

Moadeli, M., Maji, P.P. and Vanderbauwhede, W. (2009) Design and
implementation of the Quarc network on-chip. In: 2009 IEEE
International Symposium on Parallel and Distributed Processing, 23-29
May 2009, Rome, Italy. IEEE Computer Society, Piscataway, N.J., USA.
ISBN 9781424437511

http://eprints.gla.ac.uk/40015/

Deposited on: 16 December 2010

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/9015.html
http://eprints.gla.ac.uk/view/author/12645.html

Design and implementation of the Quarc Network on-Chip

M. Moadeli1, P. P. Maji2, W. Vanderbauwhede1

1: Department of Computing Science
University of Glasgow

Glasgow, UK
Email: {mahmoudm, wim}@dcs.gla.ac.uk
2 : Institute for System Level Integration

Livingston, UK
Email: partha.maji@sli-institute.ac.uk

Abstract

Networks-on-Chip (NoC) have emerged as alternative to
buses to provide a packet-switched communication medium
for modular development of large Systems-on-Chip. How-
ever, to successfully replace its predecessor, the NoC has to
be able to efficiently exchange all types of traffic including
collective communications. The latter is especially impor-
tant for e.g. cache updates in multicore systems. The Quarc
NoC architecture [9] has been introduced as a Networks-
on-Chip which is highly efficient in exchanging all types of
traffic including broadcast and multicast. In this paper we
present the hardware implementation of the switch archi-
tecture and the network adapter (transceiver) of the Quarc
NoC. Moreover, the paper presents an analysis and compar-
ison of the cost and performance between the Quarc and
the Spidergon NoCs implemented in Verilog targeting the
Xilinx Virtex FPGA family. We demonstrate a dramatic im-
provement in performance over the Spidergon especially for
broadcast traffic, at no additional hardware cost.

1 Introduction

Networks-on-Chip (NoC) are an emerging
communication-centric concept to develop future complex
System on-Chip (SoC) by providing a scalable, energy
efficient and reliable communication platform. In a NoC-
based system, different components such as computational
cores, memories and specialized IP blocks exchange data
using a packet-switched network as a communication
infrastructure.

Designing a flexible on-chip communication network for
a NoC-based SoC platform, which can provide the desired
bandwidth and at the same time be reused across many ap-

plications, is a challenging task which requires trading off a
large number of system attributes such as performance, cost
and size. In addition to the technological process for imple-
menting the SoC, the topology, switching method, routing
algorithm and traffic patterns are key factors which have a
direct impact on the performance of a NoC-based SoC plat-
form.

A packet switched NoC consists of an interconnected set
of routers that connect IP cores together to form a given
topology in order to enable efficient communication be-
tween the cores. The underlying topology of this architec-
ture is the key element of the on-chip network as it provides
a low latency communication mechanism and, when com-
pared to traditional bus-based approaches, resolves physical
limitations due to wire latency providing higher bandwidth
and parallelism.

Deterministic routing and wormhole switching are re-
garded as the dominant routing and switching mechanisms
in the NoC domain [15]. Those options mainly originate
from the resource constraints imposed by the SoC medium
on intermediate routers [2, 15].

Most recent proposed NoC architectures have been
founded on top of ring [4, 5], fat tree [10], butterfly-fat tree
[11], mesh [12], torus [15], folded torus [16] topologies.
Nostrum [7], Æthereal [3], and Xpipes [6] are some exam-
ples of architectures used for on-chip networks. The Spi-
dergon NoC [5] is also one of the ring-based architectures
proposed recently.

By adopting wormhole switching, deterministic rout-
ing and homogeneous, low-degree routers the Spidergon
scheme aimed to address the demand for a fixed and op-
timized network on-chip architecture to realize cost effec-
tive MPSoC (Multi-Processor SoC) development. However,
the edge-asymmetric property of the Spidergon causes the
number of messages that cross each physical link to vary

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on October 28, 2009 at 08:51 from IEEE Xplore. Restrictions apply.

severely, resulting in an unbalanced traffic on network chan-
nels and thus leading to poor performance of the whole net-
work. This situation is even exacerbated when the network
is under bursty traffic as a result of some operations such as
broadcast.

