is straight-forward to extend a static
graph representation to implement time-stamps defined in
the above manner. Also, the time-stamps can be abstract
entities in the implementation, so that they can be used
according to the application requirement.

2.1. Adjacency Structures

Efficient data structures and representations are key to
high performance dynamic graph algorithms. In order to
process massive graphs, it is particularly important that
the data structures are space-efficient (compact). Ease of
parallelization and the synchronization overhead also influ-
ence our representation choice. Ideally, we would like to
use simple, scalable and low-overhead (for instance, lock-
free) data structures. Finally, the underlying algorithms and
applications dictate our data structure choices.

For representing sparse static graphs, adjacency lists im-
plemented using cache-friendly adjacency arrays are shown
to give substantial performance improvements over linked-
list and adjacency matrix representations for sparse graphs
[22]. For dynamic networks, we need to process insertions
of vertices and edges, which may be streaming or batched.
Thus, we experiment with the performance of several candi-
date representations for small-world graphs and discuss the
trade-offs associated with each data structure.

2.1.1. Dynamic Arrays (Dyn-arr). We can extend the static
graph representation and use dynamic, resizable adjacency

arrays for processing insertions and deletions. Clearly, this
would support fast insertions. For inserting a new edge
(u,v), we resize the adjacency array of u if needed, and
place v at the end of the array. The count can be incremented
using an atomic increment operation on modern hardware,
and so this representation supports lock-free, non-blocking
insertions.

There are two potential parallel performance issues with
this data structure. Edge deletions are expensive in this
representation, as we may have to scan the entire adjacency
list in the worst case to locate the required tuple. Note
that a scan is reasonable for low-degree vertices (say, less
than 10 adjacencies), given the spatial locality we have
due to the contiguous adjacency representation. However,
due to the power-law degree distributions in small-world
networks, we may encounter several high-degree vertices in
the graph, and deletions for these vertices would necessitate
O(n) additional work.

The second issue is with load balancing of parallel edge
insertions among the processors. We might be faced with a
bad scenario of several threads trying to increment the count
of a high-degree vertex simultaneously, if there are a stream
of contiguous insertions corresponding to adjacencies of one
vertex. This can be addressed by batching the updates, or by
randomly shuffling the updates before scheduling the inser-
tions. Both these operations incur an additional overhead,
but since insertions are still constant-time operations, the
performance hit is not as significant as other data structures.

There is also the performance overhead associated with
resizing the adjacency arrays frequently. We implement our
own memory management scheme by allocating a large
chunk of memory at the algorithm initiation, and then
have individual processors access this memory block in
a thread-safe manner as they require it. This avoids fre-
quent system malloc calls. Since we assume that SNAP
is analyzing power-law graphs, we double the size of the
adjacency array every time we resize it. There is still a trade-
off associated with the memory footprint and the number
of array resizes. We experiment with various initial sizes
and resizing heuristics, and pick a scheme that is easy
to implement and deterministic. We set the size of each
adjacency array to km/n initially, and we find that a value
of k = 2 performs reasonably well on our test instances.
When analyzing performance, we also report execution time
for a optimal-case array representation Dyn-arr-nr, which
assumes that one knows the size of the adjacency arrays
for each vertex before-hand, and thus incurs no resizing
overhead.

The problem size also influences the graph representation
that one might choose. Figure 1 gives the parallel perfor-
mance achieved with Dyn-arr-nr for a series of insertions on
one core (left), and eight cores (right) of the UltraSPARC T1
and UltraSPARC T2 systems. We report update performance
in terms of a performance rate MUPS (millions of updates

100

o g0 —e— UltraSPARC T1
© v UltraSPARC T2
< 604

c

]

o 40 4

2]

o}

Q.

8

® 201 v v v

B v v v

2 15 v

— v v

5] Vo
2 10 4

9

E,

[i

o 5

2

=

T T T T T T T T T T T

14 15 16 17 18 19 20 21 22 23 24
Problem SCALE (Log,# of vertices)

(a) 1 core: 4 threads on UltraSPARC T1 and 8 threads on UltraSPARC T2.

