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Abstract—NABBIT is a work-stealing library for execu-
tion of task graphs with arbitrary dependencies which is
implemented as a library for the multithreaded program-
ming language Cilk++. We prove that NABBIT executes
static task graphs in parallel in time which is asymp-
totically optimal for graphs whose nodes have constant
in-degree and out-degree. To evaluate the performance of
NABBIT, we implemented a dynamic program representing
the Smith-Waterman algorithm, an irregular dynamic pro-
gram on a two-dimensional grid. Our experiments indicate
that when task-graph nodes are mapped to reasonably
sized blocks, NABBIT exhibits low overhead and scales as
well as or better than other scheduling strategies. The
NABBIT implementation that solves the dynamic program
using a task graph even manages in some cases to out-
perform a divide-and-conquer implementation for directly
solving the same dynamic program. Finally, we extend
both the NABBIT implementation and the completion-time
bounds to handle dynamic task graphs, that is, graphs
whose nodes and edges are created on the fly at runtime.

Keywords-Cilk, dag, dynamic multithreading, parallel
computing, work/span analysis.

I. INTRODUCTION

Many parallel-programming problems can be ex-

pressed using a task graph: a directed acyclic graph

(dag) D = (V, E), where every node A ∈ V represents

some task with computation COMPUTE(A), and a di-

rected edge (A, B) ∈ E represents the constraint that

B’s computation depends on results computed by A.

Executing a task graph means assigning every node

A ∈ V to a processor to execute at a given time

and executing COMPUTE(A) at that time such that

every predecessor of A has finished its computation

beforehand. A schedule of D is the mapping of nodes

of V to processors and execution times.

Task graphs come in two flavors. A static1 task graph

is one where the structure of the task graph is given, and

a dynamic task graph means that the nodes and edges

are created on the fly at runtime. For example, Johnson

et al. [12] describe an interface for a dynamic task
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1Some of the existing literature on task-graph scheduling uses the
term “static” to mean task graphs that are static in our sense, but
also where the time needed to execute each task is known before the
computation begins.

graph, where new task nodes can be added or deleted

dynamically as the task graph is being executed.

The problem of finding a minimum-time schedule on

P processors is known to be NP-complete [20], even for

static task graphs where the compute times are known

in advance. As Kwok and Ahmad [14] describe in their

survey of scheduling of static task graphs with known

compute times, however, many efficient approximation

algorithms and heuristics exist in a variety of computa-

tional models.

For task graphs where compute times are not known

in advance, one must use a dynamic scheduler — one

that makes decisions at runtime — to efficiently load-

balance the computation. Most dynamic schedulers for

generic task graphs rely on a task pool, a data structure

that dynamically maintains a collection of ready tasks

whose predecessors have completed. Processors remove

and work on ready tasks, posting new tasks to the task

pool as dependencies are satisfied. Using task pools for

scheduling avoids the need for accurate time estimates

for the computation of each task, but maintaining a task

pool may introduce runtime overheads.

One way to reduce the runtime overhead of task pools

is to impose additional structure on the task graphs so

that one can optimize the task-pool implementation. For

example, Hoffman, Korch, and Rauber [10], [13] de-

scribe and empirically evaluate a variety of implementa-

tions of task pools in software and hardware. They focus

on the case where tasks have hierarchical dependencies,

i.e., a parent task depends only on child tasks that it

creates. In their evaluation of software implementations

of task pools, they observe that distributed task pools

based on dynamic “task stealing” perform well and

provide the best scalability.

Dynamic task-stealing is closely related to the work-

stealing scheduling strategy used in parallel languages

such as Cilk [3], [9], Cilk++ [11], [15], Fortress [1],

X10 [7], and parallel runtime libraries such as Hood

[5] and Intel Threading Building Blocks [18]. A work-

stealing scheduler maintains a distributed collection of

ready queues where processors can post work locally.

Typically, a processor finds new work from its own work

queue, but if its work queue is empty, it steals work from

the work queue of another processor, typically chosen



at random. Blumofe and Leiserson [4] provided the

first work-stealing scheduling algorithm coupled with

an asymptotic analysis showing that their algorithm

performs near optimally.

These languages and libraries all support fork-join

constructs for parallelism, allowing a programmer to

express series-parallel task graphs easily. They do not

support task graphs with arbitrary dependencies, how-

ever. To do so, the programmer must maintain additional

state to enforce dependencies that are not captured by

the fork-join control flow of the program. Furthermore,

depending on how the programmer enforces these de-

pendencies, the theorems that guarantee the theoretical

efficiency of work-stealing no longer apply.

In this paper, we explore how to schedule task graphs

in work-stealing environments. Our contributions are as

follows:

• The NABBIT library for Cilk++, which provides

a programming interface for specifying arbitrary

static task graphs, and which can execute these

task graphs using conventional work-stealing. Since

NABBIT does not modify the Cilk++ language or

runtime system, it can be adapted to work with any

fork-join language that uses work-stealing.

• Theoretical bounds on the time NABBIT requires

to execute task graphs.

• An extension of the NABBIT implementation and

its foundational theory to dynamic task graphs.

For both static and dynamic task graphs, we prove

that on P processors, NABBIT executes task graphs in

time which is asymptotically optimal when nodes have

constant in-degree and out-degree.

There are four important advantages to using NABBIT

for executing task graphs:

Low contention: Since work-stealing is a distributed

scheduling strategy, NABBIT exhibits lower contention

than centralized task-pool schedulers.

Economy of mechanism: Many languages and li-

braries already implement work-stealing. By using

NABBIT, these mechanisms can be used directly to

schedule arbitrary task graphs.

Interoperability: Each node in the task graph can

represent an arbitrary computation, including a parallel

computation. Since Cilk++ can automatically schedule

these computations, NABBIT makes it easy to exploit not

only the parallelism among the different dag nodes, but

also possible fork-join parallelism within the COMPUTE

function of each dag node.

Robustness: Work-stealing schedulers “play nicely”

in multiprogrammed environments. Fork-join languages

such as Cilk++ usually execute computations on P
worker threads, with one thread assigned to each pro-

cessor. If the operating system deschedules a worker,

the worker’s work is naturally stolen away to execute

on active workers. Arora et al. [2] provide tight asymp-

totic bounds on the performance of work-stealing when

workers receive different amounts of processor resource

from the operating system.