In this paper we present and overview of the Quarc [9] ar-
chitecture and discuss the hardware implementation of dif-
ferent components including the switch and the transceiver.
Also, the paper explains the routing protocols and ensuing
packet format for unicast, broadcast and multicast traffic.
Broadcast traffic in NoCs is particularly important in MP-
SoC as it is the key mechanism for keeping caches in sync.
The paper presents a comparison between the Quarc and
the Spidergon which is a very similar NoC architecture. We
demonstrate how the Quarc architecture addresses the poor
performance of the Spidergon for broadcast traffic and show
that the improved performance does not involve increased
area cost.

The paper is organized as follows. Section 2 intro-
duces the Quarc NoC and investigates the architecture of
the switches and the transceiver. This section also discusses
routing discipline, including unicast, broadcast and multi-
cast. This section ends with a discussion of the packet for-
mat and the link-layer interface. Section 3 presents a com-
parison between the Quarc and the Spidergon schemes in
terms of performance and cost based on a Virtex-II PRo
FPGA implementation. Section 4 concludes the paper.

2 The Quarc NoC Architecture

The topology of an on-chip network specifies the struc-
ture in which routers connect the IPs together. Fat tree,
mesh, torus and variations of rings are among the topolo-
gies introduced or adopted for the NoC domain.

Typically, a particular topology is selected in order to
trade-off between a number of cross-cutting measures such
as performance and cost. A number of important character-
istics that affect the decision on adopting a particular topol-
ogy are network diameter, the highest degree of nodes in
the network, regularity, scalability and synthesis cost for an
architecture.

The topology of the Quarc NoC is quite similar to that of
the Spidergon NoC. Therefore, the next section presents a
brief description of the Spidergon NoC, followed by intro-
duction of the Quarc NoC.

2.1 The Spidergon NoC

The Spidergon NoC [5] is a network architecture which
has been recently proposed by STMicroelectronics [13].
The objective of the Spidergon topology has been to address
the demand for a fixed and optimized topology to realize
low cost multi-processor SoC (MPSoC) implementations.

In the Spidergon topology an even number of nodes are
connected by unidirectional links to the neighboring nodes
in clockwise and counter-clockwise directions plus a cross
connection for each pair of nodes. Each physical link is
shared by two virtual channels in order to avoid deadlock.
Fig. 1 depicts a Spidergon topology of size 16 and its layout
on a chip.

Figure 1. The Spidergon topology and the on
chip layout.

The key characteristics of this topology include good
network diameter, low node degree, homogeneous build-
ing blocks (the same router to compose the entire network),
vertex symmetry and a simple routing scheme for unicast
routing. Moreover, the Spidergon scheme employs packet-
based wormhole routing which can provide low message la-
tency at a low cost. Furthermore, the actual layout on-chip
requires only a single crossing of metal layers.

In the Spidergon NoC, two links connecting a node to
surrounding neighboring nodes on the “rim” carry messages
destined for half of the nodes in the network, while the node
is connected to the rest of the network via the cross link (or
“spoke”). Therefore, the cross link can become a bottle-
neck. Also, since the router at each node of the Spidergon
NoC is a typical one-port router, the messages may block
on an occupied injection channel even when their required
network channels are free. Moreover, performing broadcast
communication in a Spidergon NoC of size N using the
most efficient routing algorithm (presented in [9]) requires
traversing N − 1 hops.

2.2 The Quarc Architecture

The Spidergon NoC is an efficient and low-cost NoC
but has the main drawback of poor broadcast performance.
Broadcasts are a key mechanism to maintain cache co-
herency in MPSoCs. As the number of cores in MPSoCs
grows, cache synchronization will become a bottleneck in
NoC-based MPSoCs unless the NoC has an efficient broad-
cast mechanism.

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on October 28, 2009 at 08:51 from IEEE Xplore. Restrictions apply.

(a) (b)

Figure 2. Quarc topology (a) vs Spidergon (b)

To address the issue of broadcast and multicast perfor-
mance we propose the Quarc (Quad-arc) NoC, which im-
proves on the Spidergon by making following changes: (i)
adding an extra physical link to the cross link to separate
right-cross-quarter from left-cross-quarter, (ii) enhancing
the one-port router architecture to an all-port router archi-
tecture and (iii) enabling the routers to absorb-and-forward
flits simultaneously. The Quarc preserves all other features
of the Spidergon including the wormhole switching and de-
terministic shortest path routing algorithm, as well as the
efficient on-chip layout.

The resulting topology for an 8-node NoC is represented
in Fig. 2.

Unlike the Spidergon NoC, in the Quarc architecture a
message will be blocked only when its requested network
resources are occupied. This feature significantly enhances
the performance of the network by reducing the waiting
time at source node. Moreover, adding another physical
link to the cross network links (making the topology edge-
symmetric) improves access to the cross-network nodes.
And last but not the least, the effect of the modification man-
ifests itself most clearly when performing broadcast or mul-
ticast communication operations. In the Spidergon NoC,
deadlock-free broadcast can only be achieved by consec-
utive unicast transmissions. The NoC switches must con-
tain the logic to create the required packets on receipt of a
broadcast-by-unicast packet. In contrast, the broadcast op-
eration in the Quarc architecture is a true broadcast, leading
to much simpler logic in the switch fabric; furthermore, the
latency for broadcast traffic is dramatically reduced.

The analysis in Section 3 demonstrates that, surprisingly,
the modifications proposed to the Spidergon topology and
switch architecture to obtain the Quarc do not adversely af-
fect area consumption of the resulting NoC compared to the
original Spidergon. On the contrary, we demonstrate that
the proposed modifications lead to both smaller switches
and simpler routing logic.

(a) (b)

Figure 3. Minimal switch architectures for Spi-
dergon (a) and Quarc (b) with deterministic
routing

2.3 Switch architecture

In this section we present the switch architectures of the
Quarc and the Spidergon NoCs. Fig. 3 shows simplified
diagrams for a Spidergon 4× 4 switch with 1 local channel
and 3 network channels (Fig 3(a)) and the Quarc architec-
ture (Fig 3(b)). Both diagrams show minimal architectures
for use with deterministic routing, i.e. the hardware is tai-
lored to the paths allowed by the routing discipline.

The main differences are the number of local ingress
ports (4 for Quarc) and the doubling of the cross-network
link. Further differences are not obvious from the figure:
the Quarc switch performs a true broadcast, i.e. the ingress
multiplexers have a state that clones the flit; the decision
logic is very simple (see 2.5). The Spidergon switch can
only broadcast by unicast, and therefore needs a more com-
plex logic to decide if a switch needs to clone a broadcast
packet; furthermore, the ingress packet is not simply cloned
but the header flit needs to be rewritten.

A top level block diagram of the Quarc switch is shown
in Fig.4. The Quarc switch architecture consists of three
fundamental modules, namely, Input Port Controller (IPC),
Switch, and Output Port Controller (OPC). While IPC con-
tains input buffer to store the flits, OPC does not contain
any output buffer. This significantly reduces overall area
of the Quarc switch. Any flit enters to the Quarc switch
pass through four stages, namely, input buffering, routing,
switching, and virtual channel allocation. The different
modules responsible for controlling each of these stages are
shown in Fig.4. The routing logic inside the Quarc switch is
very minimal as a flit can either be destined for local node
or needs to be forwarded on the same direction on the rim.
Hence, the area occupied by the crossbar is very small due
to its simplicity. The detailed description of each of these
modules are given in the following section.

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on October 28, 2009 at 08:51 from IEEE Xplore. Restrictions apply.

Figure 4. Functional block diagram of the
Quarc Switch

2.3.1 Input Port Controller

When a flit arrives at a router it proceeds to an input port
controller (IPC). The IPC, shown in Fig.4 performs two
operations on incoming flits, namely, de-multiplexing and
buffering. A write-controller reads the input handshaking
signals and generates write-enable signals to store the flits
into router’s input buffer. The IPC incorporates two lanes of
input buffers as shown in the Fig. 4. Therefore, in the cur-
rent architecture, the Quarc switch is capable of supporting
two virtual channels in parallel. The full signals generated
by the buffer are used to construct the channel-status signal
which is passed to the source of the message. The empty
signal is passed to the next control block for routing and
forwarding the flit to the destination. The buffers in the de-
sign are parametrized in width and depth.

The Write controller waits for the start-of-frame (sof_in)
signal and stays in the idle state. Once it receives sof_in sig-
nal it goes to write stage and generate write-enable signal.
The write-enable signal is also used with the ch_to_store to
decide on which channel flit should be stored. The active
low eof_in signal indicates end-of-frame to the write con-
troller and the write controller goes back to idle stage again.
The reset_fsm_w signal is used to reset the write controller
if required.

2.3.2 The Switch

The switch is consisted of three main parts, namely, Cross-
bar, VC Arbiter, Flow Control Unit (FCU) as shown in the
Fig. 4. The purpose of the crossbar is to forward the flits
from IPC to a designated OPC decided from the destination
address available in the header flit. The maximum through-
put of the router is determined by the physical implemen-
tation of the crossbar. In the Quarc switch, left, right and

one of the cross input port as shown in the Fig. 3, may
require to send flits in maximum two possible destinations
(i.e. local PE or forward to next node). The remaining input
ports only have one possible destination OPC. This makes
the Quarc switch very light weight compared to any other
topology. For example, in 2D-mesh topology every input
can have four possible destinations which makes the cross-
bar very bulky.

The purpose of the VC arbiter is to allow only one of the
input channels to send request to the FCU for access to Out-
put Port Controller (OPC). In normal traffic situation the
VC arbiter might look like a redundant component. But in
case of a header flit waiting at the router’s input buffer and
another header flit arrives at the other buffer of the same in-
out port then the VC arbiter can allow the second packet to
access to OPC if the destination route is free. The FSM for
the VC arbiter has three states, namely, idle, grant_0 and
grant_1. A timer generates times_up signal to indicate that
wait session is over in case of a flit is waiting for the grant
signal and another flit has arrived at the other channel of the
same input. Using this method of arbitration it is possible
to generate equal opportunity between both channels of the
same input port. The VC arbiter gets activated by the empty
signals generated from the input buffer. If any of these sig-
nals becomes active the FSM moves to either of the grant
state. A timer starts counting till timeout once FSM enters
into any of these two stages. If there are two requests from
both the input channels, then the FSM multiplexes between
the input channels in case of a traffic block. When there
is no request from the IPC, the FSM goes back to the idle
state.

The FCU serves two functionality. First when it receives
a request from the VC arbiter, it checks the header flit and
sets the crossbar according to the destination address. Sec-
ond, it sends a request to the corresponding OPC for access.
If OPC does not send back the grant signal or otherwise the
OPC is busy, then the FCU waits until either the grant sig-
nal or another request from the VC arbiter is obtained. If it
receives the grant signal, then the FCU stores the switching
information (i.e. the crossbar) till the tail flit of the same
packet and sends the flit to the next router via its OPC. If
it receives another request signal from the VC arbiter while
waiting for a grant signal then it goes back to first state and
follows the previous steps for the new flit from the other
channel. If the FCU receives a body flit then it reads the
switching information from the stored table and sends a re-
quest to corresponding OPC. In case of a tail flit, the FCU
deletes the corresponding entry in the table as this is the last
flit of the same packet.

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on October 28, 2009 at 08:51 from IEEE Xplore. Restrictions apply.

2.3.3 Output Port Controller

The function of the Output Port Controller (OPC) is to
schedule incoming requests and forward them to next node
with proper handshaking signals. The OPC mainly con-
sists of two main modules, namely, scheduler and a data
path multiplexer. Note that the Quarc switch does not have
any output buffer in the OPC. By not providing any output
buffer the area requirement for the router is less. Although,
extra logic is required to schedule incoming request but it
occupies much lesser area than the buffers. There are four
FSMs which governs the scheduler. Out of four, one is mas-
ter FSM which handles requests from three different IPCs.
It arbitrates between the requests and activates one of the
slaves FSM. If this FSM gets into any of the grant state
(grant_a, grant_b or grant_c) it activates one of the respec-
tive slave FSM. The slave FSM allocates one of the avail-
able channels as per the received ch_status_n signal from
the next node. In case it has to multiplex between more
than one IPC then it stores the virtual channel settings in a
VC allocation table. The slave FSM has only three states,
namely, idle, vc_allocation and grant. The vc_allocation
state performs different activity according the type of the flit
it receives. If it is a header flit then it checks the availability
of channels and set the table with new allocation details. If
it is a body type flit, then it reads from the table and follows
the settings by made by the header. If it is a tail flit, it reads
the table, follow the settings made by the header and then
deletes the corresponding entry from the table.

2.4 The Transceiver Architecture

The Quarc NoC adopts an all-port router scheme. There-
fore, the router has four ingress ports which are connected
to four different links corresponding to four quadrants.
Hence, before entering the router a flit must know its des-
tination quadrant. This is done in the network adapter
or transceiver. Fig. 5 shows a block diagram of such
transceiver. The transceiver consists of five main compo-
nents, namely, write controller, quadrant calculator, buffer
selector, FCU and buffers. When a packet arrives at the
transceiver, write controller divides the packet into a num-
ber of flits. The write controller also adds the flit type
to the flit. For example, if a flit is of 32-bits after write
controller adds its type, it becomes 34-bits which then tra-
verse through the on-chip network. The quadrant calcula-
tor calculates the quadrant by comparing the source address
from the router and the destination address. from the packet
header. The detailed algorithm is explained in the section
2.5. According to calculated quadrant only one buffer re-
ceives write enabled by the write controller. On the other
hand, FCU sends a request to the router’s OPC unit for flit
to be forwarded. Once OPC sends an ack signal, the FCU
sends read enable signal to the corresponding buffer and the

Figure 5. Functional block diagram of the
transceiver

flit traverse to the next node via OPC of the source router.

2.5 Routing algorithm

2.5.1 Unicast routing

For the Quarc, the surprising observation is that there is no
routing required by the switch: packets are either destined
for the local port or forwarded to a single possible desti-
nation. Consequently, the proposed NoC switch requires
no routing logic. The route is completely determined by the
port in which the packet is injected by the source. Of course,
the NoC interface (transceiver) of the source processing el-
ement (PE) must make this decision and therefore calculate
the quadrant as outlined above. However, in general the PE
transceiver must already be NoC-aware as it needs to cre-
ate the header flit and therefore look up the address of the
destination PE. Calculating the quadrant is a very small ad-
ditional action.

2.5.2 Broadcast routing

Broadcast, the key motivator behind the Quarc topology, is
elegant and efficient: The Quarc NoC adopts a BRCP (Base
Routing Conformed Path) [1] approach to perform multi-
cast/broadcast communications. BRCP is a type of path-
based routing in which the collective communication op-
erations follow the same route as unicasts do. Since the
base routing algorithm in the Quarc NoC is deadlock-free,
adopting BRCP technique ensures that the broadcast oper-
ation, regardless of the number of concurrent broadcast op-
erations, is also deadlock-free.

To perform a broadcast communication the transceiver
of the initiating node has to broadcast packet on each port

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on October 28, 2009 at 08:51 from IEEE Xplore. Restrictions apply.

Figure 6. Broadcast in a Quarc of 16 nodes

of the all-port router. The transceiver tags the header flit
of each of four packets destined to serve each branch as
broadcast to distinguish it from other types of traffic. The
transceiver also sets the destination address of each packet
as the address of the last node that the flits stream may tra-
verse according to the base routing. The receiving nodes
simply check if the destination address at the header flit
matches its local address. If so, the packet is received by
the local node. Otherwise, if the header flit of the packet
is tagged as broadcast, the flits of the packet at the same
time are received by the local node and forwarded along the
rim. This is simply achieved by setting a flag on the ingress
multiplexer which causes it to clone the flits.

The broadcast in a Quarc NoC of size 16 is depicted in
Fig. 6. Assuming that Node 0 initiates a broadcast, it tags
the header flits of each stream as broadcast and sets the des-
tination address of packets as 4, 5, 11 and 12 which are the
address of the last node visited on left, cross-left, cross-right
and right rims respectively. The intermediate nodes receive
and forward the broadcast flit streams, while the destination
node absorbs the stream.

2.5.3 Multicast routing

Similar to broadcast, in multicast operation, the last node
to be visited must be specified as destination address in the
header flit. For broadcast all nodes in the path from source
to destination are the receiver nodes. In case of multicast
the target addresses are specified in the bitstring field. Each
bit in the bitstring represents a node; its hop-distance from
the source node corresponds to position of the bit in the
bitstring. The status of each bit indicates whether the vis-
ited node is a target of the multicast or not. Consequently,
broadcast is simply a special case of multicast where every
node is a target. Next section presents the packet format for
different traffic types.

2.6 Packet Format in the Quarc NoC

The Quarc scheme is a packet switched network employ-
ing wormhole switching. In wormhole switching a packet is

Figure 7. Flit type formats in the Quarc NoC

divided into elementary units called flits, each composed of
a few bytes for transmission and flow control. The header
flit governs the route and the remaining data flits follow it in
a pipelined fashion. If the header flit blocks, the remaining
flits are blocked in situ.

Since the Quarc scheme adopts a simple deterministic
routing, the packet format for unicast and collective com-
munication is quite simple. For a Quarc NoC employing
flit size of 34 bits various flit types composing a packet are
depicted in Fig.7. Bits [1 : 0] denote the flit types namely:
header, body and tail. And the last 3 bits of header flits rep-
resent traffic types which are shown for unicast, multicast
and broadcast. Each packet must have the header and tail
flits.

Please note that due to the scalability issues of the Quarc
NoC, it is assumed that the network size may be up to 64
nodes (max diameter is n/4, if n > 64 then the max diam-
eter is larger than the max diameter for mesh 2(

√
n − 1)).

However, larger networks may employ flits of larger size or
to use multi flit headers for specifying multi-addresses for
multicast operations.

2.7 Link Layer Interface

The Quarc NoC uses the signals and handshaking mech-
anism of Xilinx’s LocalLink protocol for the link layer
interface. Fig. 8 shows a high level block diagram of
the LocalLink interface used for the Quarc switch and il-
lustrates its basic topology. In this 2-Channel (VC) ex-
ample, CH_STATUS_N [1:0] bus shows that maximum
two channels can accept data. According to the value of
CH_STATUS_N [1:0], the sender decides on which VC data
has to be sent and corresponding value is sent through the
CH_TO_STORE signal. The five steps to transfer a chan-
nelized frame with channel ready signaling are:

• The destination interface asserts the CH_STATUS_N
[1:0] bus to indicate virtual channel availability. A
typical application asserts a logic zero on the appropri-
ate bus bits to indicate channels that can accommodate
at least one full-sized LocalLink frame.

• The source interface responds by asserting
SRC_RDY_N.

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on October 28, 2009 at 08:51 from IEEE Xplore. Restrictions apply.

Figure 8. High level block diagram of local link
specification

• The destination responds by asserting DST_RDY_N.

• The source interface responds by asserting SOF_N,
driving the data bus, and driving the number of the
channel that is transferring data to the destination onto
the CH_TO_STORE bus (in this case WIDTH = 1).

• The source interface ends the transfer by asserting the
EOF_N signal.

3 Cost and Performance Analysis

Deploying a particular NoC architecture typically in-
volves a trade-off between performance and cost. This sec-
tion presents a comparison between the Quarc and the Spi-
dergon NoCs of the cost in terms of area and performance
in terms of average latency.

3.1 Cost Analysis

In this section, we demonstrate that the Quarc switch is
smaller in size and at the same time is less complex than
the Spidergon switch and this saving in area outweighs the
overheads incurred by additional ports and the area for ad-
ditional links.

We assume that every node of NoC hosts a processing
element (PE), typically a microprocessor with local mem-
ory. The difference in resource utilization at the PE between
the Quarc and the Spidergon NoCs is very small. In both
cases the packets are stored in RAM and the address of the
packets are queued. For the Quarc NoC, the PE queues the
addresses in four separate queues, effectively making the
routing decision by doing so. For the Spidergon NoC, the
PE will put the addresses in a single queue. As the variance
on the occupation of the individual queues (σ for Quarc), is
twice as large as the variance on the occupation of the com-
bined queue (σ/

√
4 for Spidergon), the queues has to be

twice as deep. This is, of course, a small memory overhead
as the address size is a fraction of the packet size. Also, note
that the actual packet memory requirements are identical for
both the Quarc and the Spidergon NoCs.

To present a comparison between the two architectures,
we have implemented 16, 32, and 64-bits versions of both
the Quarc and the Spidergon switches in Verilog targeting
the Xilinx Virtex-II Pro FPGA. In order to make assembling
and upgrading of the switch simple, the switch architecture
is designed in a modular fashion as shown in Fig.4.

Module Slice Count
Input Buffers 735

Write Controller 7
Crossbar & Mux 186

VC Arbiter 30
Flow Control Unit (FCU) 64

Ouput Port Controller (OPC) 431

Table 1. Module-wise cost analysis of a 32-bits
Quarc switch

For 32-bits version of a Quarc switch the number of oc-
cupied FPGA Slices is 1, 453, whereas similar version of
the Spidergon switch occupies 1, 700 Slices. A more de-
tailed module-wise area occupancy for a Quarc switch of
32-bits version is shown in the Table1. Note that the amount
of area occupied by the crossbar and FCU are very minimal.
This result supports the argument that the Quarc NoC does
not have complex crossbar or routing logic, which saves the
area of the switch. A comparison of the cost analysis in
terms of Slice count for various versions between the two
switches is shown in the Fig.12.

Figure 12. Cost comparison between Quarc
and Spidergon switches

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on October 28, 2009 at 08:51 from IEEE Xplore. Restrictions apply.

Figure 9. Comparison of Quarc and Spidergon for M=8,16,32

Figure 10. Comparison of Quarc and Spidergon for N=16,32,64

3.2 Performance Analysis

To evaluate the performance of the Quarc NoC architec-
ture we have developed a discrete event simulator operating
at flit level using OMNET++ [14]. The simulator has been
verified extensively against analytical models for the Spi-
dergon and mesh topologies employing wormhole routing
[8].

The performance of the Quarc architecture has been
evaluated against the Spidergon for numerous configura-
tions by changing the network size, message length and the
rate of broadcast traffic. In graphs, N , M and β represent
the number of nodes, message length and rate of broadcast
traffic respectively. The horizontal axis in the figures shows
the message rate per node while the vertical axis describes
the latency.

Fig. 9 shows the average latency experienced by unicast
and broadcast traffic in the Quarc and the Spidergon NoCs
in configurations where network sizeN = 16 and broadcast
rate, β = 5% are fixed while the message length can be 8,
16 and 32. Fig. 10 compares the simulation results against
the analysis for the networks ranging from 16 to 64 nodes
with a fixed message length of 16 and 10% broadcast traffic.

As can be seen from the figures the Quarc NoC outper-
forms the Spidergon over the complete range of N , M and
β . The most striking performance difference is clearly ob-

served for broadcast traffic, with almost an order of magni-
tude improvement on the latency. However, the unicast la-
tency is overall at least a factor of 2 lower. Also, the graphs
clearly show that the Quarc NoC is capable of sustaining a
much higher load before it saturates. This in turn indicates
that the throughput of the Quarc NoC is significantly higher
than the Spidergon NoC.

The graphs in Fig. 11 compare the average latency in the
Quarc and Spidergon NoC for the configuration where the
network size (N = 64) and message length (M = 16) are
fixed while the broadcast rate, β, is varying between 0 to
10%. The graphs reveal the Quarc NoC is highly capable of
sustaining the broadcast traffic. As can be seen the injection
of the broadcast traffic into the Spidergon NoC severely re-
duces the sustainable load in the network. In the Quarc NoC
the adverse impact of the broadcast traffic on the sustainable
load and on the performance of the unicast is hardly appre-
ciable.

4 Conclusion

The aim of the Quarc NoC was to provide an efficient
NoC for exchanging all types of traffic including collec-
tive communications in MPSoC systems. In this paper we
have presented the hardware design of the components of
the Quarc NoC including the switch and transceiver archi-

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on October 28, 2009 at 08:51 from IEEE Xplore. Restrictions apply.

Figure 11. Comparison of Quarc and Spidergon for β= 0%, 5%, 10%

tecture, as well as results for an implementation in Verilog
targeting the Xilinx Virtex-II Pro FPGA.

The paper has presented a comparison of performance
and cost between the Quarc and Spidergon NoCs. Our
analysis has shown that the Quarc outperforms the Spider-
gon over the complete range of number of nodes, message
length and broadcast rate.

In particular we show a dramatic performance improve-
ment for broadcast traffic which is of special importance in
MPSoC systems as it is used to synchronise the caches.

Equally important, our cost analysis showed that, sur-
prisingly, the additional performance gain obtained at no
extra cost compared to the Spidergon NoC.

Our next objective is to compare the performance of the
Quarc against other widely used NoC architectures such as
mesh and torus.

References

[1] D.K. Panda et al. Multidestination Message Passing in
Wormhole k-ary n-cube Networks with Base Routing Con-
formed Paths. IEEE Transactions on Parallel and Dis-
tributed Systems, 1995.

[2] E. Bolotin, et. al. QoS architecture and design process for
Networks-on- Chip. Journal of Systems Arch, 2004.

[3] E. Rijpkema, K. Goossens, and P. Wielage. Router Archi-
tecture for Networks on Silicon. Progress , 2nd Workshop
On Embedded Systems, 2001.

[4] F. Karim et al. An Interconnection Architecture for
Networking Systems on Chip. IEEE Microprocessors,
22(5):36–45, Sept. 2002.

[5] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A.
Scandurra. Spidergon: a novel on-chip communication net-
work. Int’l Symposium on System-on-Chip, 2004.

[6] M. Dall’Osso et al. xpipes: a Latency Insensitive Param-
eterized Network on-Chip Architecture for Multi-Processor
SoCs. Int’l Conf. on Computer Design, 2003.

[7] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch.
The nostrum backbone-a communication protocol stack for
Networks on Chip. Int’l Conf. on VLSI Design, 2004.

[8] M. Moadeli et al. Communication Modeling of the Spider-
gon NoC with Virtual Channels. In ICPP, 2007.

[9] M. Moadeli, W. Vanderbauwhede, and A. Shahrabi. Quarc:
A Novel Network 0n-Chip Architecture. Parallel and Dis-
tributed Systems, International Conference on, 2008.

[10] A. G. P. Guerriert. A generic architecture for on-chip packet-
switched interconnections. Design Automation Conf. (DAC),
pages 683–689, 2001.

[11] P.P. Pande, C. Grecu, A. Ivanov, and R. Saleh. Design of
Switch for Network on Chip Applications. Int’l Symposium
on Circuit and Systems (ISCAS), 5:217–220, May 2003.

[12] S. Kumar et al. A network on chip architecture and design
methodology. Int’t Symp. VLSI (ISVLSI), pages 117–124,
2002.

[13] STMicroelectronics. www.st.com.
[14] A. Varga. Omnet++. IEEE Network Interactive, in the col-

umn Software Tools for Networking, 2002.
[15] W. J. Dally and B. Towles. Route packets, not wires: On-

chip interconnection networks. Design Automation Conf.
(DAC), pages 683–689, 2001.

[16] W. J. Dally and C.L. Seitz. The Torus Routing Chip. Tech-
nical report, Technical Report 5208:TR: 86, Computer Sci-
ence Dept. California Inst. of Technology, 1-19, 1986.

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on October 28, 2009 at 08:51 from IEEE Xplore. Restrictions apply.

	citation_temp.pdf
	http://eprints.gla.ac.uk/40015/