100

80 4 o —e— UltraSPARC T1
v v v v UltraSPARC T2
60 v v v
v
Vo
40 A v

20 A
15 A

MUPS (Millions of updates per second) rate

T T T T T T T T T T T

14 15 16 17 18 19 20 21 22 23 24
Problem SCALE (Log,# of vertices)

(b) 8 cores: 32 threads on UltraSPARC T1 and 64 threads on UltraSPARC
T2.

Figure 1. Parallel performance of insertions with the Dyn-arr-nr representation as the size of the problem instance
(synthetic R-MAT graphs, m = 10n) is varied from thousands to tens of millions of vertices.

per second), which is the number of insertions or deletions
divided by the execution time in seconds. We generate
synthetic R-MAT networks with m = 10n edges, and vary n
across three orders of magnitude. Observe that UltraSPARC
T2 performance on 8 cores drops by a factor of 1.5, and
UltraSPARC T1 performance by a factor of 1.8, as we
vary n from 2'* to 224, When the memory footprint of the
run is comparable to the L2 cache size, the performance
is relatively higher. For the rest of the paper, we will
be focusing on graph instances with a memory footprint
significantly larger than the L2 cache size.

In Figure 2, we plot the performance overhead of array
resizing for a large-scale graph. We generate the dynamic
network through a series of insertions, and report the MUPS
rate as the number of threads is varied from 1 to 64. The
initial array size is set to 16 in this case. Observe that the
impact of resizing is not very pronounced in this case, which
is a positive sign for the use of resizable arrays.

2.1.2. Batched Insertions and Deletions. In cases where
the number of tuples to be inserted or deleted is com-
paratively high, an intuitive strategy is to order the tuples
by the vertex identifier and then process all the updates
corresponding to each vertex at once. This is a better solution
to the load-balancing problem we discussed in the previous
representations. The time taken to semi-sort updates by their
vertex is a lower bound for this strategy. Sorting can be done
in parallel, and would require O(k) work (for a batch of k
updates).

2.1.3. Vertex (Vpart) and Edge (Epart) partitioning. The
overhead due to locking is a performance bottleneck in the

—&— Dyn-arr-nr
50 1 v Dyn-arr

MUPS (Million of updates per second) rate

0 T T T T T T T T T
124 8 12 16 24 32 40 48 56 64

Number of threads

Figure 2. A comparison of UltraSPARC T2 parallel
performance of Dyn-arr and Dyn-arr-nr for graph con-
struction, represented as a series of insertions. We
generate an R-MAT network of 33.5 million vertices and
268 million edges.

parallel implementation using Dyn-arr. To avoid locking,
one strategy would be to assign vertices to processors
in a randomized or a deterministic fashion (we call this
representation Vpart) so that threads can insert to different
vertices simultaneously. However, each update is read by all
the threads in this case, which can be significant additional
work. The reads have good spatial locality, and hence this
approach might work well for a small number of threads.

2 B Dyn-arr

T 50 1 ez Sort

5 BB Vpart

g XY Epart

5 w0

9]

g 7

§_30_ %

5 , TN

- 7 S 10

= I\ N

2 1K 10

2 1N 10
28N A N

UltraSPARC T1

UltraSPARC T2

Multicore processor

Figure 3. An upper bound on the performance achieved
using batched operations for insertions (semi-sorting
time), compared to the performance of Dyn-arr-nr.
These are parallel performance results on UltraSPARC
T2.

Similarly, we can also partition the adjacency lists of
vertices discovered to be high-degree ones in the process
of insertions. This would help us avoid the load-balancing
problem when there are multiple insertions to the adjacency
of a single vertex. We call this implementation Epart.
A drawback with the Epart implementation is the space
overhead of splitting up the adjacency list of high-degree
vertices among multiple threads, and the subsequent merge
step to construct a single adjacency list representation.

Figure 3 plots the performance of insert-only updates with
Dyn-arr, and compares it with the performance that can
be achieved using vertex partitioning, edge partitioning, and
batched processing (the upper bound of semi-sorting) on 8
cores of UltraSPARC T2 and UltraSPARC T1, for a graph of
33.5 million vertices and 268 million edges. We consider the
semi-sorting time to obtain an upper bound for the MUPS
score that can be achieved with a batched representation.
Dyn-arr outperforms the batched representation, as well
as Epart and Vpart. The trends on UltraSPARC T2 and
UltraSPARC T1 are similar.