The remainder of this paper is organized as follows.

Section II describes the interface and the implementation

of NABBIT. Section III provides a theoretical work/span

analysis of performance of NABBIT. Section IV de-

scribes an irregular dynamic-programming application

and presents experimental results indicating that NAB-

BIT performs well on this kind of application. Section V

presents extensions to NABBIT to support dynamic task

graphs, and Section VI presents a synthetic benchmark

on randomly generated dags that evaluates the library’s

performance for both static and dynamic task graphs.

II. THE NABBIT TASK-GRAPH LIBRARY

NABBIT is a library for executing task graphs with

arbitrary dependencies. This section introduces NAB-

BIT by describing the interface and implementation of

static NABBIT, a library optimized to execute static

task graphs. We discuss extending NABBIT to handle

dynamic task graphs later in Section V.

Interface

In NABBIT, programmers specify task graphs by

creating nodes that extend from a base DAGNODE

object, specifying the dependencies of each node, and

providing a COMPUTE method for each node.

As a concrete example, consider a dynamic program

on an n × n grid, which takes an n × n input matrix s
and computes the value M(n, n) based on the following

recurrence:

M(i, j) = max

{

M(i − 1, j) + s(i − 1, j)
M(i, j − 1) + s(i, j − 1)

(1)

Figure 1 illustrates how one can formulate this problem

as a task graph. The code constructs a node for every

cell M(i, j), with the node’s class extending from a base

DAGNODE class. The programmer uses two methods

of this base class: ADDDEP specifies a predecessor

node on which the current node depends, and EXECUTE

tells NABBIT to execute a task graph using the current

node A (with no predecessors) as a source node. The

EXECUTE method calls COMPUTE on the current node

A and recursively on all the successors of A that are

enabled.

In the example from Figure 1, the COMPUTE method

for each task graph node is a short, serial section of code.

Since we implemented NABBIT using Cilk++ without

modifying the Cilk++ runtime, programmers can use

cilk_spawn and cilk_for to expose additional par-

allelism within a node’s COMPUTE method.



class DPDag {
int n; int* s; MNode* g;
DPDag(int n_, int* s_): n(n_), s(s_) {

g = new MNode[n*n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

int k = n*i+j;
g[k].pos = k; g[k].dag = (void*) this;
if (i > 0) {g[k].AddDep(&MNode[k-n])};
if (j > 0) {g[k].AddDep(&MNode[k-1])};

} } }
int Execute() { g[0]->Execute(); }

};

class MNode: public DAGNode {
int res;
void Compute() {

this->res = 0;
for (int i = 0; i < predecessors.size(); i++) {
MNode* pred = predecessors.get(i);
int pred_val = pred->res + s[pred->pos];
res = MAX(pred_val, res);

} } };

Figure 1. Cilk++ code that uses NABBIT to solve the dynamic
program in Equation (1). The code constructs a task-graph node for
every cell M(i, j).

COMPUTEANDNOTIFY(A)

1 COMPUTE(A)
2 parallel for all B ∈ A.successors
3 val = ATOMDECANDFETCH(B. join)
4 if val = = 0
5 COMPUTEANDNOTIFY(B)

Figure 2. Pseudocode for NABBIT operating on a static task graph.
COMPUTEANDNOTIFY computes a node A and then greedily spawns
the computation for any immediate successors of A which are enabled
by A’s computation. The iterations of line 2 are spawned in binary-tree
fashion, and all can potentially run in parallel.

Implementation

Our implementation of static NABBIT maintains the

following fields for each task-graph node A:

• Successor array: An array of pointers to A’s

immediate successors in the task graph.

• Join counter: A variable whose value tracks the

number of A’s immediate predecessors that have

not completed their COMPUTE method.

• Predecessor array: An array of pointers to A’s

immediate predecessors in the task graph, i.e., the

nodes on which A depends.2

To execute a task graph D, NABBIT calls the

COMPUTEANDNOTIFY method in Figure 2 on the

source node of D.

2NABBIT maintains a predecessor array for each node A only to
allow users to conveniently access the nodes on which A depends in-
side A’s COMPUTE method (e.g., so that A can aggregate results from
its predecessors). Maintaining this array is not always necessary. For
example, for the code in Figure 1, one can also find the predecessors
of a node through pointer and index calculations.
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Figure 3. A task graph for computing M(2, 3) using Recurrence (1).
The execution of COMPUTEANDNOTIFY(A) is nondeterministic. The
method COMPUTEANDNOTIFY(A) recursively calls two methods
COMPUTEANDNOTIFY(B) and COMPUTEANDNOTIFY(C), but in
a particular execution, only one, but not both of these methods
recursively calls COMPUTEANDNOTIFY(D).

III. ANALYSIS OF PERFORMANCE

This section provides a theoretical analysis of the

performance of the NABBIT library when executing a

static task graph on multiple processors. To analyze the

runtime of NABBIT, we employ a work/span analysis (as

in [6], Chapter 27), and calculate upper bounds on the

work and span3 of the executions of the code in Figure 2.

Then, we translate these bounds into completion-time

bounds for NABBIT using known theoretical bounds

on the completion time of fork-join parallel programs

scheduled with randomized work-stealing [2], [4].

Definitions

Consider a task graph D = (V, E). Conceptually,

each node A ∈ V maintains a list in(A) of immediate

predecessors and a list out(A) of immediate successors.

Let outDeg(A) = |out(A)| and inDeg(A) = |in(A)| be

the out- and in-degrees of A, respectively. For simplicity

in stating the results, assume that for a task graph D,

every node is a successor of a unique source node s
with no incoming edges and a predecessor of a unique

sink node t with no outgoing edges. Let paths(A, B)
be the set of all paths in D from node A to node B.

Every execution of a task graph invokes

COMPUTEANDNOTIFY(A) for each A ∈ V exactly

once. For many task graphs, such as the one in

Figure 3, the execution of COMPUTEANDNOTIFY

can be nondeterministic, since COMPUTE(A) may be

invoked by a different predecessor depending on the

underlying scheduling. Each possible execution can

be represented as a computation dag [6, p. 777] E ,

which should not be confused with the task graph

itself. The nodes of the computation dag are serial

chains of executed instructions, and the edges represent

dependencies between them.

