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Abstract

We consider the map construction problem in a simple, connected graph by a set of
mobile computation entities or agents that start from scattered locations throughout
the graph. The problem is further complicated by dangerous elements, nodes and links,
in the graph that eliminate agents traversing or arriving at them. The agents working
in the graph communicate using a limited amount of storage at each node and work
asynchronously. We present a deterministic algorithm that solves the exploration and
map construction problems. The end result is also a rooted spanning tree and the
election of a leader. The total cost of the algorithm is O(ns m) total number of moves,
where m is the number of links in the network and ns is the number of safe nodes,
improving the existing O(m2) bound.

1 Introduction

In networked environments supporting mobile entities, teams of such entities can be employed
to perform a variety of system tasks, such as searching for a resource or a mobile user,
detecting deadlocks, upkeep of routing tables, etc. Underlying many of these tasks is the
primitive process of exploration of the network, in which all network sites and links are
traversed by at least one member of the team. Closely related to this problem is that of
map construction requiring the agents to produce the current map of the network; clearly
to produce the map, the network must be first explored. Indeed exploration of an unknown
network and construction of its map by mobile entities—usually called agents or robots—has
been the subject of intense research efforts, and an extensive literature exists on the subject.

Different instances of the problem exist depending on a variety of factors, including the
synchrony or asynchrony of the agents’ actions and movements, whether the agents and/or
the network sites have distinct identifiers or are anonymous, the amount of memory with
which an agent is endowed, whether the agents are co-located (i.e., the team starts from
a single site) or scattered (i.e., the agents start from different sites), the coordination and
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communication mechanisms available to the agents, etc. (e.g., see [1–4, 9, 10, 20–22, 25, 26]).
Notice that, except for trees, the exploration of anonymous graphs is possible only if the
agents are allowed to mark the nodes in some way; various methods of marking nodes have
been used by different authors ranging from tokens to white boards.

Most of the investigations on the exploration problem have assumed that the environment
is safe for the exploring agents; this assumption unfortunately does not always hold in
reality. The exploration problem has thus been examined also when some components of the
network, nodes and links, are unsafe [5–8, 11–19, 23, 24]. The danger is considerable: any
agent arriving on these harmful nodes, called black holes, and/or traversing such harmful
links, called black links, is immediately eliminated and this destruction leaves no discernable
trace. Note that such a harmful presences are not uncommon; for example, any undetectable
crash failure of a site or a link in an asynchronous network transforms that site into a black
hole and the link into a black link.

Since the location of these harmful components is not known a priori, the determination
of the safe and unsafe parts of the network becomes a crucial task. Indeed, by solving the
map construction problem in this environment, subsequent protocols can proceed without
danger to the agents executing them. The problem, called Dangerous Graph Exploration
(DGE) is for a team of agents to explore the network and, within finite time, generate a map
of the safe part with an indication at each safe site of the dangerous ports (black links or
leading to a black hole). Solving this problem is a dangerous (and possibly impossible) task
for the agents. The goal is for at least one agent from the team to survive, with all surviving
agents terminating with the map.

The DGE problem has been studied extensively assuming that the only harmful component
in the network is a single black hole [7, 8, 11–19, 23, 24]. This version of the problem is called
black hole search and its investigations have been restricted to the case when the agents are
co-located, i.e. the team is injected in the system from a single node; the only exceptions
are [6] that considers multiple black holes in synchronous networks of known topology, and
[13, 19] that consider the more difficult case of scattered agents (i.e., when each agent is
initially in an arbitrary location in the network) in the case of ring networks.

We are interested in the more general version of the DGE problem, that is in arbitrary
networks of unknown topology with an arbitrary number of black holes and black links, and
with the agents are asynchronous and initially scattered through the network. This general
setting has been recently investigated in [5] where conditions for solvability of the related
problems of election and rendezvous were established in the case of fully anonymous systems
(i.e., where both agents and nodes are anonymous). This characterization was established
in the common white board model: each node provides incoming agents with a limited
memory—the white board—whose access is provided in fair mutual exclusion, and that the
agents can use to communicate. To our knowledge, no other studies exist on this setting.