2.1.4. Treaps. The resizable array data structure supports
fast access and insertions, but deletions can be very ex-
pensive. For applications in which the frequency of edge
deletions is high, we consider alternate representations. A
possible choice for representing the adjacency list would be
a self-balancing binary tree structure such as an AVL-tree
or a Red-Black tree. These data structures allow for fast
searches, insertions, and deletions with worst-case O(logn)
update time. We chose to use a simpler self-balancing data
structure, the treap [23], to represent the adjacencies.

Treaps are binary search trees with a priority (typically a
random number) associated with each node. The priorities
are maintained in heap order, and this data structure supports
insertions, deletions, and searching in average-case O(logn)
time. In addition, there are efficient parallel algorithms for
set operations on treaps such as union, intersection and dif-
ference. Set operations are particularly useful to implement
kernels such as graph traversal and induced sub-graphs, and
for batch-processing updates.

Since we use our own memory management routines,
our Treaps implementation is reasonably space-efficient, but
with a 2-4 times larger memory footprint compared to
Dyn-arr. We use the same resizing strategies for Treaps
as with Dyn-arr. Insertions are significantly slower than
Dyn-arr. Note that we cannot atomically increment the size
counter for updates, as the treap may undergo rebalancing
at every step. The granularity of work inside a lock is
significantly higher in this case, and so the problem of
multiple threads simultaneously trying to insert to a vertex
is also significant. We can overcome this by processing the
insertions in batches, but randomly shuffling the tuples might
not be as effective as in the case of Dyn-arr.

In case of deletions, however, this representation has a
significant performance advantage. We actually remove the
node out of the adjacency array in case of Treaps, whereas
we just mark a memory location as deleted for Dyn-arr.

2.1.5. A hybrid representation (Hybrid-arr-treap). To pro-
cess both insertions and deletions efficiently, and also given
the power-law degree distribution for small-world networks,
we design a hybrid representation that uses Dyn-arr to
represent adjacencies of low-degree vertices, and Treaps
for high-degree vertices. We monitor a parameter degree-
thresh that decides which representation to use for the vertex.
By using Dyn-arr for low-degree vertices (which will be
a majority of vertices in the graph), we can achieve good
performance for insertions. Also, deletions are fast for low-
degree vertices, whereas they take logarithmic time for high-
degree vertices represented using treaps. Thus we are able to
optimize for good performance for both insertions as well
as deletions using this data structure. Based on the value
of degree-thresh, we can change the representation of an
adjacency list from one to the other. We have experimented
with several different values and find that for synthetic R-
MAT small-world graphs, a value of 32 on our platforms
provides a reasonable insertion-deletion performance trade-
off for an equal number of insertions and deletions. Given
the graph update rate and the insertion to deletion ratio for an
application, it may be possible to develop runtime heuristics
for a reasonable threshold.

Figures 4 and 5 plot the parallel performance of insertions
and deletions respectively, on a large-scale synthetic R-MAT
instance of 33.5 million vertices and 268 million edges on
UltraSPARC T2. The insertion MUPS rate is computed from

—&— Dyn-arr
50 1 v Hybrid-arr-treap
—m— Treaps

40 A P —Y

MUPS (Millions of updates per second) rate

0 Fr— T T T T T T T

12 16 24 32 48 64

Number of threads

Figure 4. A comparison of UltraSPARC T2 parallel
performance using the Dyn-arr, Treaps, and Hybrid-arr-
treap representations, for graph construction (treated as
a series of insertions). We generate an R-MAT network
of 33.5 million vertices and 268 million edges.

