
KRASH: Reproducible CPU Load Generation on
Many-Core Machines

Swann Perarnau, Guillaume Huard
INRIA Moais research team, CNRS LIG lab.

Grenoble University, France
Email: {perarnau,huard}@imag.fr

Abstract—In this article we present KRASH, a tool for re-
producible generation of system-level CPU load. This tool is
intended for use in shared memory machines equipped with
multiple CPU cores which are usually exploited concurrently
by several users. The objective of KRASH is to enable parallel
application developers to validate their resources use strategies
on a partially loaded machine by replaying an observed load
in concurrence with their application. To reach this objective,
we present a method for CPU load generation which behaves
as realistically as possible: the resulting load is similar to
the load that would be produced by concurrent processes run
by other users. Nevertheless, contrary to a simple run of a
CPU-intensive application, KRASH is not sensitive to system
scheduling decisions. The main benefit brought by KRASH is
this reproducibility: no matter how many processes are present
in the system the load generated by our tool strictly respects a
given load profile. This last characteristic proves to be hard to
achieve using simple methods because the system scheduler is
supposed to share the resources fairly among running processes.

Our first contribution is a method that cooperates with the
system scheduler to produce a CPU load that conforms to a
desired load profile. We argue that this cooperation with the
system scheduler is mandatory in the generator to reach a
good reproducibility, a high precision and a low intrusiveness.
Taking advantage of Linux kernel capabilities, we implemented
this method in KRASH (Kernel for Reproduction and Analysis
of System Heterogeneity). We have run experiments that show
that KRASH provides a precise reproduction of the desired load
and that it induces a very low overhead on the system. Our
second contribution is a qualitative and quantitative study that
compares KRASH to other tools dealing with system-level CPU
load generation. To our knowledge, KRASH is the only tool that
implements the generation of a dynamic load profile (a load
varying with time). When used to generate a constant load,
KRASH result is among the most realistic ones. Furthermore,
KRASH provides more flexibility than other tools.

I. INTRODUCTION

New hardware architectures, composed of multiple cores
and a shared memory, spread in the domain of High Per-
formance Computing. These many-core machines are usually
used as computing servers and shared by several users. In this
context, available resources to a given user are only a part
of the shared machine: processes from other users constantly
start or exit, acquiring or releasing resources. As the operating
system tries to dispatch fairly those resources among running
processes, programs are faced with heterogeneous resource
availability. This heterogeneity presents two dimensions: dif-
ferent CPU cores do not share the same load and these loads
vary with time.

To cope with this dynamic heterogeneity, new parallel
programming paradigms have been put forward: fine grain
tasks parallelization possibly combined with work stealing [1]
or adaptive algorithms [17]. When comparing these different
approaches, one might consider various evaluation criteria
such as how they compete in the system to get resources
control or how efficiently they use the given resources they are
given. In this article we do not address the evaluation of a par-
allel application capabilities to compete for resources access.
The work we present is an experimental testbed able to control
resources unavailability (what we name load) according to a
determined pattern. Consequently, this work makes possible
to compare the way distinct parallel programming paradigms
use a fixed set of heterogeneous resources (in other words the
same experimental conditions). This efficiency comparison is
usually difficult as most system schedulers try to fairly balance
resources access among running processes. In this context, a
fine grained parallel application that spawns more processes
than actual computing resources will get more access opportu-
nities than other parallelization schemes, making the efficiency
comparison impossible.

A real production machine cannot be used for such a
comparison: its load constantly varies due to other users,
resulting in an environment not consistent across experiments.
One might think about doing the comparison using simulation
tools such as SimGrid [6]. But, as pointed out by Franck
Cappello et al. [2], the simulation of a complex system usually
fails to reproduce its entire behavior. Therefore, a detailed
and complete efficiency comparison of those new algorithms
will eventually require their execution on a real machine with
a controlled dynamic environment. To precisely produce and
reproduce this controlled dynamic environment, a specific tool
is needed: a load generator. This tool must generate the same
desired concurrent load, whatever the parallel program under
evaluation, no matter how many processes it creates or the
system resources it requires. In this article we focus only on
CPU load, which is usually the most important element in high
performance computing. Of course, other system resources
might have a significant effect on applications performance
but their importance in a complete load generation would be
biased if the CPU load generation is not sufficiently precise.
Besides, we plan to study the generation of loads on other
system resources such as cache and memory in our future
works.

Other methods to generate CPU load for parallel algorithms
validation purposes have been discussed in the literature [15],
[5]. We will show later that these solutions, as well as less
elaborate ones, do not satisfy all our objectives.

Indeed generating a reproducible CPU load is not as simple
as running some CPU intensive application in a concurrent
process. Because of the scheduler efforts to balance resources
usage between running processes, the resulting load will
depend on the overall state of the machine. In this paper we
present a new method to generate a CPU load that matches a
given load profile whatever the target machine state (number of
running processes or already allocated resources). Our method
cooperates with the system scheduler to produce the desired
load without changing its usual policy. As we will see in
the experiments, maintaining the same scheduling policy for
remaining available resources given to running applications is
the only way to avoid obtrusiveness caused by the generator.
We implemented this method in a tool named KRASH (Kernel
for Reproduction and Analysis of System Heterogeneity). This
implementation is based on recent Linux kernels capabilities
that enable our load injector to behave as determined by our
method and to maintain a very low intrusivity.

In the next section, we present basics of system schedulers
behavior and a CPU load model. We then present, in Sec-
tion III, our method for reproducible CPU load generation
and its implementation in KRASH. In Section IV, we validate
our implementation regarding realism and reproducibility and
we compare it to existing tools that serve the same purpose.
Finally, before concluding in Section VI, we discuss related
works that are not directly applicable to our problem.

II. BASICS OF SYSTEM SCHEDULING AND CPU LOAD

In this section, we remind basic definitions of scheduling.
We also provide a clear definition of a CPU load and the
resolution of CPU load generators.

To enable the concurrent execution of several programs the
classical approach is time-slicing: time intervals of exclusive
execution on the CPU are assigned to the various applications
running in the system. On many-core systems this approach is
simply extended by running a distinct scheduler on each CPU
core and by sharing processes among schedulers. All modern
operating systems provide this timeslicing. For instance, the
Linux kernel calls these timeslices jiffies. Depending on the
configuration, between one hundred and a thousand jiffies
occur each second in the system.

Definition 1. The load of a CPU core during a time interval
is the proportion of this time interval during which the CPU
core has been assigned to some application or used by the
system (time of unavailability). We call this definition the
absolute load of the CPU core. We also define the load for
an application as the proportion of the time interval during
which the CPU core has been assigned to this application.
Absolute load is computed by the ratio:

absolute load = timeslices of unavailability
total timeslices of the time interval

The assignment of CPU cores to applications on a timeslice
basis and the definition of load during a time interval induce
several issues about load measurement. First, the measurement
of a CPU core load is usually done by a monitoring program
that competes for execution on the same CPU core. Thus,
measurements of the CPU core load at a frequency which
is higher than the number of timeslices per second is not
possible. In other words, the timeslicing mechanism enforces
an absolute limit to the load monitoring precision. Second,
classical schedulers existing on modern systems dispatch the
timeslices among applications following a fair share principle:
each application should obtain a computing time depending
on its priority. Because access to a resource is given as whole
timeslices, this policy can only be enforced asymptotically.
Thus, a relatively large period of time is required to achieve
fair sharing (all running processes have been allocated enough
execution time on the CPU). Therefore, load measurements
made with a periodicity that is lower than this large period of
time are likely to lead to false results (not matching the actual
distribution of the processor between applications performed
by the scheduler).

These considerations lead us to the definition of scheduler
resolution. The scheduler resolution of a system is the min-
imum period of time required by the scheduler in activity
to fairly share the CPU core among running applications.
As scheduling can only asymptotically converge to a perfect
balance in resources assignment to applications, the resolution
is generally chosen by convention. This is the time interval
necessary to usually reach a sufficiently good share of the
resources. For instance, the resolution which is commonly
used by system measurement tools (top, htop) for the Linux
kernel is one second. As a side effect, measurement of the
load on a CPU core cannot be performed more frequently
than the scheduler resolution without leading to biased results.
Similarly, to be meaningful, the generation of a given load on
a CPU core will only be performed at a resolution superior
or equal to the system scheduler resolution. Load profiles will
also be accordingly defined:

Definition 2. We define a CPU load profile of a CPU core
during a given time interval as a piecewise constant function
that represents the temporal evolution of the load on this CPU
core. In this function, each piece is at least the same size as the
system scheduler resolution. By extension, a CPU load profile
during a given time interval is the set of its profiles (one for
each core).

In this article, we will not discuss methods to obtain such
a load profile. Several solutions exist, namely measurement
using standard system tools, synthesis with statistical models
[13] or simulation traces.

III. REPRODUCIBLE GENERATION OF CPU LOAD

In this section, we present the first contribution of this
article, a method for generating a reproducible CPU load
along with its implementation for recent Linux kernels (2.6

series). Beside reproducibility, we aim at designing a precise
and unobtrusive generator.

A. General Methodology

Ensuring the reproducibility of a load generation is not an
obvious task. It requires the constant monitoring of the CPU
assignment decided by the scheduler to adjust the generated
load. This monitoring can be performed in several ways.

The first idea which comes to mind is to create a CPU
intensive process that adjusts its own priority to reach the
expected load. A CPU benchmark such as [7], [10] could
be chosen and instrumented for this task. Unfortunately, this
approach lacks precision: the resulting load both depends on
the priority of the CPU intensive process itself and on the
other processes present in the system. Nothing guarantees that
the CPU intensive process will be executed at the scheduler
resolution to adjust its own priority. This is a major problem
when generating low loads: the load process having a low
priority, it is not awaken often enough. Moreover, this poor
precision will also result in poor reproducibility. We should
also mention that very high loads are not always achievable
using this method. When many other processes are present in
the system, even if the loading process priority alters the share
balance, the scheduler still tries to periodically assign the CPU
to all processes (at least for one timeslice). This results in a
load that cannot get as close as desired to 100%.

A more elaborate scheme for generating load is to create
a special distinct process, the supervisor, which will always
be executed in priority on a regular basis. The duty of the
supervisor is to adjust the priority of the CPU intensive loading
process. If the supervisor is executed at a frequency that
matches the scheduler resolution, it will be able to adjust
the injected load at a rate that ensures a good precision
(as good as possible if we take into account the arguments
presented in Section II). The main drawback of this method is
its potential intrusiveness: the supervisor itself, because it is
executed very frequently, will induce a load in the system. To
ensure precision, this load has to be minimized or taken into
account as a part of the load profile that should be reproduced.
Nonetheless, it will always prevent the generator to generate
extremely low load levels.

A variant of this supervisor-based load injection, used in
the current version of Wrekavoc [15], monitors the system
to stop and restart application processes. That way, the CPU
is not directly loaded by the generator, but the application
perceives a CPU unavailability during the time it is stopped.
The drawback of this method, as we will see in the evaluation
section, is that it produces undesirable side effects regarding
the scheduler and its policies on I/O events. Furthermore, this
approach does not solve the intrusiveness issue related to the
supervisor (which is still required).

Our solution is to directly cooperate with the scheduler to
avoid previous issues. The principle is quite simple: place on
each CPU core a CPU intensive process that will act as a
load generator. Then, act directly within the scheduler and
at scheduler resolution to assign to our load generator the

desired proportion of available timeslices. With this method,
the generation is precise, because it is performed at scheduler
resolution. Moreover, it is unlikely to be intrusive, because
the generator is considered by the scheduler, at the same time
as other processes, when ensuring fair resources share. Alas,
this method requires a direct interaction with the scheduler.
Fortunately, as we will see in the next section, some schedulers
provide facilities to implement our method.

B. Generator Implementation for Linux

We implemented our load generation method for Linux by
taking advantage of capabilities added in its recent kernel re-
leases (≥ 2.6). The two features which our generator depends
on are the cpuset and group scheduling mechanisms.
Before we present our solution, a short description of these
two features seems to be required.

The cpuset feature enables programmers to attach to
processes a set of CPU cores on which they can be executed.
This restriction to a set of resources is enforced by the
kernel itself, which places processes into the internal list of a
matching scheduler and migrates them when necessary.

The group scheduling feature enables programmers to
control resources sharing performed by the scheduler. When
this feature is in effect, all processes necessarily belong to one
control group, possibly the default group if no other group has
been specified, and all groups have a priority. The scheduler
distributes timeslices between groups in proportion to their
priority. Within each group, classical priority scheduling is ap-
plied between processes to share assigned timeslices. Among
interesting characteristics, we should mention that groups
priority can be changed dynamically using a virtual filesystem,
that cpuset restrictions can be applied to a whole group,
and that processes inherit group membership. We should
also mention that timeslices distribution among groups is
performed by the scheduler according to the groups hierarchy
defined by the virtual filesystem structure. Nevertheless we
will not use this last characteristic as all our groups will be
created at the same hierarchy level (which is just under the
root group).

We have used these features to implement our method for
load generation. Our generator is set in place by performing
the following steps:

• create a new control group that we name the base group
and move all processes into this group.

• for each CPU core, create a load generation process (we
name it the boulder), a new control group, attach the load
generation process to this control group and restrict the
control group to the concerned CPU core.

• choose a CPU core to run a supervisor process. This
supervisor is given an input load profile and monitor load
on all the load generation processes. Whenever required,
it adjusts the priority of the groups that contain load
generation processes.

Figure 1 shows a simple diagram of this method. The first step
of our implementation is just meant to confine all existing
processes (and their possible future children) into a single

group at the same hierarchy level as the other groups we
create. The boulder processes are simple infinite loops that
render their CPU core unavailable during their timeslices. This
simplicity ensure minimal cache and memory footprints. Thus,
the boulders do not interfere much with the rest of the system.

The supervisor process is more elaborate. It relies on
the specification of groups scheduling in Linux: timeslices
are divided between groups in proportion to their priority.
This is slightly different than priority scheduling which is
implemented by giving more or less timeslices to processes
depending on both their priority and their resources usage.
In this last case, all processes will be given some timeslices
and the repartition is not necessarily in proportion to processes
priority. In fact, the proportion of timeslices given to a process
will also depend on the number of other processes in the
system. This issue does not exist with group scheduling if
the number of groups in the system is stable. This enables us
to precisely control timeslices repartition.

We should also mention some implementation tricks related
to the supervisor. As this is a monitoring process, it should
periodically determine if the current timeslices repartition is
in conformity with the desired load. If this is not the case, it
adjusts the priority of the groups containing the boulders as
follows:

new priority =
base group priority
1− desired load

× desired load

This is a simple proportionality calculus which ensures that
priorities proportions match the desired load. In principle, this
adjustment should be performed on a regular basis match-
ing the scheduler resolution. A naive implementation thus
results in some intrusiveness due to the supervisor execution.
Nevertheless, the adjustment is only required when the load
generated by some boulder has to be changed. In other cases,
if the groups organization and priorities are not modified, the
scheduler will keep on dividing timeslices accordingly which
will result in a constant load generation. With this idea in
mind, we implemented the supervisor as a process that adjusts
priorities and falls asleep immediately after for an unspecified
time. Then, taking advantage of notifications within the Linux
kernel we wake the supervisor process up only when a change
is required by the load profile. This results in an extremely low
intrusiveness which even enables the supervisor to run on one
of the loaded cores without much harm.

IV. EVALUATION

In this section, we validate our generator implementation.
First, we present experiments that confirm that this imple-
mentation fulfills our requirements. Then we compare it to
existing tools capable of some kind of CPU load generation.
This comparison is both qualitative (offered features, flexibility
of the generation) and quantitative (real world performance).

During all these experiments, we aim at evaluating several
criteria that we consider of utter importance for any CPU load
generator:

• reproducibility: the generator should be able to reproduce
the desired load whatever the environmental conditions

Figure 1: Diagram of our solution, based on boulder and supervisor
processes

(others processes in the system, available memory, de-
vices state).

• unobtrusiveness: the generator should not alter the quali-
tative behavior of the system. In particular, it should nei-
ther change the scheduler policy, nor produce additional
performances degradation unrelated to CPU performance
(I/Os degradation, for instance).

• precision and reactivity: we need a generator able to
reproduce realistic load profiles in a very dynamic en-
vironment. In other words, the generator should be able
to precisely produce the desired load with good reactivity.

• unintrusiveness: the additional load induced by the gen-
erator process should be very moderate. This character-
istic is usually related to unobtrusiveness (an intrusive
generator becomes often obtrusive) and versatility (a
lightweight generator does not require extra resources for
the supervisor process and can generate a wider range of
different loads).

In this whole section, the machine used for experiments
is a SMP system made of 8 Dual Core AMD Opteron 875
(2.2 GHz), 32 GB of RAM and a RAID 1 250 Go storage
subsystem. This machine runs a Linux Debian Sid (unstable)
Operating System with a recent kernel (version 2.6.30). This
Linux kernel is configured with control groups and group
scheduling activated. In some of our experiments we only
used a subset of the available CPU cores. Unless specified
differently, those cores are chosen in the logical order given
by the kernel: if the experiment runs on 8 cores then the first
8 are used (only 4 CPUs are working). In our system, only
the first two CPUs are dedicated to I/O. In all the experiments
presented in this section, average values are calculated from
the results of 30 consecutive runs.

Our load measurements are made using Sysstat [12]. This
tool has a resolution of one second, it is comparable to
ProcPS [4] which uses the same technique to gather sys-
tem informations. This resolution is standard among Linux
measurement tools. It is enough for the evaluation of CPU
intensive applications and prevents the measurement tool for
becoming too intrusive. Using such a tool, we gather a load

00 04 08 12 16 20 00

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0

 20

 40

 60

 80

 100

Load (%)

Full Day Load

Time (in hours)

CPU Core Number

Load (%)

Figure 2: Example of a daily CPU load on our SMP System (16
cores)

profile such as the one presented in Figure 2 which is a
load observed on our experimentation machine during a day.
Besides, we also generated random load profiles using the
modeling tools [13]. Using this kind of profiles has led us
to the same conclusions. For the sake of clarity, we only
present experiments made on ’real world’ load profiles in the
remaining of this section.

A. Generator Validation

With our first experiments, we start by validating KRASH
precision, reactivity, unintrusiveness and reproducibility. We
will address unobtrusiveness concerns in subsequent sections.

For this validation, we begin by creating a realistic load
profile that we will later reproduce with KRASH. This load
profile is created by running a reference application (an
instance of Linpack [9]) and launching other processes during
its execution to mimic a dynamic and shared environment.

The exact scenario is the following: execute our reference
application on 8 cores and with default priority, launch a
realtime priority task (infinite loop) during 15 seconds then kill
it, do nothing during 10 seconds, run an instance of the NAS
EP [7] benchmark on 8 CPU cores during 20 seconds (then
kill it); do nothing during 16 seconds; start a new instance of
the NAS benchmark on 8 CPU cores with a lower priority1.
Once the last process finishes (30seconds later), start another
instance of NAS on 8 CPU cores and, finally, stop it 20
seconds later. At this point Linpack is running alone on the
system.

By monitoring the CPU attribution of Linpack, we obtained
the opposing load profile in Figure 3(a) (that we name the
reference profile). Notice that every application used to mimic
a dynamic environment has a very low cache and memory
footprints and only their CPU occupation hinders the Linpack
computation.

The first validation experiment consists in replacing the
previous realistic dynamic environment by KRASH (giving

1On POSIX systems, a lower priority ensure more CPU attribution time to
a process.

it the reference profile as input) and executing Linpack again.
If the load is correctly recreated by KRASH and the Linpack
application is disturbed in the same manner, we should obtain
the same opposing CPU load as our reference profile. Fig-
ure 3(b) reports the load we measured during this experiment
(CPU load generated by KRASH is in plain lines) along
with the reference profile (dashed lines). We can clearly see
that these two profiles are very similar: the average error
between the generation by KRASH and the reference profile is
about 2% with a standard deviation of 1%. This confirms the
precision and the reactivity of KRASH: the generated load is
roughly the same as the one resulting from a realistic dynamic
environment.

The second validation experiment aims at validating load
reproducibility in KRASH: we want to check that KRASH
generates the required load no matter how many applications
we run concurrently. Thus, to simulate a different application
(different CPU use and different parallel execution scheme),
we replace the Linpack control sample with 10 concurrent
NAS instances on 8 CPU cores. The load that KRASH
produces in this second validation experiment appears in
Figure 3(c). Once again, the expected reproduction by KRASH
of our reference profile is of high quality: the average error
between the generation and the reference profile is about 2%
with a standard deviation of 1%. Consequently, this experiment
shows that even when changing drastically processes (number,
nature) that run in concurrence with KRASH, our tool is able
to reproduce the desired load with the same precision.

B. Qualitative Comparison with Other Solutions

In this section, we present existing solutions for CPU
load generation and their differences with KRASH. Some
of these solutions are intended for a more general use and
include CPU load generation as part of their capabilities.
For each one of these existing solutions, we discuss their
characteristics, advantages and drawbacks in comparison to
KRASH. A quantitative performance comparison presented in
the next section completes this analysis.

1) Wrekavoc: Wrekavoc [15] is a tool for heterogeneity
simulation. Its objective is to enable users to limit the resources
available to their application. The expected effect is to mimic
an execution of the application on an heterogeneous platform.
This tool can be used to limit CPU, memory and network
use. Regarding only CPU, Wrekavoc is given a username and
a desired CPU frequency as configuration. Then, for each
process created by this user, it creates a supervisor process
which inspects the /proc virtual filesystem on a regular basis
to monitor the behavior of its associated user process. This
supervisor stops or restarts its target process (using POSIX
signals) to ensure that its CPU use is roughly equal to the
ratio of desired CPU frequency to actual CPU frequency. To
guarantee the periodic execution of the supervisor, it is run
using real time priority scheduling.

Obviously, this method cannot be applied to applications
that create more processes than CPU cores in the machine.
Otherwise, the overall CPU use allowed to two processes exe-

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

C
P

U
 L

o
a
d
 (

%
)

Time (s)

CPU Load Profile Observed

(a) Reference profile (realistic load) in concurrence with Linpack

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

C
P

U
 L

o
a
d
 (

%
)

Time (s)

CPU Load Generated
Reference Profile

(b) Load generated by KRASH in concurrence with Linpack

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

C
P

U
 L

o
a
d
 (

%
)

Time (s)

CPU Load Generated
Reference Profile

(c) Load generated by KRASH in concurrence with 10 NAS instances

cuting on the same core will not match the desired frequency:
each one is independently limited, only based on its own
resource consumption. This is not always an issue as most
parallel applications do not create more processes than CPU
cores. Nevertheless, this might happen when folding a parallel
application designed for more resources than available. This
makes Wrekavoc less versatile than KRASH. Furthermore,
this method does not fit many-core machines: because of
migration, processes might be assigned to distinct cores during
their execution. Thus, Wrekavoc does not simulate platform

heterogeneity but rather application heterogeneity. This issue
is not addressed in their paper [15].

Regarding load profiles, Wrekavoc is only able to simulate
constant loads. The desired simulated CPU frequency is given
upon invocation of the tool and cannot be changed during its
execution. Thus, Wrekavoc does not fulfill our objective of
dynamic load profile generation on many-core machines.

2) Solutions based on real time priority scheduling: A
direct way to generate a given load is to create a loading
process scheduled in priority using a real time scheduling
policy. This loading process just has to monitor its own

load and to adapt its activity to the desired load by running
into some loop that simulates activity. This solution was
implemented in a former release of Wrekavoc presented in
their first paper [5]. This method acts completely from outside
the scheduler and produces the desired load as a long CPU
unavailability period. Thus, compared to the use of a loading
process scheduled along with other processes, the load will
not be spread along a time interval matching the scheduler
resolution.

The main concern of such a solution is that it can signifi-
cantly alter the scheduling of other processes in the system
depending on the resolution at which the loading process
generates its activity. If the resolution is too coarse, the over-
lapping of computation with I/Os might be hindered by large
time intervals of CPU unavailability resulting from the load
generation. Unfortunately, a fine resolution is not achievable
because of the lack of precision in the scheduling control: to
give the CPU back to users the loading process has to yield
itself, activating the scheduler by doing so. This is done by
putting the real time process into sleep. Nevertheless, due
to OS implementation tricks, sleeping during a very short
time interval does not necessarily imply a context switch to
another process: sleep intervals have to be large. All these
drawbacks have been outlined in the article that presents the
current Wrekavoc release [15]. In Section IV-C we confirm
these conclusions.

3) Solutions based on CPU frequency scaling: Nowadays,
most processors provide a mechanism to dynamically down-
scale their operating frequency. This mechanism has been
created as a way to reduce CPU power consumption when it is
idle or moderately loaded: at a lower operating frequency, the
CPU can also be operated at a lower voltage. Knowing that
a CPU power consumption depends linearly on its frequency
and quadratically on its voltage, this can lead to significant
gains. Applications can easily make use of this feature using,
for instance, the Linux cpufreq driver.

Besides its intended use, this mechanism can also be viewed
as a way to reduce CPU performance (see [16] for its use as
CPU performance degradation tool in a network performance
study). This CPU performance degradation capability can also
be viewed as a CPU load simulation. Nevertheless, several
limitations of this mechanism prevent it from being an ideal
solution for load generation. The first limitation comes from
the implementation of this mechanism: it is not possible to
downscale the CPU frequency to any chosen value, as only
a limited set of possible choices are made available by the
CPU maker. Consequently, it is not possible to generate any
desired load profile using this mechanism. The second limi-
tation is related to CPU models: few of them can downscale
independently the frequency of distinct CPU cores to different
values. These two limitations make this solution unsuited to
the generation of realistic load profiles on many-core systems.
They also make the solution much less versatile than KRASH.

Finally, one might wonder if reducing the CPU frequency
is equivalent to make the CPU unavailable during some
timeslices according to a desired load profile. Indeed such

frequency scaling does not preserve the frequency ratio be-
tween the CPUs and the memory elements of the system. Most
likely, the resulting tasks scheduling and overlapping between
computations and I/Os will be different. This last issue will
be investigated in more details in Section IV-C.

4) Qualitative comparison summary: In summary, the main
issue with existing solutions is their inability to precisely re-
produce any dynamic load profile. Beside this missing feature,
we guess that some of these methods will raise obtrusiveness
and realism issues. This last claim will be confirmed in
Section IV-C. Table I presents an overview of our qualitative
analysis.

C. Quantitative Comparison with Other Solutions

In this section, we compare KRASH to existing solutions
from a pure performance point of view. We evaluate the perfor-
mance of each tool by looking at its precision, its obtrusiveness
and its intrusiveness. As outlined in Section IV-B, none of the
other solutions we know about is able to generate an arbitrary
dynamic load profile. Thus, we will compare KRASH with
them regarding only constant load generation.

The main drawback of using constant load generation is
that we cannot evaluate its result by using the generated
profile: all the methods we compare have enough resolution to
produce a constant perceived load. Yet, we can still measure
the precision of each method: the run applications slowdown
directly depends on the amount of generated CPU load. We
can also evaluate the generator obtrusiveness: if an additional
load is produced on other resources (such a I/Os) as a side
effect, this will affect the slowdown of applications that depend
on these resources. In both cases, reporting the concurrent
application execution time will enable us to check the correct
behavior of the generation method. Regarding the generator
intrusiveness, we can measure it directly as the load induced
by the supervisor process (if any).

1) Precision and Intrusiveness Comparison: In this exper-
iment, the application we use is an instance of NAS NPB EP
on 8 CPU cores. EP is a pure CPU intensive benchmark, thus
whatever the load generation method, perturbations in other
parts of the system (obtrusiveness) should not be noticeable.
The goal of this experiment is to evaluate the precision,
the resolution and the intrusiveness of each load generation
method. We have measured the execution time of the NAS
NBP EP benchmark on an unloaded machine as reference
time. Then, for each method, we have checked that the
generated load profile is near constant and we have measured
the execution time of NAS NBP EP when all the cores are
loaded at 50%. We deduce from the application slowdown the
load it perceives in each case. Of course, in this pure CPU-
related experiment, the perceived load should be as close as
possible to 50%. When the load generation method involves a
supervisor process, we also reported the load induced by this
process (intrusiveness). The results of this experiment appear
in Table II.

In these results, the resolution we report is an estima-
tion based on the implementation chosen for each method.

General dynamic Side effects Arbitrary number Intrusiveness Resolution
load profile on scheduler of processes

KRASH [11] Yes Negligible Yes Negligible Same as scheduler
Wrekavoc [15] Not implemented Low No Active poll Higher than scheduler
Real time priority [5] Not implemented High Yes Periodic wakeup Poor
Frequency scaling [16] No Medium Yes Negligible Higher than scheduler

Table I: Features comparison table for several load generation solutions.

NAS EP execution time Perceived load Intrusiveness Estimated
average standard deviation average standard deviation resolution

None 21.4 0.1 NA NA NA NA
KRASH 41.9 0.9 48.9 1.1 1% on one core 1
Wrekavoc 47.6 4.5 55 3.9 15% per user process 2
Real time priority 47.1 3.8 54.5 3.2 NA 1
Frequency scaling 45.3 0.3 52.7 0.5 NA NA

Table II: Precision comparison table for several load generation solutions.

Wrekavoc can only stop processes during whole seconds.
If we add the management time of the tool itself to this
minimal inactivity period, we obtain a resolution which should
be closer to 2 seconds rather than 1. Real time scheduling
issues microsleep calls to lower its resolution and ensure the
scheduler is activated several times each second. