Implementing Protein Seed-Based Comparison Algorithm on the SGI RASC-100
Platform

Van-Hoa Nguyen
IRISA/INRIA Rennes
Rennes, France
vhnguyen @irisa.fr

Abstract

This paper describes a parallel FPGA implementation
of a genomic sequence comparison algorithm for finding
similarities between a large set of protein sequences and full
genomes. Results comparable to the tblastn program
from the BLAST family are provided while the computation
is improved by a factor 19. The performances are mainly
due to the parallelization of a critical code section on the
SGI RASC-100 accelerator.

1. Introduction

Genomic treatments are good candidates for FPGA ac-
celerators since they only need integer computation and
small data paths. Data are basically DNA or protein se-
quences coming from all living organisms from which new
knowledge are extracted by comparing intensively their
genes and/or genomes.

With the rapid progresses of new biotechnology pro-
cesses, and especially the next generation sequencing able
to generate millions of small DNA sequences in a single
run, the bioinformatics discipline is now facing new chal-
lenges. The short read sequencing (SRS) technology, for
example, opens the door to new possibilities and requires to
reconsider basic bioinformatics treatments such as genome
and metagenomic annotation, genome resequencing, as-
sembly of closely related species, novo assembly, etc. [9]
[11]. All these domains have in common to manipulate an
increasing number of genomic sequences (DNA or protein).

This paper focuses on one specific treatment: the com-
parison of a large set of protein sequences against full
genomes. Typically, it is included in bioinformatics work-
flows for annotating new sequenced genomes. From a set
of known proteins, the aim is to locate in the genome re-
gions having significant similarities. Thus, using the genetic
code, the genome is first translated into its 6 possible pro-

Alexandre Cornu
IRISA/INRIA Rennes
Rennes, France
cornu @irisa.fr

Dominique Lavenier
ENS Cachan/IRISA
Rennes, France
lavenier @irisa.fr

tein frames. As a result, two large sets of protein sequences
need to be compared together.

A well known program to perform this task is the
tblastn program from the NCBI BLAST family [3]. Ac-
tually, there are only a few implementations onto FPGA ac-
celerator targeting specifically this program. We can cite
the SeqCruncher PCle board from TimeLogic which im-
plements the Tera-TBLASTN software [1], the Cube from
CLC bioinformatics which accelerates a sensitive version
called Smith and Waterman tblastn [2], the FPGA/FLASH
prototype from IRISA which combines FLASH memory
and reconfigurable computing [8], and a systolic approach
from NUDT [5].

Implementing the NCBI BLAST programs onto FPGA
for comparing two large sets of sequences is not straightfor-
ward for the following reasons:

e the BLAST programs have been first designed for
scanning purpose: querying large banks (millions of
sequences) with a single sequence;

e the internal BLAST algorithm is fundamentally se-
quential, even if a multithreaded option is available;

o the BLAST programs are highly optimized. It is thus
difficult to find new tricks for improving significantly
the existing code.

We propose a slightly different way to find similarities
between protein sequences. We use the same heuristics as
BLAST programs, but the code is structured differently: it
considers two large sets of data to process, and not one se-
quence versus many sequences. As a result, we can reor-
ganize the computation in such a way that the most time
consuming part can be localized on a small critical section.

This critical section has been implemented on the SGI
RASC-100 platform and performances have been compared
with the NCBI tblastn program. Speedup values ranging
from 6 to 19 has been observed depending on the size of the
protein sets.

The rest of the paper is organized as follows: the next
section describes briefly our algorithm. Section 3 presents
the genomic operator implemented onto the RASC-100 ac-
celerator. Section 4 details the performances and section 5
concludes the paper.

2 Seed-based algorithm
2.1 Algorithm overview

The algorithm is based on a well known and power-
ful heuristic to detect similarities between two protein se-
quences. It supposes that two protein sequences sharing
sufficient similarities include at least one identical common
word of W amino acids. Thus, instead of systematically
scanning all sequences, as it is done in the dynamic pro-
gramming method, only sequences (or part of sequences)
with common words are considered. From this common
word, extensions on both sides are performed to find larger
similarity. These words are called seeds since they are the
starting point to find regions of interest.

To be efficient, this method supposes first to index the se-
quences according to words of W characters (amino acids).
This index is then used to locate potential seeds from which
extensions are performed. Our algorithm follows this idea.
More precisely, it is split into 3 distinct steps:

e step 1: indexing
e step 2: ungapped extension

e step 3: gap extension

The first step indexes the sequences of the two banks. If
the size of the seed is W, then we construct two W entry
tables 7'0 and 7T'1 (one for each bank) with « equal to the
alphabet size (20 for protein). The number of entries reflects
the number of possible words of W characters. Each entry k
of the table points to an index list ({ L) of sequence offsets
where such a word occurs.

The second step corresponds to the following nested
loops:

for k = 1 toW*®
for 1 = 1 to len({LOy)
for j = 1 to len({L1y)
ungapped_extension(ILO0g[i],I L1[j])

For all entries of tables 70 and 7'1, all elements of the
two associated index lists /L0 and /L1 are considered as
potential seeds to start a similarity region. If, for an entry
k, IL0; has K elements and I K1, has K elements, then
there are Ky x K extensions to proceed. At this stage, the
extension procedure is a very simple treatment for deciding

if it is worth to start a complete — and expensive — computa-
tion. It is named ungapped_extension because the similarity
computation doesn’t consider the possibility to lose or in-
clude extra characters (gap) in the solution.

The third step is much more complex. The search space
is augmented by the possibility to consider gaps. This oper-
ation is triggered only if the neighbouring of a seed (com-
puted in the previous step) presents enough similarity.

2.2 Ungapped extension

Table 1 shows the percentage of time spent in the differ-
ent steps when comparing 30,000 proteins against the Hu-
man chromosome 1. It clearly indicates that the ungapped
extension step represents the majority of the execution time.
Thus, speeding up the whole algorithm must first target this
critical section.

step 1 step 2
0.3% 97 %

step 3
2.7 %

Table 1. Percentage of time spent in the dif-
ferent steps of the algorithm

The ungapped extension procedure aims at rapidly com-
puting a raw similarity to decide if the seed neighbouring
has a good probability to generate relevant similarity on a
larger region. This is simply done by computing a score de-
pending on the similarity between amino acids. More pre-
cisely, a maximum score is computed from the substitution
costs between pairs of independent amino acids surround-
ing the seed.

If we consider two substrings SO and S1 of length 2 x
N+W composed of a seed of W characters with its left and
right extensions of NV characters, then the maximum score
is computed as follows:

score = max_score = 0;
for (k=1; k<=2xN+W; k++) {
score = max (score,
score + Sub[SO[k]][S1[k]])
max_score = max (score,max_score) ;

where Sub [x] [y] is the cost for substituting x by v,
and S [k] is the kt" character of S. The matrix Sub is gen-
erally determined by genomic considerations based on pro-
tein evolution theory, for example, the BLOSUMG62 matrix
[7].

When the score exceeds a given threshold value, the cou-
ple (S0, S1) is transmitted to the next stage for further pro-
cessing (gap extension).

The great advantages of this ungapped extension step
are:

e the simplicity of the computation: a score is a sum of
small integers;

e the locality of the data: including the score calculation,
we have a 4 level nested loops, suggesting a strong
reuse of data;

o the regularity: all the substrings have the same length.

These interesting features make this step a good can-
didate for a parallel implementation on a processor array.
The next section describes the architecture of a Parallel Se-
quence Comparison operator (PSC operator) dedicated to
protein score computation.

3 Architecture and implementation
3.1 PSC operator architecture

Basically, the PSC operator receives two data flows cor-
responding to the I Ly and I L; index lists (described in the
previous section) and output pairs of integers correspond-
ing to the numbers of the 2 sub-sequences presenting strong
similarity.

The architecture has been designed to drive a large num-
ber of processing elements (PE). These PEs work in a
SIMD fashion and are specialized to compute in parallel
the score between one sub-sequence from I L0 with several
sub-sequences from [L1.