the time taken to construct the graph, while the deletion
rate is the normalized value for 20 million random deletions
after constructing this network. Dyn-arr is 1.4 times faster
than the hybrid representation, while Hybrid-arr-treap is
slightly faster than Treaps. The real benefit of using the
hybrid representation is seen for deletions, where Hybrid-
arr-treap is almost 20x faster than the dynamic array
representation. Hybrid-arr-treap is also significantly faster
than Treaps in case of deletions. In Figure 6, we plot the
parallel performance of updates given a mix of insertions
and deletions. We construct a synthetic network of 33.5
million vertices and 268 million edges, and compute the
average execution time for a random selection of 50 million
updates, with 75% insertions and 25% deletions. We find
that the performance of Hybrid-arr-treap and Dyn-arr are
comparable in this case, while Treaps is slower. For a large
proportion of deletions, the performance of Hybrid-arr-treap
would be better than Dyn-arr.

2.1.6. Other optimizations. Compressed graph structures
are an attractive design choice for processing massive net-
works, and they have been extensively studied in the context
of web-graphs [7]. Exploiting the small-world and self-
similarity properties of the web-graph, mechanisms such
as vertex reordering, compact interval representations, and
compression of similar adjacency lists have been proposed.
It is an open question on how these techniques perform for
real-world networks from other applications, and whether
they can be extended for processing dynamic graphs.

—— Dyn-arr
50 4 v Hybrid-arr-treap
—@— Treaps

40 -

30 A

MUPS (Millions of updates per second) rate

28 32 40 48 64

Number of threads

Figure 5. A comparison of UltraSPARC T2 parallel
performance for deletes using the Dyn-arr, Treaps, and
Hybrid-arr-treap representations. We generate an R-
MAT network of 33.5 million vertices and 268 million
edges, and compute execution time for 20 million dele-
tions.

—&— Dyn-arr
50 A v Hybrid-arr-treap
—@— Treaps

40 -

30 4

MUPS (Millions of updates per second) rate

124 8 12 16 24 32 48 64

Number of threads

Figure 6. A comparison of UltraSPARC T2 parallel
performance for a combination of insertions and deletes
using the Dyn-arr, Treaps, and Hybrid-arr-treap rep-
resentations. We generate an R-MAT network of 33.5
million vertices and 268 million edges, and compute
execution time for 50 million updates.

3. Graph Analysis Kernels

We next identify key connectivity, path-related, and
centrality-related graph kernels (or algorithmic building
blocks) in the design of higher-level analysis approaches) for
analyzing dynamic networks, present fast parallel algorithms

for solving them, and evaluate their performance on parallel
architectures.

3.1. Connectivity

Consider the following problem of graph connectivity:
given two vertices s and t in a graph, determine whether
there is a path connecting them. A possible approach to
solving this problem would be to do a breadth-first graph
traversal from s and determine if we can reach t. However,
we can process queries on path existence (where we do not
need the length of the path) more efficiently by maintaining
a spanning forest corresponding to the graph. In case of
dynamic networks, maintaining a forest that changes over
time with edge insertions and deletions is known as the
dynamic forest problem, and this is a key data structure
in several dynamic graph and network flow problems [27].
There are well-known data structures for dynamic trees,
which rely on path decomposition (e.g., link-cut trees) or
tree contraction (e.g., RC-trees, top trees).

The link-cut tree is a data structure representing a rooted
tree [24]. The basic structural operations are link(v,w),
which creates an arc from a root v to a vertex w, and cut(v),
which deletes the arc from v to its parent. The routines
findroot(v) and parent(v) can be used to query the structure
of the tree. There are several possible implementations of the
link-cut tree, including self-adjusting ones which guarantee
a logarithmic query time. A straightforward implementation
of the link-cut tree would be to store with each vertex a
pointer to its parent. This supports the link, cut, and parent
in constant time, but the findroot operation would require
a worst-case traversal of O(n) vertices for an arbitrary
tree. However, we observe that for low-diameter graphs
such as small-world networks, this operation just requires
a small number of hops, as the height of the tree is small.
Also, it is relatively simple to construct the link-cut tree,
given the network. We apply a lock-free, level-synchronous
parallel breadth-first search [4] on the graph to produce a
tree associated with the largest component in the network,
and then run connected components to construct a forest
of link-cut trees. Figure 7 plots the execution time and
parallel speedup achieved on the UltraSPARC T2 system for
constructing the link-cut tree corresponding to a synthetic
small-world network of 10 million vertices and 84 million
edges. We achieve a good speedup of 22 on 32 threads of the
UltraSPARC T2 system. Figure 8 plots the execution time
for 1 million connectivity queries using this link-cut tree.
Each connectivity query involves two findroot operations,
each of which would take O(d) time (where d is the diameter
of the network). The queries can be processed in parallel, as
they only involve memory reads. Each query computation
is essentially a linked list traversal, the serial performance
of which is poor on cache-based architectures. We still
achieve a speedup of 20 for parallel query processing on

90 - [Executiontime | 39
—%— Relative Speedup

75 A F 25

60 -

45 -

Relative Speedup

30 4

Execution time (seconds)

0 R n

12 4 8 12 16 24 32

Number of threads

Figure 7. Execution time and parallel speedup for link-
cut tree construction (from a small-world network of 84
million edges) on UltraSPARC T2.

3.0 4 [Executiontime | 39
—%— Relative Speedup
»
-8 o
g 3
g s
§ 2
2 s
3 ¢
ai
12 4 8 12 16 24 32
Number of threads
Figure 8. Execution time and parallel speedup on

UltraSPARC T2 for 1 million connectivity queries (link-
cut tree, small-world network of 84 million edges).

UltraSPARC T2.

3.2. Induced subgraph

Utilizing temporal information, several dynamic graph
problems can be reformulated as problems on static in-
stances. For instance, given edge and vertex time labels, we
may need to extract vertices and edges created in a particular
time interval, or analyze a snapshot of a network. This
problem can be solved by the induced subgraph kernel, and
the execution time is dependent on the size and connectivity
of the vertex or edge set that induce the subgraph.

Figure 9 plots the parallel performance of the induced
subgraph kernel on UltraSPARC T1. We apply the induced

90 12
[Execution time
—%— Relative Speedup

75 4 r 10

60 q r8

30 4 La

Execution time (seconds)
&
(]
Relative Speedup

0- I l I I l-o
12 4 8 12 16

Number of threads

Figure 9. Parallel Performance of the induced subgraph
kernel on UltraSPARC T1 for an R-MAT graph of 20
million vertices and 200 million edges.

subgraph kernel on a graph of 20 million vertices and 200
million edges, with each edge assigned a integral time-
stamp between 1 and 100 during graph creation. The edges
are randomly shuffled to remove any locality associated
due to graph generation. We generate the induced subgraph
corresponding to the edges inserted in time interval (20, 70).
The first step in the algorithm is to identify edges that are
affected by the temporal condition we apply. This step just
requires us to make one pass over the edge list and mark all
the affected edges, and also keep a running count. Next we
either create a new graph, or delete edges from the current
graph, depending on the the affected edge count. This step
reduces to the case of insertions and deletions of edges
to the graph, which we discussed in the previous section.
Thus, each edge in the graph is visited at most twice in the
worst case in this kernel. As demonstrated in Figure 9, the
induced subgraph kernel achieves a good parallel speedup
on UltraSPARC T1.

3.3. Graph traversal

Graph traversal is a fundamental technique used in several
network algorithms. Breadth-first search (BFS) is an impor-
tant approach for the systematic exploration of large-scale
networks. In prior work, we designed a level-synchronous
PRAM algorithm for BFS that takes O(d) time and opti-
mal linear work (where d is the graph diameter) [4]. For
small-world graphs, where d is typically a constant, or
in some cases O(logn), this algorithm can be efficiently
implemented on large shared memory parallel systems with
a high parallel speedup.

For isolated runs of BFS on dynamic graphs, we can
take the approach discussed in the induced subgraph kernel,

500 15
[Execution time
—%— Relative Speedup

300 A

Execution time (seconds)
Relative Speedup

100 +

L 1

1 2 4 8 12 16

Number of threads

Figure 10. Parallel BFS performance on the IBM Power
570 system for an R-MAT graph of 500 million vertices
and 4 billion edges.

i.e., utilize the time-stamp information and recompute from
scratch. This approach requires no additional memory, as it
just uses the time label information for filtering vertices and
edges during graph traversal. Coupled with optimizations to
handle graphs with unbalanced degree distributions, we are
able to traverse massive graphs in just a few seconds on
current HPC systems. For instance, we generate a massive
synthetic small-world network with 500 million vertices and
4 billion edges, with time-stamps on edges such that the
entire graph is in one giant component. On 16 processors
of the IBM Power 570 SMP, augmented BFS with a check
for time-stamps takes just 46 seconds for this large-scale
network (see Figure 10 for parallel performance and scal-
ing). The unbalanced degree optimization we refer to above
are discussed in more detail in [4, 5]. We process the high-
degree and low-degree vertices differently in a parallel phase
to ensure that each that we have balanced partitioning of
work to threads.

3.4. Temporal path-based centrality metrics

Finally, we present the case study of a social network
analysis routine that can be parallelized efficiently using
the data structures and kernels presented so far — centrality
analysis in interaction networks.

A fundamental problem in social network analysis is to
determine the importance (or the centrality) of a particular
vertex (or an edge) in a network. Well-known quantitative
metrics for computing centrality are closeness, stress, and
betweenness. Of these indices, betweenness has been ex-
tensively used in recent years for the analysis of social-
interaction networks, as well as other large-scale complex
networks. Some applications include assessing lethality in

biological networks [16], study of sexual networks and
AIDS, identifying key actors in terrorist networks [9], or-
ganizational behavior, and supply chain management pro-
cesses.

Betweenness centrality can be formulated for entities in a
dynamic network also, by taking the interaction time labels
and their ordering into consideration. Define a temporal path
palu, v) [17] between u and v as a sequence of edges (u =
v0,v1)s {V1,V2), ..., (Vk—1, Uk = v), such that A(vi_1,v:) <
A(vg,v441) for t = 1,2,....k — 1. We define a temporal
shortest path between u and v as a temporal path with the
shortest distance d(u,v). In this framework, the temporal
betweenness centrality BCy(v) of a vertex v is the sum of
the fraction of all temporal shortest paths passing through
v, between all pairs of vertices in the graph. Formally, let
dst(v) denote the pairwise dependency, or the fraction of
shortest temporal paths between s and ¢ that pass through

v S5 (v) = 75t() e, BCu(v) = Y, 1y sier Ost(v).

Note that a shortest temporal path between w and v may
not necessarily be a shortest path in the aggregated graph
formed by ignoring time-stamps. This definition of temporal
centrality respects the time ordering of edges and provides
better insight into network evolution. Alternate definitions
of temporal paths are also possible. For instance, one could
define a valid edge in the graph to fall within a predefined
range of timestamps.

We design and implement a new parallel approach for
computing temporal betweenness centrality, by augmenting
our prior parallel algorithm for betweenness computation on
static graphs [5] with time-stamp information. The graph
traversal step in this parallel approach is modified to process
temporal paths, while the dependency-accumulation stage
remains unchanged. Figure 11 plots the performance of
approximate betweenness centrality (graph traversal from
only a subset of vertices, and then extrapolation of the
centrality scores) for a synthetic network with 33 million
vertices and 268 million edges. We achieve a speedup of
23 on 32 threads of UltraSPARC T2 for this particular
problem instance. We assign integer time-stamps in the
interval [0,20] for the vertices, and follow the notion of
temporal shortest paths defined above. We traverse the graph
from 256 randomly chosen vertices and then approximate
the betweenness values. It is straightforward to modify our
implementation to process other edge filtering or temporal
path conditions as well. In addition to picking the shortest
path, edges are filtered in every phase of the graph traversal.
Thus, the amount of concurrency per phase is comparatively
lower than breadth-first graph traversal with time-stamps.

4. Conclusions and Future Research

We present the first work on the design and imple-
mentation of high-performance graph representations and

6000 30
[Execution time
—%— Relative Speedup
5000 - F25
o
2
S 4000 20 2
[&]
g 3
3 2
[}
£ 3000 A 15 N
£ [
= 2
S kS
3 2000 - L0 &
9}
x
1]
1000 - 5
0 = o
1 4 8 12 16 24 32

Number of threads

Figure 11. Approximate betweenness performance on
UltraSPARC T2 using the notion of temporal paths. The
input network is a synthetic R-MAT graph of 33 million
vertices and 268 million edges.

kernels for analyzing massive dynamic interaction data sets
with billions of entities. In particular, we present a hybrid
graph representation for small-world graphs with unbal-
anced degree distributions, that processes both insertions
and deletions of edges efficiently. We design a fast parallel
implementation of the link-cut tree for connectivity queries.
Finally, we report impressive parallel performance results
for several graph traversal and path-based dynamic kernels
on current multicore and SMP systems.

There are several challenging problems in this area for
future research. We intend to explore compressed adjacency
representations to reduce the memory footprint, and vertex
and edge identifier reordering strategies to improve cache
performance. The problem of single-source shortest paths
for arbitrarily weighted graphs is challenging to parallelize
efficiently, and is even harder in a dynamic setting. We will
study how other static complex graph algorithms can be
modified to work with our data representation. We will also
investigate whether the data structures and parallelization
techniques discussed in this paper can be applied to graph
analysis on heterogeneous multicore processors such as
the IBM Cell Broadband Engine processor, and massively
multithreaded systems such as the Cray XMT.

Acknowledgments

This work was supported in part by NSF Grants CNS-
0614915 and DBI-0420513, IBM Faculty Fellowship and
Microsoft Research grants, NASA grant NP-2005-07-375-
HQ, DARPA Contract NBCH30390004, PNNL CASS-MT
Center, MIT Lincoln Laboratory, and by the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231.
We acknowledge the support from Sun Microsystems with

their donation of Sun Niagara blades through an Academic
Excellence Grant. We thank Bruce Hendrickson and Jon
Berry of Sandia National Laboratories, and Jeremy Kepner
of MIT Lincoln Laboratory for discussions on large-scale
graph problems.

References

(1]

(2]

(3]

(4]

[5

—

(6]

[7

—

(8]

(91

(10]

(11]

[12]

L. Amaral, A. Scala, M. Barthélémy, and H. Stanley, “Classes
of small-world networks,” Proc. National Academy of Sci-
ences USA, vol. 97, no. 21, pp. 11 149-11 152, 2000.

D. Bader and G. Cong, “Fast shared-memory algorithms for
computing the minimum spanning forest of sparse graphs,” in
Proc. Int’l Parallel and Distributed Processing Symp. (IPDPS
2004), Santa Fe, NM, Apr. 2004.

D. Bader, G. Cong, and J. Feo, “On the architectural re-
quirements for efficient execution of graph algorithms,” in
Proc. 34th Int’l Conf. on Parallel Processing (ICPP). Oslo,
Norway: IEEE Computer Society, Jun. 2005.

D. Bader and K. Madduri, “Designing multithreaded algo-
rithms for breadth-first search and st-connectivity on the Cray
MTA-2” in Proc. 35th Int’l Conf. on Parallel Processing
(ICPP). Columbus, OH: IEEE Computer Society, Aug. 2006.

D. Bader and K. Madduri, “Parallel algorithms for evaluating
centrality indices in real-world networks,” in Proc. 35th Int’l
Conf. on Parallel Processing (ICPP). Columbus, OH: IEEE
Computer Society, Aug. 2006.

D. Bader and K. Madduri, “SNAP, Small-world Network
Analysis and Partitioning: an open-source parallel graph
framework for the exploration of large-scale networks,” in
Proc. Int’l Parallel and Distributed Processing Symp. (IPDPS
2008), Miami, FL, Apr. 2008.

P. Boldi and S. Vigna, “The WebGraph framework I: com-
pression techniques,” in Proc. 13th Intl. Conf. on World Wide
Web (WWW 13). New York, NY, USA: ACM Press, 2004,
pp- 595-602.

D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A
recursive model for graph mining,” in Proc. 4th SIAM Intl.
Conf. on Data Mining (SDM). Orlando, FL: SIAM, Apr.
2004.

T. Coffman, S. Greenblatt, and S. Marcus, “Graph-based
technologies for intelligence analysis,” Communications of
the ACM, vol. 47, no. 3, pp. 45-47, 2004.

C. Demetrescu, I. Finocchi, and G. Italiano, “Dynamic
graphs,” in Handbook on Data Structures and Applications,
D. Mehta and S. Sahni, Eds. CRC Press, 2005, ch. 36.

C. Demetrescu, 1. Finocchi, and A. Ribichini, “Trading off
space for passes in graph streaming problems,” in Proc. 17th
Ann. Symp. Discrete Algorithms (SODA-06). Miami, FL:
ACM Press, Jan. 2006, pp. 714-723.

D. Eppstein, Z. Galil, and G. Italiano, “Dynamic graph
algorithms,” in Handbook of Algorithms and Theory of Com-
putation, M. Atallah, Ed. CRC Press, November 1998, ch. 8.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

(23]

[24]

(25]

[26]

(27]

(28]

D. Eppstein, Z. Galil, G. Italiano, and A. Nissenzweig,
“Sparsification: a technique for speeding up dynamic graph
algorithms,” J. ACM, vol. 44, no. 5, pp. 669-696, 1997.

M. Henzinger and V. King, “Randomized dynamic graph
algorithms with polylogarithmic time per operation,” in Proc.
27th Ann. Symp. of Theory of Computing (STOC). New
York, NY, USA: ACM Press, 1995, pp. 519-527.

M. Henzinger, P. Raghavan, and S. Rajagopalan, “Computing
on data streams,” Compaq Systems Research Center, Palo
Alto, CA, Tech. Rep. TR-1998-011, May 1998.

H. Jeong, S. Mason, A.-L. Barabdsi, and Z. Oltvai, “Lethality
and centrality in protein networks,” Nature, vol. 411, pp. 41—
42, 2001.

D. Kempe, J. Kleinberg, and A. Kumar, “Connectivity and
inference problems for temporal networks,” J. Comput. Syst.
Sci., vol. 64, no. 4, pp. 820-842, 2002.

V. Krebs, “Mapping networks of terrorist cells,” Connections,
vol. 24, no. 3, pp. 43-52, 2002.

K. Madduri, D. Bader, J. Berry, and J. Crobak, “An experi-
mental study of a parallel shortest path algorithm for solving
large-scale graph instances,” in Proc. The 9th Workshop on
Algorithm Engineering and Experiments (ALENEX07), New
Orleans, LA, Jan. 2007.

S. Muthukrishnan, “Data streams: algorithms and applica-
tions,” Foundations and Trends in Theoretical Computer
Science, vol. 1, no. 2, pp. 117-236, 2005.

M. Newman, “The structure and function of complex net-
works,” SIAM Review, vol. 45, no. 2, pp. 167-256, 2003.

J. Park, M. Penner, and V. Prasanna, “Optimizing graph
algorithms for improved cache performance,” in Proc. Int’l
Parallel and Distributed Processing Symp. (IPDPS 2002).
Fort Lauderdale, FL: IEEE Computer Society, Apr. 2002.

R. Seidel and C. Aragon, “Randomized search trees,” Algo-
rithmica, vol. 16, pp. 464-497, 1996.

D. Sleator and R. Tarjan, “A data structure for dynamic trees,”
J. Comput. Syst. Sci., vol. 26, no. 3, pp. 362-391, 1983.

Y. Tian, R. McEachin, C. Santos, D. States, and J. Patel,
“SAGA: A subgraph matching tool for biological graphs,”
Bioinformatics, vol. 23, no. 2, pp. 232-239, 2007.

D. Watts and S. Strogatz, “Collective dynamics of small world
networks,” Nature, vol. 393, pp. 440-442, 1998.

R. Werneck, “Design and analysis of data structures for dy-
namic trees,” Ph.D. dissertation, Princeton University, Prince-
ton, June 2006.

C. Zaroliagis, “Implementations and experimental studies of
dynamic graph algorithms,” in Experimental algorithmics:
from algorithm design to robust and efficient software. New
York, NY, USA: Springer-Verlag New York, Inc., 2002, pp.
229-278.