In this paper we continue the investigation of this general setting of the DGE problem
(arbitrary networks of unknown topology with an arbitrary number of black holes and black
links, with asynchronous scattered agents) in the white board model, and we consider the
non-anonymous case, that is when the agents and/or the network sites have distinct ids.
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For the problem to be solvable, all the safe nodes (i.e., not black holes) must clearly be
connected; furthermore, the number of agents must be greater than unsafe links (i.e., black
links or leading to a black node) incident on the safe nodes. It is important to stress that
asynchrony imposes severe limitations to termination and the accuracy of any exploration
and map construction protocol even when there is a single black hole and the agents are co-
located. In fact, assuming connectivity and enough agents, it might be possible to guarantee
that all unsafe links will be marked as such in the map when an agent terminates; however,
unless both the number of safe nodes and the number of unsafe links are known precisely, it
is impossible to guarantee also that all safe links will be marked as such in the map.

Under these provisos, we present a protocol that solves the map construction problem,
as well as the spanning tree construction, election, and rendezvous problems. The proposed
protocol does so at a worst case cost of at most O(ns m) total number of moves, where where
m is the number of links in the network and ns is the number of safe nodes. This improves
the existing O(m2) bound of the protocol of [5] under the same circumstances.

2 Model and problem

Let G = (V,E) be a simple connected graph of n = |V | nodes and m = |E| edges. Let
E(u) be the edges incident to node u ∈ V , d(u) = |E(u)| be the degree of u, and ∆ be the
maximum degree in G.

At each node u ∈ V , there is a distinct label (called port number) associated to each of its
incident links (or ports); let λu(u, v) denote the label associated at v to the link (u, v) ∈ E,
and λv denote the overall injective mapping at v. The set λ = {λu|u ∈ V } of those mappings
is called a labelling and we shall denote by (G, λ) the resulting edge-labelled graph. The
nodes of G can be anonymous (i.e., without unique names).

Operating in (G, λ) is a set A of k agents. The agents are distinct (each has an id),
autonomous (each has private memory and performs its own computations), and mobile
(each can move from a node to one of its neighbours). All agents have the same behaviour,
that is they follow the same algorithm or protocol, and are asynchronous in that their actions
take a finite but unpredictable amount of time.

The agents are initially scattered in G, their initial location described by the mapping
h : A⇒ N ; in the following, h(a) ∈ V will be called the home base of a ∈ A. The agents do
not know G nor its size; they also do not know the number k of agents nor their location.
The agents start at different and unpredictable times.

Each node has available a limited amount of storage, called white board. Agents commu-
nicate by reading from and writing on the white boards; access to a white board is gained
fairly in mutual exclusion. The mutual exclusion property and the distinct ids of the agents
allow the agents to operate as if the edges were FIFO and the nodes had unique identi-
fiers; hence, in the following we will assume that this is indeed the case, without any loss of
generality.

The network in which the agents operate is dangerous due to the presence of harmful
nodes and edges, called black holes and black links. A black hole is a network site that
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destroys any incoming agent without leaving an observable trace; a black link is an edge,
connecting two safe nodes, that causes a similar destruction to any agent traversing it. The
location of the black holes and black links is unknown to the agents. Let VB ⊆ V and
EB ⊆ E denote the set of black nodes and of black links, respectively. Let the frontier of G
be the set FB = {[u, v] ∈ E \EB : u ∈ V \VB ∧ v ∈ VB} of edges incident on the black holes;
let the safe portion of G be the labelled graph (GS = (VS, ES), λS), where V (S) = V \ VB,
ES = E \ (EB ∪ FB) and λS is the restriction of λ to ES.

The map construction (DGE) problem is for the team of agents to explore the network
and, within finite time, to construct a map of all the safe nodes VS and where all links of the
frontier FB and the black links EB are indicated. The map is unambiguous if every safe edge
is marked as such. Since the location of the black holes and black links is a priori unknown
to the agents, some agents will be destroyed in this process. We say that the problem is
solved if at least one agent survives, and all surviving agents within finite time terminate
having such a map.

Some obvious limitations follow from the problem definition. In particular, for the prob-
lem to be solvable, clearly the safe portion of the network GS must be connected. Further-
more, since at least one agent must survive, the number of agents k must be greater than
f = |FB| + 2|EB|. Thus, in the following, we assume that GS is connected, that k ≥ f + 1.
We will also assume, to detect termination, that the number nS = |V \ VB| of safe nodes is
known.

3 Algorithm

Our approach to the map construction problem also solves the spanning tree construction
problem and the election problem, all with scattered agents working in a dangerous network.
The agents start out on scattered home bases that become the roots of the trees that are
generated by the exploration process. These trees are merged during the verification process.
The result is a complete map of GS showing the frontier, FB, and the black links, EB, (map
construction), a tree that spans all the nodes of GS (spanning tree construction), and a tree
root that can be used to elect a leader agent for subsequent protocols (election).

On each home base r, the first agent that begins executing the algorithm starts by
establishing a root marker, rmarker, with the same id as the home base which becomes the
root of a new tree Tr. The root marker is initialized with a map that includes the home base
and its links, and a number of counters. The root marker’s counters include the number
of links in need of exploration, rmarker.ce, which is initially set to the degree of the home
base, d(r); the number of links in need of verification, rmarker.cv, which is initially set to 0;
and the number of safe nodes that have had their links fully explored, rmarker.cf . We use
these counters as a convenience since all can be calculated from information stored in the
map. Once the initialization is completed, the agent begins by looking for exploration work.

Any subsequent agent b starting on r, upon discovery that the algorithm has already
started (such information will be found on the white board), will try to access the root
marker. It is possible that the root marker has been moved in the meanwhile (as explained
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Algorithm 1 Main loop

Agent a starts from the root r of its tree Tr.

1: if white board is blank then
2: initialize root marker’s counters and map and set the id of the verifying agent to null
3: end if
4: access root marker . Mutually exclusive access via the white board
5: if the root marker has moved then the agent follows the parent pointers
6: until it arrives at the new root and the root marker becomes accessible
7: while r.rmarker.cf < ns do . While there are still safe nodes with unexplored links
8: if no verifying agent exists and r.rmarker.cv > 0 then . First agent becomes the

verifying agent
9: become verifying agent and record my id in root marker

10: end if
11: if r.rmarker.cv > 0 and I am the verifying agent then . Links to verify
12: r.rmarker.cv ← r.rmarker.cv − 1
13: choose link that will be verified and mark it on root marker’s map
14: take copy of root marker’s map and id (a.rmarkerid← r.rmarker.id)
15: Verify Link
16: else if r.rmarker.ce > 0 and I am not the verifying agent then . Links to explore
17: r.rmarker.ce ← r.rmarker.ce − 1
18: choose link that will be explored and mark it on root marker’s map
19: take copy of root marker’s map and id (a.rmarkerid← r.rmarker.id)
20: release root marker
21: Explore Link
22: else if a is verifying agent then . No verification work
23: cease to be the verifying agent and remove my id from root marker
24: release root marker
25: else . No exploration work
26: release root marker
27: wait . Agent becomes inactive
28: end if
29: access root marker
30: end while
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later); should this be the case, the agent b follows the directions (left on the white boards)
until it reaches and access a root marker; it will then begin by looking for exploration work.

The exploration process works as follows. Starting from r, an active agent checks the
map to see if there is a link or links in need of exploration. If there are, it claims one on the
root marker’s map and travels there by the shortest path using the map. It then explores the
link using cautious walk. Cautious walk is way of labelling ports that protects subsequent
agents from being eliminated by a black hole or black link. A port is initially unexplored;
it has no label. When an agent leaves a node via an unexplored port, the port is marked
dangerous ; when an agent arrives at a node, that port is marked explored. Agents are not
allowed to enter ports marked dangerous. Since black holes and black links eliminate agents,
the first agent entering a port that leads to a black hole or black link will mark it dangerous
and prevent all the other agents from being eliminated by entering the same port. If the
agent is eliminated, it is considered to have successfully completed its exploration of that
link.

Assuming that the agent is not eliminated when it traverses the link and it arrives safely
on node v, there are a number of possibilities. It is possible that no other agent has ever
visited the node. In this case, the agent marks the node as visited and adds it to the agent’s
tree by creating a parent pointer pointing to the port by which the agent arrived. The agent
then returns to r where it reports the d(v)− 1 links that now need to be explored, updates
the root marker’s map to show the new node, marks its links for exploration, and activates
any agents waiting at the root for work (we discuss waiting below). It is also possible that
another agent from the same tree or a different tree has already visited v. In this case, the
agent returns to r where it reports that there is a link in need of verification, updates the
root marker’s map to show the location of that link noting the node incident to it but not
adding that node to the map (needed for merging later), and activates any agents waiting
at the root for work.

Verification is the process of determining whether or not a link is internal or external
to the agent’s tree, and works as follows. In the root marker of a tree Tr there is a list
(possibly empty) of links, incident on nodes in Tr, that need to be verified; this will be called
the verification work at Tr. The first agent in Tr to take on verification work becomes the
verifying agent for Tr and its id is recorded in the root marker. Only one agent in a tree
can take on this role at one time, and the verifying agent gives up the role, becoming an
exploring agent again, if there is no verification work available. If there is verification work,
the verifying agent a chooses one of the links, say (u, v) in need of verification. The agent
starts by checking in the map if both u and v are nodes of Tr. If so, the agent marks the link
as internal and the verification of that link is done. Otherwise, there are two possibilities:
the link is internal but the map has yet to be updated to show that, or the link is external.
To determine which case it is, agent a travels to the root of the tree to which v belongs.
The agent first takes a copy of its own root marker’s map and id; it then moves to u by the
shortest path using the map, traverses (u, v), and starts following the parent pointers until
it reaches and access the root marker of the tree Tr′ containing v (as we will show, the agent
will always successfully do so). If r.rmarker.id = r′.rmarker.id, agent a marks the link as
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Algorithm 2 Exploration

Agent a has chosen to explore a link incident to node u. The link [u, v] leads from u to
the incident node v and [v, u] leads from v back to u. Let d(v) be v’s degree.

1: procedure Explore Link
2: traverse from r to u by the shortest known path
3: walk from u through [u, v] to v . First step of cautious walk

If the agent is not eliminated by a black hole or black link then
4: if v is unexplored then . A new node
5: add v to its map and mark it visited
6: set v’s parent as [v, u]
7: traverse from v through [v, u] to u . Second step of cautious walk
8: traverse from u to r by the shortest known path
9: access root marker

10: r.rmarker.ce ← r.rmarker.ce + (d(v)− 1)
11: if u has no unexplored links then r.rmarker.cf ← r.rmarker.cf + 1 end if
12: update rmarker’s map to add v to the tree and mark its links for exploration
13: else . v must be visited or explored
14: traverse from v through [v, u] to u . Second step of cautious walk
15: traverse from u to r by the shortest known path
16: access root marker
17: r.rmarker.cv ← r.rmarker.cv + 1
18: update rmarker’s map marking [u, v] for verification and noting v
19: end if
20: activate inactive agents
21: release root marker
22: end procedure

internal on the map and the verification of the link is done. If r′.rmarker.id < r.rmarker.id
and Tr′ has a verifying agent, agent a becomes an exploring agent in Tr′ ; since a is still the
verifying agent for Tr and a tree can only have one verifying agent, no new verifying agent
can emerge on Tr. Finally, if r′.rmarker.id > r.rmarker.id or Tr′ has no verifying agent—
because all the agents have been eliminated or no agent currently holds that role—then agent
a performs a merger.

The merging process—a subprocess of the verification process—works as follows. Agent
a—which we shall call the merging agent—starts the merger by picking up the root marker,
r′.rmarker, activating any agents waiting at r′ for work, and carrying the root marker to the
root of the tree containing u; recall that a is verifying the link [u, v]), and notice that, due
to concurrency and asynchrony, it is possible that this root is no longer r. Agent a thus first
returns to v reversing the parent pointers along the path, and traverses [v, u] setting u as the
parent of v; it then follows the parent pointers until it finds and accesses the root marker of
the tree Tr′′ containing u (as we will show, the agent will always successfully do so). Notice
that, during this movement of the root marker r′.rmarker by a, any agents trying to access
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Algorithm 3 Verification

Agent a has chosen to verify link [u, v] between node u in its own tree and node v, which
may be in a another tree. Let r be the root of u’s tree, Tr and r′ be the root of v’s tree,
Tr′ .

1: procedure Verify Link
2: if v is in the root marker map then
3: mark the link as internal on the map . The agent never leaves r
4: release root marker
5: else
6: release root marker
7: Chase Root
8: end if
9: end procedure

10: procedure Chase Root
11: traverse from r to u by the shortest known path
12: traverse from u to v by the link being verified
13: traverse from v to r′ using the parent pointers and marking the path from v to r′

14: access root marker
15: if a.rmarkerid = r′.rmarker.id then . r = r′, so [u, v] is an internal edge
16: mark the link as internal on the root marker’s map
17: release root marker
18: else if r′.rmarker.id < a.rmarkerid then . r′.id < r.id
19: if r′ has a verifying agent then
20: become exploring agent
21: take copy of r′’s id and map . Start working for Tr′

22: update r′’s map marking [v, u] for verification
23: release root marker
24: else
25: pick up root marker
26: activate inactive agents
27: Return Home
28: end if
29: else if r′.rmarker.id > a.rmarkerid then . r′.id > r.id
30: pick up root marker
31: activate inactive agents
32: Return Home
33: end if
34: end procedure
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Algorithm 4 Tree merging

Agent a is verifying verify link [u, v] between node u in its own tree, r and node v, in
another tree, r′. The agent has picked up and is moving r′’s root marker.

1: procedure Return Home
2: traverse from r′ to r
3: reverse the parent pointers along the path from r′ to v
4: add a parent pointer from v to u
5: merge root markers . Merge r′’s root marker with r’s
6: if not verifying agent for r.rmarker then cease to be verifying agent end if
7: activate inactive agents
8: release root marker
9: end procedure

r′.rmarker or trying to return to r′ follow the parent pointers until they reach the new root
and the root marker becomes accessible. Since the links can be considered FIFO and all the
non-merging agents are following the same path as the merging agent, the merging agent is
guaranteed to arrive first.

When a accesses the root marker of the tree Tr′′ , a merges the information in r′.rmarker
with that in r′′.rmarker, discarding r′.rmarker; in particular, it updates the map with the
reversal of the parent pointers and the addition of the verified link as a tree link. It also
activates any agents waiting at r′′ for work, and the verification of the link [u, v] is completed.
In the case where r′′.rmarker.id = r.rmarker.id, agent a is back at its old tree and continues
to be the tree’s verifying agent. In the case where r” 6= r, if Tr′′ already has a verifying agent,
a becomes an exploring agent in Tr′′ ; otherwise, it becomes the verifying agent of Tr′′ .

When an active agent finishes its work, it does so on a root, where it checks for new
work. If a verifying agent finds that there is no verification work available (rmarker.cv = 0),
it switches to be an exploring agent and checks for exploration work. If an exploring agent
finds that there is no exploration work available (rmarker.ce = 0), it becomes inactive and
waits to be activated when new work arrives.

For clarity, we provide the entire algorithm in pseudo-code. The main loop can be found
in Algorithm 1. Exploration is detailed in Algorithm 2 and verification and tree merging in
Algorithms 3 and 4, respectively.

4 Correctness and complexity

We first introduce some common terminology. During the execution of our algorithm, the
agents are either alive or eliminated. The agents that are alive are either active or waiting.
An agent is waiting at time t if it is at its root, there is no work available (there are no
known links to explore or verify), and there is still work to be done in the system. Active
agents are either exploring or verifying. Exploration and verification both start and finish
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at a root.

Lemma 1. At any point in time, there is at least one alive agent.

Proof. Because of the use of cautious walk, at most one agent will die on each link in the
frontier FB and at most two on every black link in EB (one in each direction). Since, by
definition, k > |FB|+ 2|EB| the lemma follows.

Lemma 2. The movement of any root marker will terminate in finite time after at most 2n
moves.

Proof. (sketch) Let a verifying agent al be verifying an external link between its own tree Tl

and an adjacent tree Tl+1. Let the link be [ul, vl+1] where ul is the node in Tl incident to the
link and vl+1 is the node in Tl+1. Let us consider the case when al picks up the root marker
from root rl+1. By construction, an agent only grabs the root marker when the root marker’s
id is higher than its own, rl.rmarker.id < rl+1.rmarker.id, (see Algorithm 3.30) or the tree to
which the root marker belongs, Tl+1 in this case, has no verifying agent (see Algorithm 3.25).
The path from the root where the agent picked up the root marker to the agent’s root has
three segments. The first segment is the path π(rl+1, vl+1) in Tl+1 from the root rl+1 to
the link being verified. Since al is holding the root marker rl+1.rmarker.id, the length of
this segment cannot change and within finite time the agent traverses it while reversing the
parent pointers along the way. The second segment is the link being verified, [vl+1, ul], which
is added to the tree and traversed in finite time. The last segment is the path π(ul, rl) from
the link being verified to the agent’s root, rl. π(ul, rl), If the root marker rl.rmarker has
not moved, then the agent will find it when it arrives at rl, terminating the entire operation;
since the trees are disjoint, the movement of the root marker would cost in this case at most
n − 1 moves. If the root marker rl.rmarker has moved, it could only have been moved by
a verifying agent al−1 from another tree, Tl−1, where rl−1.rmarker.id < rl.rmarker.id, with
al−1 picking up rl.rmarker and moving it towards rl−1. In general, there can be a sequence
of verifying agents al, al−1, ..., a2, a1 such that ai is moving ri+1.rmarker towards ri with
ri.rmarker.id < ri+1.rmarker.id, where 1 <= i <= l and 1 <= l <= k − 1 (see Figure 1).
From the total order of the ids it follows that a1 will in finite time bring r2.rmarker to r1.
Hence within finite time all ais will bring ri+1.rmarker to r1. Therefore, agent al finishes its
last segment, π(ul, r1), in finite time.
The number of moves performed by al will thus be no more than∑

i=1,...,l |π(ri+1, ui)|+ |π(ui, ri)|.

The trees are disjoint but the paths π(ui, ri) and π(ri, vi) might not be (see Figure 1). Let
ni = |Ti| be the number of nodes in Ti; clearly |π(ui, ri)| + |π(ri, vi)| < 2ni. Thus, since∑

i=1,...,l+1 ni ≤ n the lemma follows.

The following two lemmas now follow directly from Lemma 2.

Lemma 3. A verifying agent verifying a link will always find a root marker.
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Figure 1: A chain of l + 1 trees as discussed in Lemma 2.

Lemma 4. A verifying agent returning with a root marker will find a root marker that has
the same or a smaller id than the root for which it is working.

Lemma 5. If an agent picks up a root marker, in finite time, that root marker will be
discarded and its information merged with that of another root marker.

Proof. A root marker can only be picked up by a verifying agent. By Lemma 2, the root
marker’s movement terminates within finite time; by construction, termination ends in a
merger, which is the combination of two root markers into a new root marker.At the end of
the merger, the moved root marker will be discarded.

As a consequence of Lemmas 3–5, it follows that

Lemma 6. An agent that is verifying will finish verifying within finite time.

Lemma 7. At most k − 1 root markers are moved, and therefore discarded, and the total
cost for moving all the root markers during mergers is at most O(kn).

Proof. There are at most k home bases and therefore at most k root markers in G. By
Lemma 5, the movement of a marker will result in the deletion of that marker. By Lemma 2,
any movement of a root marker terminates after at most 2n moves. Therefore, the maximum
total cost for moving all the root markers is 2n(k − 1).

Lemma 8. Verification costs O(nm) moves.

Proof. (sketch) A verifying agent verifies a link by first checking if its incident nodes are on
the map; if this is the case, the verification costs nothing to since there is no movement. If
this is not the case, the verifying agent verifies the link by traversing it and going to the
root of the tree on the other side. The agent performs up to n− 1 moves down to the link,
traverses it. The agent then moves towards the root of the other tree (the location of the root
marker). The root marker of that tree might have moved, but by Lemma 3, the agent will
reach a root marker within 2n moves. If the agent now terminates the verification (because
the link is internal or the other root marker has lower id and a verifying agent) the cost
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will be at most 3n. Otherwise, the agent grabs the root marker and moves towards its own
root, which might have been moved. Again, by Lemma 3, the agent will reach a root marker
within 2n moves. In this case, the agent will have travelled at most 5n moves. Each edge is
verified at most twice, once in each direction; hence the lemma follows.

Lemma 9. An agent that is exploring will finish exploring within finite time after at most
O(n) moves.

Proof. (sketch) Let exploring agent a choose link [u, v] between node u in the agent’s tree
and some incident node v. Like the verifying agent in the proof of Lemma 2, the exploring
agent’s path has three segments. The first segment is from the agent’s root r to u, which
is across known safe links and takes finite time. The second segment is the cautious walk
across [u, v] and back. If [u, v] is a black link or v is a black hole, a is eliminated and its
exploration is completed in finite time in at most n moves. If v is safe, the last segment
of a’s path is from u towards its root. Since the root marker might have moved, the agent
must follow the pointer until it finds the root marker. By Lemma 2, it follows that the agent
will find the root marker within at most 2n moves, for a total of O(n) moves in the worst
case.

Lemma 10. Exploration costs O(nm) moves.

Proof. Each edge is explored at most twice, once in each direction. By Lemma 9, the total
number of moves follows.

Lemma 11. At time t, there must be at least one agent alive that is not waiting.

Proof. (sketch) By Lemma 1, there is always at least one alive agent. By contradiction,
assume that there exists a time t when all live agents are waiting at the root marker of some
tree or trees in GS. Consider any such tree Tr. First observe that the last agent to become
waiting at root r must have done so because there was no work (i.e., no links to explore, no
links to verify) and the condition for termination (r.rmarker.cf = ns) is not satisfied. Since
all agents are waiting, this situation will not change in time. In other words, all the links
incident on the nodes in Tr have been explored and, with the exception of black links and
those leading to black holes, have also been verified. But this implies that Tr contains all
safe nodes (i.e., r.rmarker.cf = ns), which is a contradiction.

Lemma 12. Every link in GS ∪ FB ∪ EB is eventually explored and those in GS are also
verified.

Proof. (sketch) An active agent that is not waiting is either exploring or verifying. By
Lemma 11, there is always one such agent. By Lemmas 6 and 9, each exploration and
verification will be completed.

Before we go on to the next lemma, we must define which agents are actually working for
a tree. Every exploring agent is exploring an edge from node u to node v, [u, v]. An agent
a is working for tree Tr if a is exploring [u, v] where u ∈ T or if it is the verifying agent for
Tr and it is not an exploring agent in any other tree. All agents working for Tr comprise the
team(Tr) with size kr = |team(Tr)|.
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Lemma 13. The root marker of a tree whose team of agents have all been eliminated is
eventually moved.

Proof. (sketch) Let us consider a tree Tr whose team of agents have all been eliminated by
by black links or black holes. By definition, the tree’s agents must all have been exploring;
hence, the tree has no verifying agent. Consider first the case where the tree contains all
the safe nodes. This would imply that kr = k, that is that all agents have been eliminated,
which contradicts Lemma 1. Therefore, there must exist at least one unexplored link leading
to a safe node outside the tree. By Lemma 12, this link will eventually be verified by some
agent a. Since Tr has no verifying agent, its root marker will eventually be moved by a.

Lemma 14. If a verifying agent finds a root marker with a lower id and that has a verifying
agent then its own root marker is eventually moved.

Proof. (sketch) Let a be the verifying agent for tree Tr verifying link [u, v] and let Tr′ be the
tree for which a is now exploring. By construction, this situation can only occur if Tr′ has
a verifying agent a′ and the id of the root marker is smaller. Note that no new verifying
agent can be created on Tr. When a becomes an exploring agent in Tr′ it first marks [v, u]
for verification in r′’s root marker’s map. By Lemma 12, this link is eventually going to be
verified. The verification will be performed by a verifying agent from a root marker with a
smaller id than that of Tr. In fact, either this agent is a′, which we know is from a smaller id
tree, or an agent from a tree that has absorbed Tr′ ; in the latter case, since Tr′ has a verifying
agent, it can only be absorbed by a tree which has a smaller id than the root marker of Tr′ .
Therefore, the verifying agent arriving at r will move its root marker.

From Lemmas 8–14 the main result follows

Theorem 1. Within finite time, after at most O(nm) moves, a rooted spanning tree of GS

will be constructed, all safe edges will be indicated as such, all ports in GS leading to a black
hole or to a black edge will be marked as dangerous.
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