A pipeline structure has been chosen for optimizing the
clock frequency. Indeed, short and parallel data paths — in-
stead of long and shared data paths — imply shorter delays
and makes the Place and Route process easier, especially
when the design is using a consequent amount of FPGA
resources. Thus, slots (or clusters) of several PEs are sep-
arated by registers barriers, which delay and reenforce the
signals (data and control) as shown below:

In this architecture, the control is independent of the
number of PEs. This is a great advantage for, at least, two
reasons: (1) validation and test: a single PE can be used
first for simulation, software development, etc. Then, grad-
ually, the number of PEs can be increased to the pipeline
length and, finally, set to its maximal size; (2) the design
can target different array size depending on the available
reconfigurable resources.

The PSC operator architecture is divided into 5 main
components:

e Input Controller 0: it reads sub-sequences from the
I L0 port and pushes them into the I L0 pipeline;

e Input Controller I: it reads sub-sequences from the
I L1 port and pushes them into the I L1 pipeline;

e PE Slots: they are groups of PE with a common result
management module made of:

— Processing Element (PE). One PE stores an I L0
sub-sequences. Its main task is to compute a
score between the I L0 sub-sequence and many
1 L1 sub-sequences;

— Result Management Module. This module scans
results from a slot of PE and stores them into
a FIFO if the computed score is higher than a
threshold value. These FIFOs are cascaded to
asynchronously transfer the results to the output
port.

e Output Controller: it reads data from the cascaded FI-
FOs and writes them to the Result port;

e Master controller: it manages the global architecture:
process start, data loading, score computation, results
recovering, process end.

3.2 PE architecture

Figure 2 represents the PE architecture. A complete
treatment is split into two phases:

e initialization. This phase loads an I L0 sub-sequence
of W + 2 x N amino acids into the shift register. A
feedback loop allows the sub-sequence stored in the
shift register to be reused for several computations.
The size of the shift register correspond to the size of
the sub-sequences (W + 2 x N);

e computation. During the computation process, the
I L0 sub-sequence is sequentially sent, amino acid by
amino acid, to the score computation unit together with
amino acids coming from the I L1 data path.

A computation is performed in W + 2 x N clock cy-
cles. On each clock cycle, a PE processes one amino acid
coming from the /L0 sub-sequences and one amino acid
coming from the /L1 sub-sequence. They are first sent a
ROM which output the substitution cost of these 2 amino
acids. The result is added to the current score and a maxi-
mum value is computed.

After W+42x N cycles, the maximum is sent to the result
management module. It is thus compared with a threshold
value. If it is larger, it is sent to the cascaded FIFOs.

Input 0
Lo — CTRL *&‘—'

=
=

Input 1
CTRL

MADI:NJ [3

nwt —

PE #2

| |PE#
if
]

— [PE#

Results
Management
Module #1

Management
Module #N

Results/ Qutput
Port CTRL

(]

Figure 1. PSC operator architecture

i

@

LoadreUseData

ROM
sub matrix

RST

Figure 2. Processing element architecture

3.3 RASC-100 architecture

The PSC operator has been implemented on the RASC-
100 (Reconfigurable Application-Specific Computing) ac-
celerator from SGI. This reconfigurable platform is inter-
connected to the host system through a NUMAlink bus. The
RASC-100 is made of two Xilinx Virtex-4 FPGA compo-
nents, two TIO modules (for connecting the FPGA compo-
nents to the Altix system), a SRAM memory and a loader
module for initializing the FPGA with new bitstreams. In
addition, SGI provides a user-configurable interface (SGI
Core) for managing DMA transfer, memory access and user
registers (Algorithm Defined Registers : ADR)

Figure 3 details the RASC-100 architecture and the way
the PSC operator has been integrated in this environment.

4 Performances

We implement our algorithm on the Altix 350 platform
composed of an Intel Itanium2 Core2 (1.6 GHz) with 1 MB
cache L2, 4 GB RAM, and running SUSE Linux. Steps 1
and 3 are performed on the Altix 350 while step 2 is de-
ported on the RASC-100 accelerator.

Computation time is compared with the NCBI
tblastn program (Version: 2.2.18) run on the Altix
350 with an E-value set to 103, which is a recommended
value in the context of intensive sequence comparison.
The other parameters are set to their default values. The
execution time is calculated using the Linux command,
time. The following data set has been considered:

e the Human chromosome 1 (220 x 10% nucleotides)
translated into its 6 reading frames, comes from Homo
sapiens (NCBI Mar. 2008);

e 4 protein banks selected from the non-redundant pro-
tein data bank (NCBI Aug. 2008) including re-
spectively 1,000, 3,000, 10,000, and 30,000 proteins
and representing respectively 336,232, 1,025,835,
3,433,471 and 10,335,365 amino acids.

4.1 Overall performances

Table 2 gives the execution times for comparing the dif-
ferent protein banks against the Human chromosome 1. It
compares the execution times of NCBI BLAST and the
RASC implementation with respectively 64, 128 and 192
PEs running at 100 MHz.

Not that this experimentation uses only half of the re-
sources of the ALTIX 350 / RASC-100 platform: only one
FPGA is used, and steps 1 and 3 are run sequentially onto
one core. To be fair, the NCBI tblastn program is also
run in a sequential mode (one core). It can be seen that
for small protein banks the performance ratio between the
RASC implementation and NCBI BLAST ranges from 5 to

RASC 100

CPU

NUMAIlink

<« 10 [P

@ Loader

FPGA

SGI RASC CORE

3 e
Operator

B

Figure 3. RASC-100 FPGA architecture

Proteinbank [1K [3K | 10K [30K |
1 FPGA 168 [223 [510 [1,373
2FPGAs | 148 | 175 [330 | 759
Speedup | 1.14 | 127 | 154 | 1.80

Table 3. Performance comparison of 1 FPGA
and 2 FPGAs for 192 PEs and the 4 protein
banks

10. This is mainly due to the PE array which is not used at
its maximal capacity: there are not enough sub-sequences
related to one specific seed to feed entirely the array. An-
other factor is the time for indexing the banks: it remains
high compared to the execution time of steps 2 and 3. But,
as the bank size becomes larger, the ratio becomes much
better.

In addition, a parallel version using the two FPGAs
and the two cores has been tested in pthread programming
model. But in this version, a synchronization problem be-
tween the host system and 2 FPGAs has been encountered
while transferring the sequence data and the results. To
evaluate performances of 2 FPGAs, we have to modify the
condition test by increasing threshold value in ungapped ex-
tension procedure. Not that this modification reduces num-
ber of ungapped alignments transmitted to the third step, but
dose not decrease computing time on FPGA. We only use
this condition test for measuring the performance of 2 FP-
GAs. Table 3 shows performances (in second) of 1 FPGA
and 2 FPGAs for 192 PEs. Again, with small protein bank,
2 FPGAs dose’nt achieve good performance. But, as the
bank size becomes larger, this performance becomes much
better.

4.2 Step 2 analysis

To understand the parallelization efficiency of the un-
gapped extension implementation, Table 4 reports the time
(in second) and speed up measured with and without the
RASC-100 accelerator. It clearly depends of the number of

PEs and of the size of the data set: larger the amount of data,
better the efficiency.

An interesting point to highlight is that the sequential ex-
ecution time of step 2 of our implementation is slower than
the overall execution time of the NCBI tblastn program (first
column of the 2 Tables 2 and 4). But this section of code,
which represents a very high percentage of time over the to-
tal execution time, has been primarily designed to have an
optimal efficiency on a parallel support. Hence, executed
on the RASC-100 accelerator, the execution time of step
2 is thus strongly divided, leading to significant speedups
over optimized sequential implementation such as the NCBI
tblastn software.

4.3 Comparison with other tblastn FPGA
implementation

One criteria for comparing different implementations
can be the amount of data process per second. In the case
of the tblastn program it is given by the product of the
number of Kilo Amino Acids (Kaa) and the number of Mega
nucleotides (Mnt) divided by the processing time. Based on
this ratio, Table 5 compares various implementations.

DeCypher engine has been benchmarked' for comparing
4289 proteins (1,358,990 aa) against 192 bacterial genomes
(775,191,168 aa) in 1 hour and 36 minutes. The next ver-
sion, called SeqCrunch, provides probably better perfor-
mance, but no data are available. For CLC, values are ex-
trapolated from [2] where performance are given in GCUPS
(Giga Comparison per second) which are similar to our
measure. The comparison is strongly biased since the CLC
implementation is very sensitive and based on the dynamic
programming method. The FLASH/FPGA board, also de-
veloped in our team, provides similar results but requires
specific hardware not available on the market [8]. The per-
formance of the Systolic approach given in [5] are peak per-
formance measured on a FPGA prototype when the protein
sequence length exactly match the size of the array (3072
PE). A standard protein (330 aa) search gives an average

Uhttp://www.timelogic.com/benchmark_blast.html

| NCBI tblastn [| RASC 64 PE | Speedup || RASC 128 PE | Speedup || RASC 192 PE [Speedup
1K protein 2,379 506 4.70 451 5.27 443 5.37
3K protein 7,089 873 8.10 639 10.20 631 11.23
10K protein 24,017 2,220 10.81 1,661 14.45 1,450 16.56
30K protein 70,891 6,031 11.75 4312 16.44 3,667 19.33
Table 2. Performance comparison of NCBI BLAST and our FPGA implementation. Time is given in
second.
y [Sequential || RASC 64 PE [Speedup || RASC 128 PE | Speedup [RASC 192 PE | Speedup |
1K protein 2,368 220 10.76 176 13.45 169 14.01
3K protein 7,577 462 16.40 280 27.06 223 33.97
10K protein 24,687 1,366 18.07 720 34.28 510 48.38
30K protein 73,492 3,932 18.68 2,015 36.47 1,373 53.52
Table 4. Performance comparison of step 2 only for the 3 different sizes of PE array and the 4 protein
banks
] \ FPGA-RASC NBCI-BLAST More precisely, the ROC’sq value is calculated as fol-
ROCsxg 0.468 0.479 lows: each protein sequence is compared with the yeast
AP-Mean 0.447 0.441 genome and the first 100 best hits are marked as true or false

Table 6. ROC5, and AP-Mean scores of RASC
and NCBI BLAST

ratio of 258. In addition, the performance of Systolic im-
plementation dose’nt include gap extension stage.

4.4 Sensitivity and selectivity

Another important issue is the quality of the results pro-
duced by the RASC-100 implementation. We use the same
seed heuristics as the BLAST algorithm but in a rather
slightly different way. In the NCBI BLAST algorithm, the
ungapped extension is started when two seeds of 3 amino
acids are detected in a closed neighbouring. In our imple-
mentation we consider only one seed of 4 amino acids, but
based on the subset seed approach [10]. The main reason is
that this approach is very efficient for indexing the protein
sequences. Theoretically, both approaches have the same
sensitivity.

Table 6 reports the receiver operating characteristic
(ROC5q) and the average precision (AP-Mean) scores of
both RASC and NCBI BLAST, in which all parameters are
set to their default values. The ROC curves and AP-Mean
were generated by analyzing the results of aligning 102
queries against the yeast genome in [6]. They correspond
to standard procedures to evaluate sensitivity and selectivity
of sequence comparison algorithms. Similar values indicate
similar sensitivity and selectivity.

positives according to a careful human expert annotation.
True positives are sequences of the same family. Then, for
each of the first 50 false positives, the number of true pos-
itives with a higher score is get. These numbers are added
and the sum is divided by 50 x P, P being the number of se-
quences of the family. The average of these ROC’5(scores
gives the final ROC’(score.

The average precision (AP) criterion is borrowed from
information retrieval research as described in [4]. For cal-
culating the average precision, the 50 best alignments per
query are marked as either true or false positives. For each
true positive found by the comparison algorithm, the true
positive rank is divided by its position. All these numbers
are summed up and divided by the total number of true pos-
itives, giving one AP value per query. The Mean-AP is the
average of all the APs.

5 Conclusion

We have proposed an FPGA implementation of the
tblastn algorithm on the SGI RASC-100 accelerator.
Compared to the NCBI BLAST software version, the
RASC-100 implementation provides a speed up of 19 for
processing large amount of data. This has been achieved by
rewriting the code in a way suitable for parallel processing
on hardware accelerators.

The heart of the hardware architecture is based on the
parallel score calculation between two short amino acid se-
quences. In that way, this design can be directly reused for
implementing blastp, blastx, and tblastx BLAST

[DeCypher [CLC | FLASH/FPGA | Systolic | 1/2 RASC-100 |

[182 [2 | 451

|

83 | 620 |

Table 5. Number of Kilo amino acids x Mega nucleotides processed par second (KaaMni/sec)

’ Protein bank \ 1K \ 3K \ 10K \ 30K ‘
step 1 43% | 31% 14 % 6 %
step 2 38% | 35% 35 % 37 %
step 3 19% | 34 % 51 % 57 %

Table 7. Percentage of time spent in the differ-
ent step of RASC with 192 PEs for 4 protein
banks

family programs.

Improving the parallelization of step 2 (un-
gapped_extension) would provide better overall per-
formances, but would be limited by the execution time of
step 3 as shown on the code profiling, Table 7, when using
the RASC-100 with 192 PEs.

Now, step 3 has the largest execution time. Hence, op-
timizing global performances implies now to consider a
larger array with faster PEs for ungapped extension together
with the design of another reconfigurable operator dedicated
to the computation of similarities including gap penalty.
The RASC-100 architecture would perfectly support this
double activity since it allows two different designs to run
concurrently on its two FPGAs.

Also, another way to further optimize would be to con-
sider the next processor generation which will include 4,
8 or more cores. As a matter of fact, when such proces-
sors will be linked to reconfigurable resources, the question
will be how to dispatch the overall computation between
cores and FPGA to get optimal performances. The next
platforms involved in reconfigurable super computing will
have to deal with this matter to find the best compromise
and to decide which part of the application will be more
suited for reconfigurable implementation.

References

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Timelogic seqcruncher’ PCle accelerator

http://www.timelogic.com/seqcruncher.html.

White paper on CLC bioinformatics cube 1.03, clc bio,
2007, http://www.clcbio.com.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman. Basic local alignment search tool. J Mol Biol,
215(3):403-410, 1990.

Z. Chean. Assessing sequence comparison methods with the
average precision criterion. Bioinformatics, 19:2456-2460,
2003.

X. Fei, D. Yong, and X. Jinbo. Fpga-based accelerators for
blast families with multi-seeds detection and parallel exten-
sion. In Bioinformatics and Biomedical Engineering in The
2nd International Conference, pages 58—62, 2008.

M. Gertz, Y. K. Yu, R. Agarwala, A. Schaffer, and
S. Altschul. Composition-based statistics and translated nu-
cleotide searches: Improving the tblastn module of blast.
BMC Biology, 2006.

S. Henikoff and J. G. Henikoff. Amino acid substitution
matrices from protein blocks. Proc. Natl. Acad. Sci. USA,
89(22):10915-10919, 1992.

D. Lavenier, G. Georges, and X. Liu. A reconfigurable in-
dex flash memory tailored to seed-based genomic sequence
somparison algorithms. VLSI Signal Processing, 48(3):255—
269, 2007.

E. Mardis. The impact of next-generation sequencing tech-
nology on genetics. Trends in Genetics, 24(3):133-141,
2008.

P. Peterlongo, L. Noe, D. Lavenier, G. Georges, J. Jacques,
G. Kucherov, and M. Giraud. Protein similarity search with
subset seeds on a dedicated reconfigurable hardware. In Par-
allel Bio-Computing (PBC-07).

M. Pop and S. L. Salzberg. Bioinformatics challenges of
new sequencing technology. Trends in Genetics, 24(3):142—
149, 2008.

card,