We define several notations for subgraphs of a com-

putation dag. For a particular computation dag E and

a task-graph node A, let CN E(A) be the subgraph

corresponding to the call COMPUTEANDNOTIFY(A),

3“Span” is sometimes called “critical-path length” and “computa-
tion depth” in the literature.



and let comE(A) be the subgraph corresponding to

COMPUTE(A). For any subgraph E ′ of a computation

dag, we define the work of E ′ to be the sum of the

execution times of all the nodes in E ′, which we denote

by W (E ′). We define the span of E ′ to be the longest

execution time along any path E ′, which we denote by

S(E ′). We overload notation so that when the superscript

E is omitted, we mean the maximum of the quantity over

all computation dags. For example, W (CN (A)) denotes

the maximum work for COMPUTEANDNOTIFY(A) over

all possible computation dags.

To analyze NABBIT’s running time on a task graph

D with source s, let us examine the execution of

COMPUTEANDNOTIFY(s). The total work done by a

computation E of D is W (CN E(s)), and the span is

S(CN E(s)). Since the computation dag is nondetermin-

istic, we shall analyze the maximum of these values —

namely, W (CN (s)) and S(CN (s)) — over all possible

computation dags and use them as upper bounds in our

analyses.

Work analysis

Lemma 1: Any execution of D using NABBIT has

work W (CN (s)) at most
∑

A∈V

W (com(A)) + O(|E|) + O(CW ) ,

where

CW =
∑

B∈V

inDeg(B) · min {inDeg(B), P} .

Proof: The first term arises from the work of the

COMPUTE functions. The second term bounds the work

of traversing D, assuming no contention. The third

term covers the contention cost on the join counter.

For each node B, its join counter is decremented

inDeg(B) times, and each decrement waits at most

O(min {inDeg(B), P}) time.

Span analysis

The nondeterministic nature of the computation com-

plicates the direct calculation of S(CN (s)). Conse-

quently, our strategy is to construct a new, deterministic

computation dag E∗, whose span is an upper bound

on the span of COMPUTEANDNOTIFY(s), and analyze

that. We define the method COMPUTEANDNOTIFY
∗(A)

to be the same as the original method, except that

line 4 in Figure 2 is omitted. In other words,

COMPUTEANDNOTIFY
∗(A) always makes recursive

calls on all of A’s successors. Let CN ∗(A) be

the computation dag corresponding to this modified

method, and let E∗ be the computation dag for

COMPUTEANDNOTIFY
∗(s). Figure 4 shows E∗ for the

task graph shown in Figure 3. Since any computation
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Figure 4. The computation dag CN ∗(A) for the execution of the
task graph in Figure 3. Clouds represent COMPUTE methods for nodes,
numbers correspond to line numbers from the code in Figure 2, and
large arrows represent atomic decrements of join counters. An actual
execution of COMPUTEANDNOTIFY(A) generates a computation
dag which is a subdag of CN ∗(A). Four subdags are possible:
(A, B, C, D1, E, F1), (A, B, C, D1, E, F3), (A, B, C, D2, E, F2),
or (A, B, C, D2, E, F3). Each possible subdag contains exactly one
of {D1, D2}, and one of {F1, F2, F3}.

E forms a subdag of E∗, we have S(CN ∗(A)) ≥
S(CN E(A)). Then, we bound S(CN ∗(s)) using

Lemma 2.

Lemma 2: Any execution of D using NABBIT has

span S(CN ∗(s)) at most

max
p∈paths(s,t)







∑

X∈p

n(X) +
∑

(X,Y )∈p

CS(X, Y )







,

where

n(X) = S(com(X)) + O (lg(outDeg(X))) ,

CS(X, Y ) = O (min {inDeg(Y ), P}) .

Proof: For each node X , the method

COMPUTEANDNOTIFY
∗(X) enables all of X’s

immediate successors, with the recursive calls to

COMPUTEANDNOTIFY
∗ operating in parallel. As

Figure 4 illustrates, any path through the computation

dag CN ∗(X) contains the COMPUTE of only those

nodes along a corresponding path through D.

The term n(X) accounts for the span S(com(X))
of X itself plus the additional span O(lg(outDeg(X)))
required to spawn recursive calls along X’s outgoing

edges using a parallel for loop. In Cilk++, a parallel

for loop4 spawns iterations in the form of a balanced

binary tree, and thus the depth of the tree is logarithmic.

The term CS(X, Y ) accounts for the contention cost

of decrementing the join counter for Y , where Y is a

successor of X . In the worst case, this decrement might

wait for min {inDeg(Y ), P} other decrements.

Completion-time bounds

We have bounded the work and span of the compu-

tation dag using the characteristics of the task graph.

Now, let us relate these bounds back to the time it takes

4The Cilk++ keyword is actually cilk_for.



to execute a task graph D = (V, E) on an ideal parallel

computer. Let T1 be the work of D, i.e., the time it takes

to execute D on a single processor. We have that

T1 =
∑

A∈V

W (com(A)) + O(|E|) ,

since any execution of D executes the COMPUTE

method of every node once and must traverse every

edge. Similarly, let T∞ be the span of D, i.e., the time it

takes to execute D on an ideal parallel computer with an

infinite number of processors. Define M as the number

of nodes on the longest path in D from the source s to

the sink t. We have

T∞ = max
p∈paths(s,t)







∑

X∈p

S(com(X))







+ O(M) ,

since nodes along any path through D can not execute

in parallel. By the work and span laws [6, p. 780], the

completion time on P processors for a task graph is at

least max {T1/P, T∞}.

Using Lemmas 1 and 2 and the analysis of a Cilk-

like work-stealing scheduler [4], we obtain the following

completion time bound for NABBIT.

Theorem 3: Let D = (V, E) be a task graph with

maximum in-degree ∆i and maximum out-degree ∆o.

With probability at least 1 − ǫ, NABBIT executes D on

P processors in time

O (T1/P + T∞ + lg(P/ǫ) + M lg ∆o + C(D)) ,

where C(D) = O ((|E| /P + M)min {∆i, P}).

Proof: From [4], Cilk++’s work-stealing scheduler

completes a computation with work W and span S in

time O(W/P + S + lg(P/ǫ)) on P processors with

probability at least 1−ǫ. To bound the completion time,

we relate the work and span of the computation dag

CN (s) to T1 and T∞. Bounding the contention term in

Lemma 1 using ∆i, we have

W (CN (s)) = T1 + O(|E| · min {∆i, P}) ,

since the sum of the in-degrees of the nodes in a graph

is the cardinality of the edge set. Similarly, one can use

∆i and ∆o in Lemma 2 to show that

S(CN (s)) = T∞ + O (M lg ∆o + M · min {∆i, P}) .

The theorem follows directly.

The M lg ∆o term accounts for the additional span

required to visit all the successors of a node in parallel.

Whereas NABBIT allows a programmer to specify task

graphs whose nodes have large degrees, fork-join lan-

guages such as Cilk++ produce computation dags where

every node has constant out-degree, in which case this

term is absorbed in the T∞ term. Even when the out-

degree is not constant, one would expect this term to

be dominated by the T∞ term if the task-graph nodes

contain a reasonable amount of work.

The C(D) term in Theorem 3 is an upper bound on

the contention due to synchronization during the task-

graph execution. The term |E| /P + M is a bound on

the P -processor execution time needed for a parallel

traversal of D, including updating the join counters on

every edge. The extra factor of min {∆i, P} appears,

because we assume worst-case contention, i.e., that pro-

cessors wait as long as possible on every decrement of a

join counter. In the case where every node has constant

degree, the term C(D) is absorbed by T1/P + T∞,

and thus in this case the running time in Theorem 3 is

asymptotically optimal. Even when the degree is more

than constant, worst-case contention is unlikely to occur

in practice for every decrement.

Although the contention term in Theorem 3 grows

linearly with the maximum out-degree, in principle, one

can modify the scheduler to asymptotically eliminate the

contention term C(D) from the completion-time bound.

Corollary 4: For any static task graph D with max-

imum degree ∆, there exists a work-stealing scheduler

that can execute D in O(T1/P+T∞+M lg ∆+lg(P/ǫ))
time on P processors with probability at least 1 − ǫ.

Proof: Given D = (V, E), one can create an equiv-

alent task graph D′ in which every node has constant

degree by adding dummy nodes to D. This construction

adds only O(|E|) dummy nodes and extends the longest

path by O(M lg ∆) nodes. By Theorem 3, executing D′

with NABBIT gives us the desired bound.

We did not implement this modification in NABBIT,

since in practice for relatively small values of P , we

expect that the overheads of this modification would be

more expensive than simply suffering the contention.

IV. AN IRREGULAR DYNAMIC PROGRAM

One common application for the task-graph execution

is dynamic-programming computations with irregular

structure. This section describes experiments showing

that NABBIT can be used to efficiently parallelize an ir-

regular dynamic program based on the Smith-Waterman

[19] dynamic-programming algorithm used in computa-

tional biology. This empirical study indicates that an im-

plementation of the dynamic program using NABBIT is

competitive with and can often outperform other Cilk++

implementations of the same dynamic program. Thus, in

this example, the ability to execute a task graph with

arbitrary dependencies improves overall performance

and scalability, despite the added overhead that NABBIT

requires to track dependencies during work-stealing that

are not series-parallel.

Consider an irregular dynamic program on a 2-

dimensional grid that computes a value M(i, j) based



on the following set of recursive equations:

E(i, j) = max
k∈{0,1,...,i−1}

M(k, j) + γ(i − k) ;

F (i, j) = max
k∈{0,1,...,j−1}

M(i, k) + γ(j − k) ;

M(i, j) = max







M(i − 1, j − 1) + s(i, j) ,
E(i, j) ,
F (i, j) .

(2)

As described in [16], this particular dynamic program

models the computation used for the Smith-Waterman

[19] algorithm with a general penalty gap function γ.

The functions s(i, j) and γ(z) can be computed in con-

stant time. This dynamic program is irregular because

the work for computing the cells is not the same for each

cell. Specifically, Θ(i+j) work must be done to compute

M(i, j). Therefore, in total, computing M(m, n) using

Equation (2) requires Θ(mn(m + n)) work (Θ(n3),
when m = n).

Parallel algorithms

We explored three parallel algorithms for this dy-

namic program. The first algorithm creates and executes

a task graph using NABBIT. The second algorithm per-

forms a wavefront computation, and the third algorithm

uses a divide-and-conquer approach. Although these two

approaches work for this particular dynamic program,

neither can handle general task graphs. For each of the

three algorithms, in order to improve cache locality and

to amortize overheads, we blocked the cells into B×B
blocks, where block (bi, bj) represents the block with

upper-left corner at cell (biB, bjB).
The first algorithm expresses the dynamic program in

Equation (2) as a task graph by creating a task graph

D similar to the code in Figure 1,5 except that the cells

are blocked and each node of the task graph represents a

B×B block of cells. Block (bi, bj) depends on (at most)

two blocks (bi − 1, bj) and (bi, bj − 1). The COMPUTE

method for each node computes the values of M for the

entire block serially.

The second algorithm performs a wavefront computa-

tion. The computation is divided into about n/B phases,

where phase i handles the ith block antidiagonal of

the grid. Within each phase, computation of each block

along the antidiagonal is spawned, since blocks on an

antidiagonal can be computed independently.

The third algorithm is a divide-and-conquer algorithm

for the dynamic program that divides the grid into 4
subgrids and then computes the cells in each subgrid

recursively. This algorithm computes the upper-left sub-

grid first, then the lower-left and upper-right subgrids in

parallel next, and then finally the lower-right subgrid.

5Although M(i, j) depends on the entire row i to the left of the
cell and the entire column j above the cell, it is sufficient to create a
task graph with dependencies to M(i, j) only from M(i − 1, j) and
M(i, j −1). Transitivity ensures the other dependencies are satisfied.

One can show that asymptotically, if n > B, the

parallelism (work divided by span) of both the task-

graph and the wavefront algorithms is Θ(n/B), since

both algorithms have O(n3) work and Θ(n2B) span.

The span of D consists of Θ(n/B) blocks, with a least

half the blocks requiring Θ(nB2) work.

