
Algorithm Engineering for
Scalable Parallel External Sorting

Peter Sanders

Karlsruher Institut für Technologie
Karlsruhe, Germany

Email: sanders@kit.edu

Abstract—The talk describes algorithm engineering (AE) as
a methodology for algorithmic research where design, analysis,
implementation and experimental evaluation of algorithms
form a feedback cycle driving the development of efficient algo-
rithm. Additional important components of the methodology
include realistic models, algorithm libraries, and collections
of realistic benchmark instances. We use one main example
throughout this paper: sorting huge data sets using many
multi-core processors and disks. The described system is the
current record holder for the GraySort and MinuteSort sorting
benchmarks.

Keywords-algorithm engineering, sorting, parallel external
memory algorithms, massive data sets

Algorithms and data structures are at the heart of ev-
ery computer application and thus of critical importance
for permanently growing areas of engineering, economy,
science, and daily life. The subject of algorithmics is the
systematic development of efficient algorithms and therefore
has pivotal influence on the effective development of reli-
able and resource-conserving technology. We only mention
search engines, bioinformatics, computer graphics, image
processing, geographic information systems, cryptography,
or planning in production, logistics and transportation as
example areas where algorithms play a key role.

How is algorithmic innovation transferred to applications?

appl. engineering

realistic
models

design

implementation

libraries
algorithm−

perf.−

guarantees

a
p

p
lic

a
tio

n
s

deduction

falsifiable

induction

analysis experiments

algorithm
engineering real

Inputs

hypotheses

Figure 1. Algorithm engineering as a cycle of design, analysis, imple-
mentation, and experimental evaluation driven by falsifiable hypotheses.

Traditionally, algorithmics used the methodology of algo-
rithm theory which stems from mathematics: algorithms are
designed using simple models of problem and machine.
Main results are provable performance guarantees for all
possible inputs. This approach often leads to elegant, time-
less solutions that can be adapted to many applications.
The hard performance guarantees lead to reliably high
efficiency even for types of inputs that were unknown at
implementation time. From the point of view of algorithm
theory, taking up and implementing an algorithmic idea is
part of application development. Unfortunately, it can be
universally observed that this mode of transferring results
is a slow process. With growing requirements for innovative
algorithms, this causes widening gaps between theory and
practice: Realistic hardware with its parallelism, memory
hierarchies etc. diverges from traditional machine models.
Applications become more and more complex. At the same
time, algorithm theory develops increasingly elaborate al-
gorithms that may contain important ideas but are usually
not directly implementable. Furthermore, real-world inputs
are often far away from the worst case scenarios of the
theoretical analysis. In extreme cases, promising algorithmic
approaches are neglected because a mathematical analysis
would be too difficult.

Since the early 1990s it therefore became more and more
apparent that algorithmics cannot restrict itself to theory.
So, what else should algorithmicists do? Experiments play
a pivotal here. Algorithm engineering (AE) is therefore
sometimes equated with experimental algorithmics. How-
ever, we argue that this view is too limited. First of all, to do
experiments, you also have to implement algorithms. This is
often equally interesting and revealing as the experiments
themselves, needs its own set of techniques, and is an
important interface to software engineering. Furthermore,
it makes little sense to view design and analysis on the
one hand and implementation and experimentation on the
other hand as separate activities. Rather, a feedback loop of
design, analysis, implementation, and experimentation that
leads to new design ideas materializes as the central process
of algorithmics.

This cycle is quite similar to the cycle of theory building



R 0 R 1 R 2 R 3

PE 0

PE 1

PE 2

Figure 2. Parallel distributed memory external multiway mergesort.

and experimental evaluation used in the natural sciences.
We can learn several things from this comparison. First, this
cycle is driven by falsifiable hypotheses validated by exper-
iments – an experiment cannot prove a hypothesis but it can
at least support it. However, such support is only meaningful
if there are conceivable outcomes of experiments that prove
the hypothesis wrong. Hypotheses can come from creative
ideas or result from inductive reasoning stemming from
previous experiments. Thus we see a fundamental difference
to the deductive reasoning predominant in algorithm theory.
Experiments have to be reproducible, i.e., other researchers
have to be able to repeat an experiment to the extent that
they draw the same conclusions or uncover mistakes in the
previous experimental setup.

There are further aspects of AE as a methodology for
algorithmics, outside the main cycle. Design, analysis and
evaluation of algorithms are based on some model of the
problem and the underlying machine. Since gaps between
theory and practice often relate to these models, they are an
important aspect of AE. Since we aim at practicality, appli-
cations are an important aspect. However we choose to view
applications as being outside the methodology of AE since it
would otherwise become too open ended and because often
one algorithm can be used for quite diverse applications.
Also, every new application will have its own requirements
and techniques some of which may be abstracted away for
algorithmic treatment. Still, in order to reduce gaps between
theory and practice, as many interactions as possible be-
tween the application and the activities of AE should be
taken into account: Applications are the basis for realistic
models, they influence the kind of analysis we do, they
put constraints on useful implementations, and they supply
realistic inputs and other design parameters for experiments.
On the other hand, the results of analysis and experiments
influence the way an algorithm is used (fast enough for
real time or interactive use? . . . ) and implementations may
be the basis for software used in applications. Indeed, we
may view application engineering as a separate process
living in both AE and a concrete application domain where
methods from both areas are used to adapt an algorithm
to a particular application. Application engineering bridges
remaining unavoidable gaps between experimental imple-
mentations and production quality code. Note that there are

important differences between these two kinds of code: fast
development, efficiency, and instrumentation for experiments
are very important for AE, while thorough testing, maintain-
ability, simplicity, and tuning for particular classes of inputs
are more important for applications and algorithm libraries.
Furthermore, the algorithm engineers may not even know
all the applications for which their algorithms will be used.
Hence, algorithm libraries of highly tested codes with clear
simple user interfaces are an important link between AE
and applications. Figure 1 summarizes the resulting schema
for AE as a methodology for algorithmics. This paper is
a shortened version of [3] where minimum spanning trees
were used as an example.

Parallel External Sorting

The sorting example is described in more detail in [2].
Here we highlight some aspects of this work for each of the
main activities of algorithm engineering:

Model: We have aspects of parallel disk external mem-
ory, distributed memory, and (per-node) shared memory.
Instead of attempting to fit all this into one rather specialized
model, we design and analyze the algorithm one aspect at a
time.

Design: The algorithms are basically parallelizations
of external memory multiway mergesort. Besides a theoreti-
cally motivated algorithm that minimizes I/Os, we focus on a
practical algorithm that minimizes both communication and
I/Os in most practical cases. Figure 2 gives an overview.
We start with a run formation phase that fills the aggregate
memory of the parallel machine with data, uses internal
memory parallel sorting, and writes the sorted runs back
to disk. Let p denote the number of nodes. The subsequent
multiway merging is parallelized by partitioning each run
into p pieces such that the i-th piece contains exactly the
data destined for processor i. A key observation is that for
huge inputs, this can be done using an amount of work that
is negligible compared to the overall work. Each processor
is then merging the data from its pieces. Parallel multiway
mergesort is also used further down in the hierarchy –
in (distributed) internal memory and within a node with
multiple cores.

Analysis: In the best case, data for processor i will
already be written to the disk of processor i after run



formation. The same will very nearly true for the random
inputs used in the SortBenchmark1 (which of course has to
move almost all data during run formation). Moreover, we
show that by reading random blocks during run formation
we can achieve a similar effect.

Implementation: The GraySort benchmark asks for
sorting 100 TB of data which is more than half the space
available on our machine. Hence we had do implement in-
place external sorting and inplace all-to-all communication.

Experiments: We considered difficult instances where
active randomiztion is important and the input conventions
of the SortBenchmark. The latter considers 100-byte ele-
ments with a 10-byte key. The testing machine was a 200-
node Linux cluster. Each node consists of two Quad-Core
Intel Xeon X5355 processors clocked at 2 667 MHz with
16 GiB main memory. The nodes are connected by a 288-
port InfiniBand 4xDDR switch. Each node has four disks
with a capacity of 250 GB each. The results using 195
nodes show that we solve the Terabyte benchmark in less
than 64 seconds, which is about a third of the time needed
by the 2007 winner. This is despite the fact the we use
the same number of cores, but only a third of the hard
disks. We also slightly improve on a recent result for the
Terabyte category published informally by Google 2, where
12 000 disks were used instead of 780 as in our case. In the
MinuteSort category, a time limit of one minute is given, the
processed amount of the data is the metric. We have beaten
the 2007 record by a factor of 3.6, processing 955 GB of
data. Yahoo achieved a result half as high using the Hadoop
framework, but with a machine 7 times as large. However,
for the SortBenchmark results mentioned so far, N < M ,
so the sort is merely internal and only 2 I/Os per block
of elements are needed. In the newly established GraySort
category, we sort 1014 bytes (close to 100 TiB) in about three
hours, resulting in about 564 GB/min. The Google program
in this case takes only twice the time for ten times the
amount of data, but they use an even larger machine than
before, featuring 48 000 disks, which is a factor of 61 larger.
The better performance of a factor of 5 is thus reduced to
less than 0.1 in terms of relative efficiency. Yahoo’s result
of 578 GB/min is only 2.5% faster than us, but its efficiency
is much worse, since they used 17 times the number of
nodes. Those nodes were very similar to the ones used by
us, except having only half the memory. They also had a
worse communication bandwidth. However, this would not
have been a limiting factor for our algorithm.

Algorithm Libraries: We use MCSTL [4] – a parallel
implementation of the C++ STL for multi-core parallel
sorting and multiway merging. STXXL [1] – an external
memory implementation of STL is used to provide asyn-
chronous I/O with little data copying and overlapping of

1http:\\www.sortbenchmark.org
2http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.

html

I/O and computation. Communication is done with MPI.
However we need a layer on top of MPI supporting inplace
operation and 64 bit message lengths.

Instances and Benchmarks: The SortBenchmark is a
good example how a generally accepted benchmark can
promote and focus a research area. However, our experiences
with worst case inputs also show that one should not solely
rely on uniformly distributed random data.

ACKNOWLEDGEMENTS

I would like to thank the coinitiators of the DFG SPP 1307
Algorithm Engineering3, Kurt Mehlhorn, Rolf Möhring,
Burkhard Monien, and Petra Mutzel for their advice and
fruitful discussions that led to the definition presented here.
The sorting results have been obtained in cooperation with
Roman Dementiev, Mirko Rahn, and Johannes Singler. Par-
tially supported by DFG grant SA 933/3-2.

REFERENCES

[1] R. Dementiev, L. Kettner, and P. Sanders. STXXL: Standard
Template Library for XXL data sets. Software Practice &
Experience, 38(6):589–637, 2008.

[2] M. Rahn, P. Sanders, and J. Singler. Scalable distributed-
memory external sorting. In 26th IEEE International Confer-
ence on Data Engineering, 2010. to appear, extended version
at http://arxiv.org/abs/0910.2582v1.

[3] P. Sanders. Algorithm engineering - an attempt at a definition.
In Efficient Algorithms, volume 5760 of Lecture Notes in
Computer Science, pages 321–340. Springer, 2009.

[4] J. Singler, P. Sanders, and F. Putze. MCSTL: The multi-
core standard template library. In 13th International Euro-Par
Conference, volume 4641 of LNCS, pages 682–694. Springer,
2007.

3http://www.algorithm-engineering.de/


