
Early Experiences on Accelerating Dijkstra’s Algorithm

Using Transactional Memory ∗

Nikos Anastopoulos, Konstantinos Nikas, Georgios Goumas and Nectarios Koziris

National Technical University of Athens

School of Electrical and Computer Engineering

Computing Systems Laboratory

{anastop,knikas,goumas,nkoziris}@cslab.ece.ntua.gr

Abstract

In this paper we use Dijkstra’s algorithm as a challenging,

hard to parallelize paradigm to test the efficacy of several par-

allelization techniques in a multicore architecture. We consider

the application of Transactional Memory (TM) as a means of

concurrent accesses to shared data and compare its perfor-

mance with straightforward parallel versions of the algorithm

based on traditional synchronization primitives. To increase

the granularity of parallelism and avoid excessive synchro-

nization, we combine TM with Helper Threading (HT). Our

simulation results demonstrate that the straightforward par-

allelization of Dijkstra’s algorithm with traditional locks and

barriers has, as expected, disappointing performance. On the

other hand, TM by itself is able to provide some performance

improvement in several cases, while the version based on TM

and HT exhibits a significant performance improvement that

can reach up to a speedup of 1.46.

1 Introduction

Dijkstra’s algorithm [9] is a fundamental graph algorithm

used to compute single source shortest paths (SSSP) for graphs

with non-negative edges. SSSP is a classic combinatorial opti-

mization problem used in a variety of applications such as net-

work routing or VLSI design. The algorithm maintains a set

S of visited nodes, whose shortest path has already been cal-

culated. In each iteration, the unvisited node with the shortest

distance from S is selected, it is inserted into S and the dis-

tances of its neighbors are updated. The set of unvisited nodes

is implemented as a priority queue. This serializes a large part

of the algorithm’s operations, thus making Dijkstra a hard to

parallelize graph algorithm [5, 17].

Delving into implementation details, the algorithm involves

a two-level nested loop: the outer loop iterates over all the

nodes of the graph, selecting in each step the one closest to

set S, while the inner loop updates the distances from S of

∗This research is supported by PENED 2003 Project (EPAN/GSRT), co-

funded by the European Social Fund (80%) and National Resources (20%).

all the neighbors of the extracted node. To implement parallel

versions, researchers follow two general strategies. The first

strategy attempts to relax the sequential nature of Dijkstra by

creating more parallelism in the outer loop. This leads to alter-

native algorithms like ∆-stepping [14, 17] that enable concur-

rent extraction of multiple nodes from the unvisited set. The

second strategy works on pure Dijkstra and seeks parallelism

in the inner loop, by enabling concurrent accesses to the prior-

ity queue. However, practical implementations of concurrent

binary heaps as priority queues [13] are based on unavoidable

fine-grain locking of the binary heap, which is expected to kill

the performance of such a scheme.

In this paper we face the challenges of parallelizing Dijk-

stra’s algorithm for a multicore architecture. To decrease the

synchronization cost we employ Transactional Memory (TM)

[2, 12] as a means of efficient concurrent thread accesses to

shared data. TM is a novel programming model for multi-

core architectures that allows concurrency control over mul-

tiple threads. The programmer is able to envelop parts of the

code within a transaction, indicating that within this section

exist accesses to memory locations that may be performed by

other threads as well. The TM system monitors the transac-

tions of the threads and, if two or more of them perform con-

flicting memory accesses, it resolves the conflict. TM seems

a promising approach for dynamic data structures and applica-

tions with independent threads. It remains though to be inves-

tigated how TM can speedup a single application.

The parallelization of the inner loop does not exploit a

significant amount of parallelism. Therefore, we choose to

coarsen the granularity of parallelism by employing the idea

of Helper Threads (HT) [8, 21]. Dijkstra’s algorithm spends a

large part of its execution in the relaxations of the nodes of the

priority queue. Parallel threads can update (relax) the distances

of several nodes’ neighbors without changing the semantics of

the algorithm. Thus, while the main thread extracts and up-

dates the neighbors of the head of the priority queue, k helper

threads update the neighbors of the next k nodes in the priority

queue. This approach exploits parallelism in the outer loop,

without changing the semantics of the algorithm.

We have implemented several versions of the multithreaded

1

Dijkstra algorithm using traditional synchronization primitives

(locks and barriers), TM and HT and evaluated them using

Simics [15] and GEMS [1, 16], which allow the simulation

of multicore systems and provide support for TM. Our results

demonstrate that the combination of TM and HT achieves sig-

nificant speedup on a hard to accelerate application, while re-

quiring only a few extensions to the original source code.

The rest of the paper is organized as follows. Section 2

presents the basics of Dijkstra’s algorithm and the details of

the various multithreaded implementations. Section 3 demon-

strates simulation results comparing the performance of the

versions under consideration. Related work is presented in

Section 4, while Section 5 summarizes the paper and discusses

directions for future work.

2 Parallelizing Dijkstra’s algorithm

2.1 Dijkstra’s algorithm

Dijkstra’s algorithm solves the SSSP problem for a di-

rected graph with non-negative edge weights. Specifically,

let G = (V,E) be a directed graph with n = |V | vertices,
m = |E| edges, and w : E → R+ a weight function assign-

ing non-negative real-valued weights to the edges of G. For

each vertex v, the SSSP problem computes δ(v), the weight of
the shortest path from a source vertex s to v. For each vertex

v, Dijkstra’s algorithm maintains a shortest-path estimate (or

tentative distance) d(v), which is an upper bound for the actual
weight of the shortest path from s to v, δ(v). Initially, d(v) is
set to ∞ and through successive edge relaxations it is gradu-

ally decreased, converging to δ(v). The relaxation of an edge

(v, w) sets d(w) to min{d(w), d(v) + w(v, w)}, which means

that the algorithm tests whether it can decrease the weight of

the shortest path from s to w by going through v.

The algorithm maintains a partition of V into settled (vis-

ited), queued and unreached vertices (the latter two repre-

senting unvisited nodes). Settled vertices have d(v) = δ(v);
queued have d(v) > δ(v) and d(v) 6= ∞; unreached have

d(v) = ∞. Initially, only s is queued, d(s) = 0 and all other

vertices are unreached. In each iteration of the algorithm, the

vertex with the smallest shortest-path estimate is selected, its

state is permanently changed to settled and all its outgoing

edges are relaxed, causing any of its neighbors that were un-

reached by the source vertex until this point to become queued.

The algorithm is presented in more detail in Alg. 1.

The basic data structure lying at the heart of Dijkstra’s al-

gorithm is a min-priority queue of vertices, keyed by their

d(·) values. The queue is used to maintain all but the set-

tled vertices of the graph. At each iteration, the vertex with

the smallest key is removed from the queue (ExtractMin

operation) and its outgoing edges are relaxed, which could re-

sult to reductions of the keys of the corresponding neighbors

(DecreaseKey operation). To amortize the cost of the multi-

ple ExtractMin and DecreaseKey operations, especially

for realistic, sparse graphs, the min-priority queue is imple-

mented as a binary heap.

Algorithm 1: Dijkstra’s algorithm.

Input : Directed graph G = (V, E), weight function w : E → R
+,

source vertex s, min-priority queue Q
Output : shortest distance array d, predecessor array π

/* Initialization phase */
foreach v ∈ V do1

d[v]← INF;2
π[v]← NIL;3
Insert(Q, v);4

end5
d[s]← 0;6

/* Main body of the algorithm */
while Q 6= ∅ do7

u← ExtractMin(Q);8
foreach v adjacent to u do9

sum← d[u] + w(u, v);10
if d[v] > sum then11

DecreaseKey(Q, v, sum);12
d[v]← sum;13
π[v]← u;14

end15

end16

Algorithm 2: Fine-grain parallel implementation of Dijkstra’s algorithm.

Input : Directed graph G = (V, E), weight function w : E → R
+,

source vertex s, min-priority queue Q
Output : shortest distance array d, predecessor array π

/* Initialization phase same to the serial code */

/* Main body of the algorithm */
while Q 6= ∅ do1

Barrier2
if tid = 0 then3

u← ExtractMin(Q);4
Barrier5
foreach v adjacent to u do in parallel6

sum← d[u] + w(u, v);7
if d[v] > sum then8

Begin-Atomic9
DecreaseKey(Q, v, sum);10
End-Atomic11
d[v]← sum;12
π[v]← u;13

end14

end15

2.2 Lock-based parallel implementation

An intuitive choice for parallelizing Dijkstra’s algorithm is

to exploit parallelism at the inner loop by relaxing all outgoing

edges of vertex u in parallel. This is a fine-grain parallelization

scheme. In each step, one thread extracts u from the heap and

then its outgoing edges are assigned (e.g. via cyclic assign-

ment) to parallel threads for relaxation. This idea is depicted

in Figure 1 while a generic implementation is shown in Alg. 2.

A number of observations can be made concerning this par-

allelization scheme. First, the speedup is bounded by the av-

erage out-degree of the vertices, i.e. the density of the graph.

Clearly, if vertices have a small number of neighbors on aver-

age, then the parallel segment of the algorithm (lines 6–14) will

consume a small fraction of the total execution time, making

the sequential part (lines 3–4, ExtractMin) dominant. The

second observation concerns the concurrent accesses to the bi-

nary heap by the parallel DecreaseKey operations. The bi-

nary heap is implemented as a linear array and can be consid-

ered as a nearly complete binary tree. The smallest element in

the heap is stored at the root and the subtree rooted at a node

contains values no smaller than the value of the node. During

2

step k step k+1 step k+2

extract-min relax outgoing edges

Thread 1

Thread 2

Thread 3

Thread 4

step k step k+1 step k+2

Time

Figure 1: Execution patterns of serial and multithreaded Dijk-

stra’s algorithm.

a DecreaseKey operation, a vertex obtains a smaller value

as its new shortest path estimate. If this new value is smaller

than that of its parent, the vertex has to move upwards the tree

until it is placed in a location that satisfies the min-heap prop-

erty. During this traversal, the node is repeatedly compared to

its parent and if its value is smaller, the nodes are swapped.

The first, and rather naive, approach to enable paralleliza-

tion of the relaxation phase, is to use a global mutex to lock the

entire heap during each DecreaseKey operation. This con-

stitutes a conservative, coarse-grain synchronization scheme

that permits only one DecreaseKey operation at a time and

obviously limits concurrency. We refer to this scheme as cgs-

lock. The alternative, more optimistic approach is to allow

multiple sequences of node swaps to execute in parallel as long

as they access different parts of the heap. More specifically,

instead of using one lock for the entire heap, one can utilize

separate locks for each parent-child pair of nodes. Whenever a

thread executes a DecreaseKey operation and a node swap

is required, it must first acquire the appropriate lock that guards

this specific pair of nodes (a scheme similar to [13]). In this

way atomicity is guaranteed and the algorithm can be executed

safely in parallel. We refer to this scheme as fgs-lock.

To obtain a first picture of the efficiency of these schemes,

we evaluated them with a random graph with 10K vertices and

100K edges. A detailed description of the simulation frame-

work can be found in Section 3.1. Figure 2 demonstrates the

speedup of the two schemes for 2 to 16 threads. The speedup

is calculated as the ratio of the execution time of the serial

to the parallel scheme in each case. The performance of the

cgs-lock scheme is disappointing. Although the limited par-

allelism of the scheme explains the lack of speedup, a more

detailed execution profiling revealed that the vast performance

drop is attributed to the overhead of barriers that surround the

ExtractMin operation and decouple the serial phases from

the parallel ones. More specifically, for 2 threads the time spent

in barriers accounts for 71% of the total execution time. This

percentage rises up to 88% when using 8 threads, explaining

why the performance degrades when more threads are used.

We used the barriers provided by the Pthreads library, yet we

argue that this should not be a problem of the specific barrier

implementation, since alternative software-based implementa-

tions are expected to provide similar results.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 2 4 6 8 10 12 14 16

M
u
lt
it
h
re

a
d
e
d
 s

p
e
e
d
u
p

Number of threads

cgs-lock
perfbar+cgs-lock
perfbar+fgs-lock

Figure 2: Speedups of lock-based parallel versions with real

and perfect barriers.

In an attempt to isolate the effect of the barriers, we imple-

mented a version of idealized, zero-latency barriers that rely

solely on hardware in our simulated environment. This scheme

is named perfbar+cgs-lock. It is clear from Figure 2 that the

replacement of barriers with “perfect” ones deals with the poor

scalability problem of the cgs-lock scheme. Nevertheless, the

scheme still performs worse than the serial execution of the al-

gorithm, revealing that this coarse-grain synchronization is too

conservative and cannot expose enough parallelism.

Finally, the fgs-lock scheme combined with “perfect” bar-

riers fails to outperform the serial execution, despite being

more optimistic than the cgs-lock scheme. As the number of

threads increases, its performance improves slightly indicating

that there does exist an amount of parallelism. However, the

fgs-lock scheme fails to exploit it efficiently and there are two

possible reasons for this failure. The first reason is that in order

to allow concurrent accesses to the heap, a pair of spin-locks

is used for each pair of nodes, causing the total overhead to be

high and lowering the performance gains from the exploited

parallelism. The second reason is that the fgs-lock scheme

allows concurrent accesses to the binary heap only when the

threads access different parts of the heap. The probability of

threads touching the same nodes of the binary heap depends on

the structure of the graph as well as on the order by which the

neighbors of a vertex are examined during the DecreaseKey

operations. Whenever this occurs, the threads are serialized,

thus limiting the total available parallelism.

2.2.1 TM-based parallel implementation

The fgs-lock scheme described in Section 2.2 allows concur-

rent accesses to the binary heap used in the implementation of

Dijkstra’s algorithm. Unfortunately, it has a high overhead due

to the numerous locks needed limiting its efficiency severely.

Looking for alternatives, we test the efficacy of TM, as a means

of concurrent accesses to the shared binary heap. The first ap-

proach is to enclose each DecreaseKey operation within a

transaction, and rely on the underlying system to ensure atom-

icity. When concurrent transactions access the same elements

in the heap and at least one of these accesses is a write oper-

ation, a conflict arises and the system needs to resolve it de-

ciding which transaction succeeds. The DecreaseKey oper-

ation includes a series of swaps, as a node traverses the heap

until it is placed in the final correct position. When two or more

3

vertices are relaxed in parallel, the paths of these heap traver-

sals might share one or more common nodes. The TM system

will detect the conflict, only one of the transactions will be al-

lowed to commit and only one vertex will be relaxed. The other

conflicting threads will have to pause or repeat their work, de-

pending on the implementation of the TM system and its con-

flict detection and resolution policy. This scheme is not as fine-

grain as the fgs-lock scheme, where atomicity is enforced at the

level of a single swap and not for a series of swaps. We will

refer to this scheme as cgs-tm. It is implemented as shown in

Alg. 2 by replacing the Begin-Atomic and End-Atomic

operations with the appropriate Begin-Transaction and

End-Transaction primitives.

A second alternative is to implement a scheme as fine-grain

as the fgs-lock scheme using TM. To accomplish this, each

swap executed by the DecreaseKey operation is enclosed

into a transaction. This means that the transactions will be

shorter than those of the cgs-tm scheme resulting, hopefully,

into fewer conflicts and thus more parallelism. We will refer

to this scheme as fgs-tm. For the implementation of the fgs-tm

scheme the DecreaseKey presented in Alg. 3 is used. Simi-

larly to the lock-based schemes, both these TM-based schemes

require the incorporation of barriers to decouple the serial from

the parallel phases. Having observed the disastrous effect of

the barriers on the performance of the lock-based schemes, we

employ the “perfect”, zero-latency barriers in the evaluation of

our TM-based implementations as well.

To obtain a first insight on the efficiency of the TM-based

schemes we used the same graph as in Section 2.2 and present

speedups in Figure 3. In contrast to the lock-based schemes,

the TM-based ones outperform the serial implementation for

more than 4 threads. For 2 threads the overhead of the TM

scheme seems to be too high, canceling out any performance

gains from the exploitation of parallelism. As more threads are

used though, the performance is improved providing a speedup

of up to almost 1.1. More detailed results are presented in Sec-

tion 3.3. Thus, it seems that TM is a promising mechanism to

exploit the available parallelism of the DecreaseKey opera-

tions on the binary heap. However, to obtain these performance

improvements ideal barriers are employed.

Algorithm 3: DecreaseKey

Input : min-priority queue Q, vertex u, new key value for vertex u

Q[u]← value;1
i← u;2
while (parent(i).key ≥ value) do3

Begin-Transaction4
swap(u, i);5
End-Transaction6
i← parent(i);7

end8

2.3 A multithreaded version based on HT

In this section we present an alternative multithreaded ver-

sion of Dijkstra’s algorithm based on HT. The motivation arises

from the poor performance of all aforementioned versions,

which is due to their limited parallelism and excessive synchro-

nization. Our goal is to coarsen the granularity of parallelism,

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 2 4 6 8 10 12 14 16

M
u
lt
it
h
re

a
d
e
d
 s

p
e
e
d
u
p

Number of threads

perfbar+cgs-lock
perfbar+fgs-lock
perfbar+cgs-tm
perfbar+fgs-tm

Figure 3: Speedups of lock-based and TM-based versions.

as in [11, 14, 17], without, changing the algorithm itself. Thus,

instead of partitioning the inner loop and assigning only a few

neighbors to each thread, we seek to assign the relaxation of a

complete set of neighbors to each thread. To accomplish this,

we take advantage of a basic property of Dijkstra’s algorithm:

the relaxations (lines 11,13–14 in Alg. 1) lead to monotoni-

cally decreasing values for the distances of unvisited nodes un-

til each distance reaches its final minimum value. As long as

a graph node is inserted in the queued set (i.e. the node’s dis-

tance from S is not infinite) its neighbors could also be relaxed

to newer updated values. This property is not utilized by the

original serial algorithm, as all the updates occur for the neigh-

bors of the extracted node. Practically, the algorithm avoids

calculating intermediate distances that will eventually be over-

written. Our key idea is that parallel threads can serve as helper

threads and perform relaxations for neighbors of nodes belong-

ing in the queued set. Optimistically, some of these relaxations

will be utilized and offloaded by the main thread.

In our implementation the main thread operates like in the

sequential version, extracting in each iteration the minimum

vertex from the priority queue and relaxing its outgoing edges.

At the same time, the k-th helper thread reads the tentative

distance of the k-th vertex in the queue (let us call it xk for

short) and relaxes all its outgoing edges based on this value.

When the main thread accomplishes its relaxations, it notifies

the helper threads to stop their relaxations, and they all proceed

to the next iteration. This scheme is demonstrated in Figure 4.

The rationale behind it is that vertices occupying the top k po-

sitions in the queue might already be settled with some proba-

bility, so that when the helper threads read their distances and

relax their outgoing edges, they will make their corresponding

neighbors settled, as well. As a result, when the main thread

checks these vertices later, it will not have to perform any re-

laxations. On the other hand, if the k-th thread reads xk, it is

possible that xk might not have been settled yet and thus have

a suboptimal tentative distance. The thread would then update

the neighbors according to a new tentative value, which will

eventually be set to the appropriate minimum value, when xk

will be examined by the main thread later on. At that moment,

all its outgoing edges will be re-relaxed using the correct fi-

nal distance. A significant aspect of this multithreaded scheme

is that the main thread stops all helper threads after finishing

each iteration of the outer loop. At this time, the helper threads

stop their computations and proceed with the main thread to

4

extract-min relax outgoing edgesread tid
th
-min

k
ill

k
ill

k
ill

Thread 1

Thread 2

Thread 3

Thread 4

k
ill

k
ill

step k step k+1 step k+2

Time

Figure 4: Execution pattern of the helper threads version.

the next iteration. It is possible that at this time a helper thread

might have updated only some of the neighbors of its vertex

xk, leaving the other ones with their old, possibly suboptimal,

distances. As explained above, however, this is not a problem

since all neighbors of xk with suboptimal distances will be cor-

rectly updated when xk reaches the top of the priority queue.

The code executed by the main and helper threads is shown

in Alg. 4 and Alg. 5, respectively. In the beginning of each it-

eration, the main thread extracts the top vertex from the queue.

At the same time, the helper threads spin-wait until the main

thread has finished the extraction, and then each one reads –

without extracting– one of the top k vertices in the queue (this

is what ReadMin function does). Next, all threads relax all the

outgoing edges of the vertices they have undertaken in parallel.

Compared to the original algorithm, a performance improve-

ment is expected, since, due to the helper threads, the main

thread will evaluate the expression of line 7 as true fewer times

and thus, will not need to execute the operations of lines 8–9.

The proposed HT scheme is largely based on TM. Updates

to the heap via the DecreaseKey function, as well as updates

to the tentative distances and predecessor arrays are enclosed

within a single transaction for both the main and helper threads.

This ensures atomicity of these updates, i.e. that they will be

performed in an “all-or-none” manner. Furthermore, it guar-

antees that in case of conflict only one thread will be allowed

to commit its transaction and perform the neighbor update. A

conflict can arise when two or more threads update simultane-

ously the same neighbor, or when they update different neigh-

bors but change the same part of the heap. The interruption

of helper threads is implemented using transactions as well.

Specifically, when the main thread has completed all the relax-

ations for its vertex, it sets the notification variable done to 1
within a separate transaction. This value denotes a state where

the main thread proceeds to the next iteration and requires all

helper threads to stop and follow, terminating any operations

that they were performing on the heap. All helper threads ex-

ecuting transactions at this point will abort, since done is in

their read sets as well. The helper threads will immediately

retry their transactions, but there is a good chance that they

will find done set to 1, stop examining the remaining neigh-

bors in the inner loop and continue with the next iteration of

the outer loop. In the opposite case that the main thread per-

forms the ExtractMin operation too quickly, done will be

set back to 0 and the helper threads will miss the last notifica-

tion, continuing from the point where they had stopped. This

might yield suboptimal updates to the distances of the neigh-

bors, but as explained above, these will be overwritten once

the vertices examined by the helper threads reach the top of the

queue. So, correctness is guaranteed.

Algorithm 4: Main thread’s code.

Input : Directed graph G = (V, E), weight function w : E → R
+,

source vertex s, min-priority queue Q
Output : shortest distance array d, predecessor array π

/* Initialization phase same to the serial code */

while Q 6= ∅ do1
u← ExtractMin(Q);2
done← 0;3
foreach v adjacent to u do4

sum← d[u] + w(u, v);5
Begin-Transaction6
if d[v] > sum then7

DecreaseKey(Q, v, sum);8
d[v]← sum;9
π[v]← u;10

End-Transaction11

end12

Begin-Transaction13
done← 1;14
End-Transaction15

end16

Algorithm 5: Helper threads’ code.

while Q 6= ∅ do1
while done = 1 do ;2
x← ReadMin(Q, tid);3
stop← 0;4
foreach y adjacent to x and while stop = 0 do5

Begin-Transaction6
if done = 0 then7

sum← d[x] + w(x, y);8
if d[y] > sum then9

DecreaseKey(Q, y, sum);10
d[y]← sum;11
π[y]← x;12

else13
stop← 1;14

End-Transaction15

end16

end17

Summarizing, the main concept of our implementation is

to decouple as much as possible the main thread from the ex-

ecution of the helper threads, minimizing the time that it has

to spend on synchronization events or transaction aborts. The

helper threads are allowed to execute in an aggressive man-

ner, being at the same time as less intrusive to the main thread

as possible, even if they perform a notable amount of useless

work. The semantics of the algorithm guarantee that any in-

termediate relaxations made by the helper threads are not ir-

reversible. Finally, by using a TM with a conflict resolution

policy that favors the main thread, transaction abort overheads

are mainly suffered by the helper threads.

3 Experimental Evaluation

3.1 Experimental setup

We evaluated the performance of the various implementa-

tions of Dijkstra’s algorithm through full-system simulation,

using the Wisconsin GEMS toolset v.2.1 [1, 16] in conjunc-

5

tion with the Simics v.3.0.31 [15] simulator. Simics provides

functional simulation of a SPARC chip multiprocessor system

(CMP) that boots unmodified Solaris 10. The GEMS Ruby

module provides detailed memory system simulation and for

non-memory instructions behaves as an in-order single-issue

processor, executing one instruction per simulated cycle.

Hardware TM is supported in GEMS through the LogTM-

SE subsystem [20]. It is built upon a single-chip CMP system

with private per-processor L1 caches and a shared L2 cache. It

features eager version management, where transactions write

the new memory values “in-place”, after saving the old values

in a log. It also supports eager conflict detection, as conflicts,

i.e. overlaps between the write set of one transaction and the

write or read set of other concurrent transactions, are detected

at the very moment they happen. On a conflict, the offending

transaction stalls and either retries its request hoping that the

other transaction has finished, or aborts if LogTM detects a

potential deadlock. The aborting processor uses its log to undo

the changes it has made and then retries the transaction. In our

experiments we used the HYBRID conflict resolution policy,

which tends to favor older transactions against younger ones.

Table 1 shows the configuration of the simulation framework.

Our programs use the Pthreads library for thread creation

and synchronization operations such as spin-locking and barri-

ers. For our “perfect” barriers, we encoded a global barrier as

a single assembly instruction, exploiting the functionality of-

fered by Simics’ magic instructions. Thus the synchronization

of threads is handled by the simulator and not the operating

system, providing instant suspension/resumption of the arriv-

ing/departing threads. To avoid resource conflicts between our

programs and the operating system’s processes, we used CMP

configurations with more processor cores than the number of

threads we required. So, the experiments for 2 and 4 threads

were performed on an 8 core CMP, while the 8 threads exper-

iments were done on an 16 core CMP. To schedule a thread

on a particular processor and avoid migrations, we used the

pset bind system call of Solaris. Finally, all codes were

compiled with Sun’s Studio 12 C compiler (O3 level).

3.2 Reference graphs

To evaluate the different schemes we strived to work on

graphs which vary in terms of density and structure. In that

attempt, we used the GTgraph graph generator [4] to construct

graphs with 10K vertices from the following families:

Random: Their m edges are constructed choosing a ran-

dom pair among n vertices.

R-MAT: Constructed using the Recursive Matrix (R-MAT)

graph model [7].

SSCA#2: Used in the DARPA HPCS SSCA#2 graph anal-

ysis benchmark [3].

Table 2 summarizes the characteristics of the graphs used.

To obtain an estimate of possible speedups, we profiled the

serial execution of Dijkstra’s algorithm on each graph in order

to calculate the distribution of the sequential (ExtractMin),

and the parallelizable parts (DecreaseKey). In the ideal case

Simics Processor
configurations up to 32 cores

UltraSPARC III Cu (III+)

L1 caches
Private, 64KB, 4-way set-associative,

64B line size, 4 cycle hit latency

Ruby L2 cache
Unified and shared, 8 banks, 2MB, 4-way set-

associative, 64B line size, 10 cycle hit latency

Memory 160 cycle access latency

TM System HYBRID resol. policy, 2Kb HW signatures

Table 1: Simulation framework.

Graph Edges Parameters
Sequential

part (%)

Parallel.

part (%)

Ideal

speedup

rand1 10K 97.8 2.2 1.02

rand2 100K 38.7 61.3 2.58

rand3 200K 26.2 73.8 3.81

rmat1 10K a = 0.45 78.3 21.7 1.27

rmat2 100K b, c = 0.15 39.3 60.7 2.54

rmat3 200K d = 0.25 26.8 73.2 3.73

ssca1 28K (P, C) = (0.25, 5) 94.1 5.9 1.06

ssca2 118K (P, C) = (0.5, 20) 35.2 64.8 2.84

ssca3 177K (P, C) = (0.5, 30) 28.9 71.1 3.46

Table 2: Graphs used for experiments.

where parallel execution would manage to zero out the time

spent for edge relaxations, the speedup would be 100%
%Serialpart

.

This is presented in the sixth column of Table 2 and constitutes

a theoretical upper bound for any performance improvement.

3.3 Results

Figure 5 shows the speedups of all evaluated schemes. Con-

sistently to the discussion in Section 2, the concurrent thread

accesses to shared data implemented with the aid of TM (cgs-

tm and fgs-tm) clearly outperform the ones using traditional

synchronization primitives (cgs-lock and fgs-lock). This fact

reveals the existence of fine-grain parallelism in the updates of

the priority queue of the algorithm, in the sense that, statisti-

cally, it is highly probable that the paths of various concurrent

updates do not overlap. Thus, optimistic parallelism seems a

good approach for Dijkstra’s algorithm.

Nevertheless, only by employing “perfect” barriers can the

TM-based schemes outperform the serial case. Therefore, the

fine-grain parallelism exposed by the inner loop of the algo-

rithm is insufficient to achieve significant speedups. On the

contrary, the HT scheme (helper), which exploits parallelism

at a coarser granularity, is able to achieve significant speedups

in the majority of the cases (6 out of 9 experiments). The max-

imum speedup achieved is 1.46 as shown in Figure 5c.

For more dense graphs, the performance improvements are

greater since more parallelism can be exposed in the inner loop

of the algorithm. These are the cases where helper achieves

the best speedups and scalability (Figures 5c, 5f and 5i). Con-

versely, sparse graphs leave limited space for parallelism lead-

ing to low performance. Therefore they can serve as test cases

for the overhead of the co-existence of numerous threads. The

6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 2 4 6 8 10 12 14 16

M
u
lt
it
h
re

a
d
e
d
 s

p
e
e
d
u
p

Number of threads

rand-10000x10000

perfbar+cgs-lock
perfbar+cgs-tm
perfbar+fgs-lock
perfbar+fgs-tm
helper

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 2 4 6 8 10 12 14 16

M
u
lt
it
h
re

a
d
e
d
 s

p
e
e
d
u
p

Number of threads

rand-10000x100000

perfbar+cgs-lock
perfbar+cgs-tm
perfbar+fgs-lock
perfbar+fgs-tm
helper

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 2 4 6 8 10 12 14 16

M
u
lt
it
h
re

a
d
e
d
 s

p
e
e
d
u
p

Number of threads

rand-10000x200000

perfbar+cgs-lock
perfbar+cgs-tm
perfbar+fgs-lock
perfbar+fgs-tm
helper

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 2 4 6 8 10 12 14 16

M
u
lt
it
h
re

a
d
e
d
 s

p
e
e
d
u
p

Number of threads

rmat-10000x10000

perfbar+cgs-lock
perfbar+cgs-tm
perfbar+fgs-lock
perfbar+fgs-tm
helper

(d)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 2 4 6 8 10 12 14 16

M
u
lt
it
h
re

a
d
e
d
 s

p
e
e
d
u
p

Number of threads

rmat-10000x100000

perfbar+cgs-lock
perfbar+cgs-tm
perfbar+fgs-lock
perfbar+fgs-tm
helper

(e)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 2 4 6 8 10 12 14 16

M
u
lt
it
h
re

a
d
e
d
 s

p
e
e
d
u
p

Number of threads

rmat-10000x200000

perfbar+cgs-lock
perfbar+cgs-tm
perfbar+fgs-lock
perfbar+fgs-tm
helper

(f)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 2 4 6 8 10 12 14 16

M
u
lt
it
h
re

a
d
e
d
 s

p
e
e
d
u
p

Number of threads

ssca2-10000x28351

perfbar+cgs-lock
perfbar+cgs-tm
perfbar+fgs-lock
perfbar+fgs-tm
helper

(g)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 2 4 6 8 10 12 14 16

M
u
lt
it
h
re

a
d
e
d
 s

p
e
e
d
u
p

Number of threads

ssca2-10000x118853

perfbar+cgs-lock
perfbar+cgs-tm
perfbar+fgs-lock
perfbar+fgs-tm
helper

(h)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 2 4 6 8 10 12 14 16
M

u
lt
it
h
re

a
d
e
d
 s

p
e
e
d
u
p
Number of threads

ssca2-10000x177425

perfbar+cgs-lock
perfbar+cgs-tm
perfbar+fgs-lock
perfbar+fgs-tm
helper

(i)

Figure 5: Multithreaded speedups for the graphs tested.

results for these cases are shown in Figures 5a, 5d and 5g. It

is obvious that the helper scheme is the more robust one, as it

exhibits the smallest slowdown. In the worst case, the perfor-

mance of the main thread is degraded by around 10%.

A closer look at the results reveals that the main thread suf-

fers a really low number of aborts (less than 1% of the total

aborts). This means that even when the helper threads are not

contributing any useful work, they still do not obstruct the main

thread’s progress. Therefore, the main thread is allowed to

run almost at the speed of the serial execution, thus explaining

the robustness of the scheme. The low overhead of the helper

scheme is also illustrated by the fact that the addition of more

threads does not lead to performance drops in any case.

4 Related Work

A significant part of Dijkstra’s execution is spent in up-

dates in the priority queue. Therefore, enabling concurrent

accesses to this structure seems a good approach to increase

performance. Brodal et al. [5] utilize a number of processors

to accelerate the DecreaseKey operation and discuss the ap-

plicability of their approach to Dijkstra’s algorithm. However,

this work is evaluated on a theoretical Parallel Random Access

Machine (PRAM) execution model. Hunt et al. [13] implement

a concurrent priority queue which is based on binary heaps

and supports parallel Insertions and Deletions using fine-grain

locking on the nodes of the binary heap. Since these operations

do not traverse the entire data structure, local locking leads to

performance gains. However, in the case of DecreaseKey

which performs wide traversals of the data structure it degrades

performance greatly, unless special hardware synchronization

is supported by the underlying platform.

To expose more parallelism, it would be beneficial to con-

currently extract a large number of nodes from the priority

queue. This can be achieved if several nodes have equal dis-

tances from the set S of visited nodes. Thus, if the prior-

ity queue is organized into buckets of nodes with equal dis-

tances, then the extraction and neighbor updates can be done

7

in parallel per bucket (Dial’s algorithm [10]). A generalization

of Dial’s algorithm called ∆-stepping is proposed by Meyer

and Sanders [17]. Madduri et al. [14] use ∆-stepping as the

base algorithm on Cray MTA-2, an architecture that exploits

fine-grain parallelism using hardware synchronization primi-

tives, and achieve significant speedups. In the Parallel Boost

Graph Library [11] Dijkstra’s algorithm is parallelized for a

distributed memory machine. The priority queue is distributed

in the local memories of the system nodes and the algorithm is

divided in supersteps, in which each processor extracts a node

from its local priority queue. The aforementioned approaches

are based on significant modifications to Dijkstra’s algorithm

to enable coarse-grain parallelism and lead to promising paral-

lel implementations. In this paper we adhere to the pure Dijk-

stra’s algorithm to face the challenges of its parallelization and

test the applicability of TM and HT.

TM has attracted extensive scientific research during the last

few years, focusing mainly on its design and implementation

details. Nevertheless, its efficacy on a wide set of real, non-

trivial applications is only now starting to be explored. Scott et

al. [18] use TM to parallelize Delaunay triangulation and Wat-

son et al. [19] exploit it to parallelize Lee’s routing algorithm.

Moreover, a set of TM applications is offered in STAMP [6].

5 Conclusions – Future work

This work applies several parallelization techniques to Di-

jkstra’s algorithm, which is known to be hard to parallelize.

The schemes that parallelize each serial step by incorporat-

ing traditional synchronization primitives (locks and barriers)

fail to outperform the serial algorithm. In fact, they exhibit

low performance even if the necessary barriers are replaced by

ideal ones. To deal with this we employ Transactional Mem-

ory (TM), which reduces synchronization overheads, but still

fails to provide meaningful overall performance improvement,

as speedups can be achieved in some test cases only with using

ideal barriers. To improve the performance further, we propose

an implementation based on TM and Helper Threading, that is

able to provide significant speedups (reaching up to 1.46) in
the majority of the simulated cases.

As future work, we will investigate the application of these

techniques on other algorithms solving the SSSP problem,

such as ∆-stepping [17] and Bellman-Ford [9]. We also aim

to explore the impact of various TM characteristics on the be-

havior of the presented schemes, such as the resolution policy,

version management and conflict detection. Finally, prelimi-

nary results demonstrated interesting variations in the available

parallelism between different execution phases, motivating us

to explore more adaptive schemes in terms of the number of

parallel threads and the tasks assigned to them.

References

[1] Wisconsin multifacet gems simulator. http://www.cs.

wisc.edu/gems/.

[2] A.-R. Adl-Tabatabai, C. Kozyrakis, and B.E. Saha. Unlocking

concurrency: Multicore programming with transactional mem-

ory. ACM Queue, 4(10):24–33, 2006.

[3] D.A. Bader and K. Madduri. Design and implementation of the

hpcs graph analysis benchmark on symmetric multiprocessors.

In HiPC, 2005.

[4] D.A. Bader and K. Madduri. Gtgraph: A suite of synthetic

graph generators. 2006. http://www.cc.gatech.edu/

˜kamesh/GTgraph/.

[5] G.S. Brodal, J.L. Traff, C.D. Zaroliagis, and I. Stadtwald. A

parallel priority queue with constant time operations. Journal of

Parallel and Distributed Computing, 49:4–21, 1998.

[6] C. CaoMinh, J. Chung, C. Kozyrakis, and K. Olukotun STAMP:

Stanford Transactional Applications for Multi-Processing. In

IISWC 2008.

[7] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive

model for graph mining. In ICDM, 2004.

[8] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y. Lee,

D. Lavery, and J. P. Shen. Speculative precomputation: Long-

range prefetching of delinquent loads. In ISCA, 2001.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Intro-

duction to Algorithms. The MIT Press, 2001.

[10] R. Dial. Algorithm 360: Shortest path forest with topological

ordering. Communications of the ACM, 12:632–633, 1969.

[11] N. Edmonds, A. Breuer, D. Gregor, and A. Lumsdaine. Single-

source shortest paths with the parallel boost graph library. In 9th

DIMACS Implementation Challenge, 2006.

[12] M. Herlihy and E. Moss. Transactional memory: Architectural

support for lock-free data structures. In ISCA, 1993.

[13] G.C. Hunt, M.M. Michael, S. Parthasarathy, and M.L. Scott.

An efficient algorithm for concurrent priority queue heaps. Inf.

Proc. Letters, 60:151–157, 1996.

[14] K. Madduri, D.A. Bader, J.W. Berry, and J.R. Crobak. Parallel

shortest path algorithms for solving large-scale instances. In 9th

DIMACS Implementation Challenge, 2006.

[15] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,

G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and

B. Werner. Simics: A full system simulation platform. Com-

puter, 35(2):50–58, 2002.

[16] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu,

A. Alameldeen, K. Moore, M. Hill, and D. Wood. Mul-

tifacet’s general execution-driven multiprocessor simulator

(gems) toolset. SIGARCH Comput. Archit. News, 2005.

[17] U. Meyer and P. Sanders. Delta-stepping: A parallel single

source shortest path algorithm. In ESA, 1998.

[18] M. L. Scott, M. F. Spear, L. Daless, and V. J. Marathe. Delaunay

triangulation with transactions and barriers. In IISWC, 2007.

[19] I. Watson, C. Kirkham, and M. Lujan. A study of a transactional

parallel routing algorithm. In PACT, 2007.

[20] L. Yen, J. Bobba, M.R. Marty, K.E. Moore, H. Volos, M.D. Hill,

M.M. Swift, and D.A. Wood. LogTM-SE: Decoupling hardware

transactional memory from caches. In HPCA, 2007.

[21] W. Zhang, B. Calder, and D.M. Tullsen. An event-driven multi-

threaded dynamic optimization framework. In PACT, 2005.

8