One can also show that the divide-and-conquer algo-

rithm has a span of Θ(nlg 6B3−lg 6) ≈ Θ(n2.585B0.415),
and it therefore has a lower theoretical parallelism of

Θ((n/B)lg 6) ≈ Θ((n/B)0.415). This algorithm incurs

lower synchronization overhead than the other two, how-

ever. One can asymptotically increase the parallelism

of a divide-and-conquer algorithm by dividing M into

more subproblems, but the code becomes more complex.

In the limit, the resulting algorithm is equivalent to the

wavefront computation.

Implementations

In our experiments, we compared four parallel im-

plementations of Equation (2), based on (1) a task

graph and NABBIT, (2) a wavefront algorithm, (3) a

divide-and-conquer algorithm, dividing each dimension

of the matrix by K = 2, and (4) a divide-and-conquer

algorithm, dividing each dimension by K = 5. For a fair

comparison, all implementations use the same memory

layout and reuse the same code for core methods, e.g.,

computing a single B ×B block. Each implementation

looks up values for s and γ from arrays in memory.

Since memory layout impacts performance signifi-

cantly for large problem sizes, we stored both M(i, j)
and s(i, j) in a cache-oblivious [8] layout. The compu-

tations of E(i, j) and F (i, j) require scanning along a

column and row, respectively, and thus, simply storing

M in a row-major or column-major layout would be

suboptimal for one of the computations. To support

efficient iteration over rows and columns, we used

dilated integers as indices into the grid [21] and em-

ployed techniques for fast conversion between dilated

and normal integers from [17].

Experiments

We ran two different types of experiments on our

implementations of the dynamic program. The first ex-

periment measures the parallel speedups for the four dif-

ferent algorithms on various problem sizes. The second

experiment measures the sensitivity of the algorithms to

different choices in block size. We ran all experiments

on a multicore machine with 8 total cores.6

6The machine contained two chip sockets, with each socket contain-
ing a quad-core 3.16 GHz Intel Xeon X5460 processor. Each processor
had 6 MB of cache, shared among the four cores, and a 1333 MHz
FSB. The machine had a total of 8 GB RAM and ran a version of
Debian 4.0, modified for MIT CSAIL, with Linux kernel version
2.6.18.8. All code was compiled using the Cilk++ compiler (based
on GCC 4.2.4) with optimization flag -O2.



Figure 5. The performance of the dynamic program on an N × N grid. Speedups are normalized against the fastest run with P = 1. For
N = 1000, the baseline is 2.05 s for serial execution. For N = 5000, the baseline is 263 s using divide-and-conquer. For N = 15, 000, the
baseline is 8279 s using NABBIT.

Speedups for the various implementations

In this experiment, we compared the speedup pro-

vided by the four algorithms, with a fixed block size

at B = 16. Each task-graph node was responsible for

computing a 16× 16 block of the original grid, and the

wavefront and divide-and-conquer algorithms operated

on blocks of size 16 × 16 in the base case.

Figure 5 shows the speedup on P processors for

N ∈ {1000, 5000, 15000}. NABBIT outperforms the

other implementations in all these experiments. For ex-

ample, at N = 1000, the divide-and-conquer algorithm

achieves speedup of 5 on 8 processors, while the NAB-

BIT implementation exhibits a speedup of about 7. This

result is not surprising, since the task-graph execution

has a higher asymptotic parallelism than the divide-and-

conquer algorithm. Even though the wavefront algorithm

has the same asymptotic parallelism as the task-graph

execution, however, it performs worse than the divide-

and-conquer algorithm for K = 5, which is slightly

worse than the NABBIT implementation. As N increases

to 5000, all the algorithms improve in scalability, and the

gap between NABBIT and the other algorithms narrows.

As N increases even more to 15, 000, however, the

speedup starts to level off, and eventually decrease. We

conjecture that this slowdown is due to increased data

bus traffic and a lack of locality when computing the

terms E(i, j) and F (i, j). In Equation (2), if we replace

the γ term with indices which are independent of k,

then we see a significant improvement in speedup on

N = 15000 (graph not shown).

Effect of block size

To study the sensitivity of the algorithms to block

size, we fixed N and varied B. Figure 6 shows the

results for N = 4000. For small block sizes, we see that

the task-graph algorithm using NABBIT performs worse

than the divide-and-conquer algorithm with K = 5.

Figure 6. Running time for the dynamic program with N = 4000,
varying the block size B for the base case.

For example, for P = 1 and B = 1, both divide-

and-conquer algorithms require about 156 seconds, as

opposed to 196 seconds for the task-graph algorithm.

This result is not surprising, since for small block

sizes, each node does not do enough work to amortize

NABBIT’s overhead for each node. In addition NABBIT

also has significant space overhead for each node.

As B increases, however, at P = 1, the runtime using

NABBIT approaches the runtime for divide-and-conquer

with K = 5, and it begins to slightly outperform

the other algorithms when B ≥ 16. The wavefront

algorithm at small B appears to have overhead which is

even higher than the task-graph algorithm. In particular,

for P = 1 and B = 1, the wavefront algorithm required

about 241 seconds. Some of the wavefront algorithm’s

overhead is likely due to the cost of spawning compu-

tations on small blocks on each antidiagonal.

In summary, our experiments indicate that while

NABBIT may suffer from high overheads when each

node does little work, for this dynamic program, NAB-

BIT generally exhibits relatively small overheads and is



at least competitive with — and sometimes faster than

— both divide-and-conquer and wavefront implementa-

tions for blocks of reasonable sizes.

V. DYNAMIC TASK GRAPHS

This section presents some extensions to NABBIT

for supporting the execution of dynamic task graphs,

whose nodes and edges are created on the fly at runtime.

We first explain how dynamic NABBIT extends static

NABBIT’s interface. Then, we describe the modifications

to the static NABBIT implementation required to support

this interface. Finally, we summarize the theoretical

guarantees provided by dynamic NABBIT.

Interface

Dynamic NABBIT provides an interface to program-

mers for executing a task graph D whose nodes and

edges are created on the fly at runtime. As in static

NABBIT, for each node A in D, programmers must

specify a COMPUTE method, which performs A’s com-

putation only after all of A’s predecessors in D have

been computed. Unlike static NABBIT, however, before

executing the computation of a node A, dynamic NAB-

BIT first “discovers” the nodes on which A depends.

This interface reflects the notion that in some task-graph

applications, a node A knows which nodes it requires

values from, but A may not be aware of all nodes that

may use its value.

In dynamic NABBIT, the programmer refers to nodes

using hashable keys, rather than to nodes directly,

which allows the space of possible nodes to be much

larger than those that are actually created. A node with

key k discovers its immediate predecessors by execut-

ing a programmer-specified INIT method. In the INIT

method, the programmer specifies any other key k′ on

which k depends using the (library-provided) function

ADDDEP(k′). Although multiple keys may depend on

the same key k, NABBIT creates only one node object

for each key, thus guaranteeing that INIT and COMPUTE

execute exactly once per key.

NABBIT implementation

Dynamic task graphs are more complicated to support

than static task graphs because a new node B that

is a successor of A can be created at any time with

respect to A’s creation. Specifically, B can be created

(1) before A has been created, (2) after A has been

created but before A has completed its computation and

notified its successors, or (3) after A has completed its

notification. Thus, dynamic NABBIT requires additional

bookkeeping.

Dynamic NABBIT maintains the following fields for

each task-graph node A:

• Key: A unique 64-bit integer identifier for A.

STARTEXECUTION(f )

1 inserted = INSERTTASKIFABSENT(f )
2 A = GETTASK(f )
3 if inserted
4 INITANDCOMPUTE(A)

Figure 7. Subroutine for dynamic NABBIT starting execution of a
task graph at a node with key f .

• Predecessor-key array: The keys of A’s immedi-

ate predecessors.

• Status: A field which changes monotonically, from

UNVISITED to VISITED, then to COMPUTED, and

finally to COMPLETED.

• Notification array: An array of A’s successor

nodes that need to be notified when A completes.

• Join counter: A’s join counter reaches 0 when the

COMPUTE for A is ready to be executed.

To compare with the implementation of static NAB-

BIT described in Section II, the predecessor-key array

replaces the predecessor array in static NABBIT, and

the notification array replaces the successor array. In

dynamic NABBIT, the notification array for A need not

contain all of A’s successors, since some successors may

be created after A finishes its notifications.

Since dynamic NABBIT works with keys instead of

pointers to node objects, NABBIT maintains a hash

table for task-graph nodes and guarantees that a node

with a particular key is never created more than once.

NABBIT uses a hash-table implementation that sup-

ports two functions: INSERTTASKIFABSENT(k), and

GETTASK(k). The first atomically adds a new node

object for a specified key k to the hash table if none

exists, and the second looks up a node for a key k.7

The atomic insertion of a node into the hash table also

changes the node’s status from UNVISITED to VISITED.

Dynamic NABBIT generally tries to execute a task

graph in a depth-first fashion. Execution begins with

a call to STARTEXECUTION(f ) (shown in Figure 7),

where f is the key of D’s sink node t. NABBIT as-

sumes that only a single call to STARTEXECUTION is

active at any time. As its first step, NABBIT attempts

to create a new node A for key f and atomically

insert A into its hash table. Then, if this insertion is

successful, NABBIT calls INITANDCOMPUTE(A).8 The

INITANDCOMPUTE method (shown in Figure 8) creates

A by calling INIT(A) and recursively creates any depen-

dencies (i.e., predecessors) of A. When this recursion

reaches any node B with no dependencies, NABBIT

calls COMPUTEANDNOTIFY(B) to compute B and any

7NABBIT could be easily modified to use any user-provided hash
table that supports these two functions. This functionality would allow
programmers to optimize by using an application-specific hash table.

8If this insertion fails, then a task with key f has already been
created and/or computed, and thus the method does nothing.



successors of B that are subsequently enabled. When

NABBIT uses multiple processors, these methods still

attempt to execute in a depth-first fashion if possible,

but the execution is not strictly depth-first because of

Cilk++’s work-stealing strategy.

Synchronization in NABBIT

For static task graphs, synchronization occurs pri-

marily through changes to join counters. The dynamic

protocol is slightly more complicated, however, because

the number of other nodes on which A depends is

unknown before INIT is executed. Instead, A’s join

counter is atomically incremented when the user calls

ADDDEP(k) inside INIT(A). In order to prevent the

join counter from reaching 0 before all the dependencies

have been created, the join counter for every node A
is initialized to 1 and is decremented atomically after

INIT(A) has completed.

During execution, A’s join counter gets decremented

once for every edge from Y to A. If NABBIT tries to

traverse the edge (Y, A) after Y has been COMPUTED,

then A’s join counter is decremented in line 12 of

TRYINITCOMPUTE. If NABBIT tries to traverse the

edge (Y, A) before Y has been COMPUTED, then A
is added to the list Y.notifyArray of nodes that Y ’s

notifies upon completion. Eventually, A’s join counter

is decremented in line 1 of COMPUTEANDNOTIFY(Y ).
To avoid race conditions, both the addition of a node

to A’s notification array and the change of A’s status

to COMPLETED (line 13 in COMPUTEANDNOTIFY) are

performed while holding A’s lock.

Discussion of theory

One can prove a completion time bound analogous

to Theorem 3 for dynamic task graphs executed using

NABBIT. The proof requires some additional definitions.

For a task graph D = (V, E), and any node A ∈ V , let

loops(A) be the set

loops(A) =
⋃

X∈V

paths(X, A) × paths(X, A),

that is, the set of all pairs of paths (p1, p2) in D from

any node X to A. Conceptually, (p1, p2) represents a

loop that traverses A to X along edges in p1 back-

wards, and then back from X to A along forward

edges in p2. For a given computation dag E and a

node A, let initE(A) be the subgraph corresponding to

INIT(A), and let IC E(A) be the subgraph corresponding

to INITANDCOMPUTE(A). As before, let IC ∗(A) be

the computation dag representing an execution where

all potential recursive calls occur.

For a dynamic task graph D, the values of T1 and T∞

are greater than those for a static version of D, since any

execution must traverse D backwards from t to discover

TRYINITCOMPUTE(A, pkey)

1 inserted = INSERTTASKIFABSENT(pkey)
2 B = GETTASK(pkey)
3 if inserted
4 spawn INITANDCOMPUTE(B)
5 finished = TRUE

6 lock(B)
7 if B.status < COMPUTED

8 add A to B.notifyArray
9 finished = FALSE

10 unlock(B)
11 if finished
12 val = ATOMDECANDFETCH(A. join)
13 if val = 0
14 COMPUTEANDNOTIFY(A)
15 sync

INITANDCOMPUTE(A)

1 assert(A.status = = VISITED)
2 assert(A. join ≥ 1)
3 INIT(A)
4 for pkey ∈ A.predecessors
5 spawn TRYINITCOMPUTE(A, pkey)
6 val = ATOMDECANDFETCH(A. join)
7 if val = = 0
8 COMPUTEANDNOTIFY(A)
9 sync

DECCOMPUTENOTIFY(X)

1 val = ATOMDECANDFETCH(X. join)
2 if val = = 0
3 COMPUTEANDNOTIFY(X)

COMPUTEANDNOTIFY(A)

1 COMPUTE(A)
2 A.status = COMPUTED

3 n = SIZEOF(A.notifyArray)
4 A.notified = 0
5 while A.notified < n
6 for i ∈ [A.notified, n)
7 X = A.notifyArray [i]
8 spawn DECCOMPUTENOTIFY(X)
9 A.notified = n

10 lock(A)
11 n = SIZEOF(A.notifyArray)
12 if A.notified = = n
13 A.status = COMPLETED

14 unlock(A)
15 sync

Figure 8. Pseudocode for executing dynamic task graphs. For a node
A, the TRYINITCOMPUTE(A) method attempts to create a predeces-
sor (i.e., dependency) of A with the key pkey . INITANDCOMPUTE(A)
spawns calls to try to create all of A’s predecessors. Eventually, this
method or one its spawned calls triggers COMPUTEANDNOTIFY(A),
which executes A and all successors of A enabled by the completion
of A.

the dependencies of each node. More precisely, we have

T1 =
∑

A∈V

(W (init(A)) + W (com(A))) + O(|E|) ,

T∞ = max
(p1,p2)∈loops(t)







∑

X1∈p1

S(init(X1))

+
∑

X2∈p2

S(com(X2))







+ O(M) .



Theorem 5 states the completion time bound for

dynamic task graphs. This bound matches the bound

in Theorem 3, except for an O(M∆) term instead

of O(M lg ∆). This difference arises since the suc-

cessors of a node A might be created and added to

A.notifyArray sequentially and may be notified one by

one, instead of in parallel (as in static NABBIT).

Theorem 5: Let D = (V, E) be a dynamic task graph

with maximum degree ∆. With probability at least 1−ǫ,

NABBIT executes D in time

O (T1/P + T∞ + lg(P/ǫ) + M∆ + C(D))

where C(D) = O ((|E| /P + M)min {∆, P}).
Proof sketch: NABBIT’s execution of D is modeled

by the computation dag IC (t). As for Theorem 3, we

bound the completion time by calculating W (IC (t)) and

S(IC (t)) and applying the analysis for Cilk.

We have W (IC (t)) = T1+O(|E|·min{∆, P}), since

INIT and COMPUTE for each node A happens exactly

once, and O(1) synchronization operations happen for

every edge (A, B) ∈ E, with each operation waiting at

most O(min{∆, P}) time due to contention.

We now argue the span S(IC (t)) is bounded by

S(IC ∗(t)), and then we show that S(IC ∗(t)) = T∞ +
O(M∆). From Figure 9, we can see that any path

through IC ∗(t) travels along a single loop (p1, p2) ∈
loops(t), which is to say that it walks backward along

p1 calling INIT and then forward along p2 calling

COMPUTE. Thus, INIT and COMPUTE contribute at

most T∞ to the span. For every edge (A, B) along this

loop, the added overhead due to bookkeeping and con-

tention on synchronization is O(∆): in the worst case, ∆
iterations of the loop in line 5 of COMPUTEANDNOTIFY

occur, each notifying one successor of A. Since each

loop contains O(M) edges, the total overhead along the

span is at most O(M∆).

Strongly dynamic task graphs

Although dynamic NABBIT discovers the nodes and

edges of a task graph at runtime, it can not create new

task nodes based on the result of the COMPUTE of any

task nodes. One might wish to extend NABBIT to handle

this more general class of strongly dynamic task graphs,

i.e., task graphs for which the COMPUTE for a node A
can trigger the creation of new task nodes. For example,

in Figure 8, in COMPUTE(A), the user might specify a

list of keys of new tasks that A should generate, and

then after finishing COMPUTE(A), NABBIT might begin

executing a new task graph Di for each generated key

fi by calling STARTEXECUTION. Although we assumed

NABBIT has only one call to STARTEXECUTION active

at a time, the implementation does correctly support

concurrent calls to STARTEXECUTION, even when the

task graphs Di overlap (i.e., share nodes). In this case,
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Figure 9. Example computation dags generated by calls to
(a) INITANDCOMPUTE(A), and (b) COMPUTEANDNOTIFY(A). Ar-
rows are labeled with line numbers from the code in Figure 8.
Thick arrows correspond to synchronization operations that may
experience contention. In INITANDCOMPUTE(A), shaded rectan-
gles correspond to calls to TRYINITCOMPUTE for A for two
predecessors B1 and B2. Dashed hexagons correspond to poten-
tial calls to COMPUTEANDNOTIFY. In (a), exactly one call to
COMPUTEANDNOTIFY(A) occurs. In (b), the computation of A
enables up to 3 successors of A, namely, X1, X2, and X3.

NABBIT guarantees only that all Di are computed after

the last call to STARTEXECUTION finishes and the

system quiesces.

The creation of new task nodes complicates the the-

oretical analysis of runtime, however, because different

task graphs may begin executing at different times. The-

orem 5 does not hold for strongly dynamic task graphs

in part because it does not handle the dependencies and

interactions between task graphs Di that overlap. An

interesting direction for future work is to extend the

theory to handle strongly dynamic task graphs.

VI. RANDOM TASK-GRAPH BENCHMARK

This section studies and compares the overheads

associated with static and dynamic versions of NAB-

BIT. To do so, we constructed a microbenchmark that

executes randomly constructed task graphs. We generate

a random task graph D based on three parameters: ∆i,

the maximum in-degree of any node; U , the size of the

universe from which keys are chosen; and W , the work

in the compute of each node. The task graph D has a

single sink node A0 with key 0. Then, iterating over k
from 0 to U − 1, we repeat the following process:

• If D has a node Ak, choose an integer dk uniformly

at random from the closed interval [1, ∆i].
• Create a multiset Sk of dk integers, with each ele-

ment chosen uniformly at random from [k + 1, U ].
• Remove any duplicates from Sk, and for all k′ ∈

Sk, add an edge (Ak′ , Ak) to the task graph (cre-

ating Ak′ if it doesn’t already exist).



In D, each task-graph node Ak performs W work, com-

puting kW mod p using repeated multiplication, where

p is a fixed 32-bit prime number. The benchmark pro-

vides the option of either performing this work serially,

or in parallel (dividing the work in half, spawning each

half, and recursing down to a base case of W = 25).

Experiments

We used the random task-graph benchmark in three

experiments: (1) to measure the overhead of parallel

execution, (2) to compare the overheads of the static

and dynamic NABBIT, and (3) to evaluate the benefits

of allowing parallelism inside the computes of nodes.

For the static task-graph benchmarks (static NAB-

BIT), we allocated the memory for nodes and created

nodes with pointers to its dependencies before executing

the task graph. For the dynamic benchmarks (dynamic

NABBIT), we constructed the same nodes as for the

static benchmark, and then inserted these nodes into

a hash table. The implementation of dynamic NABBIT

atomically “inserts” a node for a key by looking it up

in a hash table and marking it as VISITED.

To measure the approximate overhead for manipu-

lating node objects and for parallel bookkeeping, we

constructed a medium-sized random task graph and

varied W . We compared static and dynamic NABBIT

against corresponding serial algorithms. These serial al-

gorithms perform the same computation as NABBIT with

P = 1, except that all lock acquires are removed and

all atomic decrements are changed to normal updates.

In Figure 10, we see that when W = 1 (each node

does small work), the overhead of bookkeeping for static

NABBIT is about 20% more than the serial version of the

same algorithm. For dynamic NABBIT, the slowdown

is about 16% over the serial algorithm. This baseline

overhead shows that one would not want to use NABBIT

for task graphs where each node does little work, since

the overheads of bookkeeping dominate. As each node

does more and more work and W increases to 1000,

however, the difference becomes less than 5%.

From this data, we also see that our implementation

of dynamic NABBIT exhibits a factor of 5 overhead over

static NABBIT when W = 1. This difference is not

surprising, since dynamic NABBIT ends up traversing

a dag twice — from the final node to the root and

then back — while static NABBIT only traverses the

dag from root to final node. Also, in our benchmark,

dynamic NABBIT performs additional look-ups in a hash

table that the static version avoids. We observe that each

node generally requires W to be on the order of at least

1, 000 to 10, 000 before the dynamic NABBIT attains

performance comparable to the static version.

Our next experiment compares the speedups of static

and dynamic NABBIT (graph not shown). We first

Static Dynamic
W NABBIT Serial NABBIT Serial

1 0.010 0.008 0.051 0.044
10 0.010 0.009 0.052 0.046

100 0.022 0.022 0.064 0.057
1000 0.137 0.134 0.178 0.177

10, 000 1.267 1.265 1.306 1.301

Figure 10. Time in seconds for serial execution of D with |V | =
14259, |E| = 78434, and M = 99 nodes. The task graph D was
randomly generated with ∆i = 10, U = 100, 000, and W = 1.

Figure 11. Comparison of static and dynamic NABBIT with and
without parallelism in the COMPUTE function. For the random dag,
|V | = 127, |E| = 614, M = 29, and W = 106 . Speedup is
normalized over the time (1.12 s) for the static serial execution.

created a large random task graph with small work

(W = 1) per node. Even in the case when each node has

small work and NABBIT has large overheads, observe

that static NABBIT provides a speedup of up to 4.5 on

8 processors. Dynamic NABBIT scales and achieves a

speedup of about 3.7 on 6 processors over the serial

dynamic NABBIT execution. Compared to the static

versions, however, dynamic NABBIT is overwhelmed

due to the overheads.

On the other hand, we can see from Figure 11 that

when each node has a large amount of work to do,

the performances of static and dynamic NABBIT are

nearly identical. In this case, the task graph contains rel-

atively few nodes (only 127). If we examine the version

where each node is computed serially, the theoretical

parallelism is only about 127/29 = 4.4. The static and

dynamic versions of NABBIT both exploit most of this

parallelism, providing a speedup of up to 4.2.

More importantly, however, Figure 11 demonstrates

that to attain the best performance, one needs to exploit

parallelism both at the task-graph level and within the

COMPUTE functions. When only the dag-level paral-

lelism is exploited, we obtain a speedup of 4.2. On the

other hand, when NABBIT is not used and nodes are

visited serially — only exploiting parallelism within the



compute function — the speedup is about 6. The best

case occurs by exploiting the parallelism both between

nodes and within nodes, in which case both static and

dynamic versions of NABBIT provide a speedup of 7.

The experiments on these random dags indicate that

although NABBIT exhibits significant overhead on dy-

namic task graphs, this overhead can be amortized when

each node does enough work. We also see that to get the

best speedup, it pays to exploit both the dag-level par-

allelism and the parallelism within each task. NABBIT

allows a programmer to exploit both seamlessly.

VII. CONCLUDING REMARKS

The dynamic-programming benchmark indicates that

the performance of a task-graph execution may be

limited by memory bandwidth. For graphs with regular

structure, it is sometime possible to coarsen the dag—

treating multiple nodes as a single node — so as to

enhance locality. An interesting research direction is to

investigate how one can best take advantage of locality

in task graphs with irregular structure.

The space used by NABBIT is proportional to the

size of the task graph. Once a node has executed

and its successors have computed, however, it should

be possible to garbage-collect the node and reuse it

later in the computation, thereby saving space. We are

currently exploring how to specify such a task-graph

computation and how the garbage collection might best

be implemented.
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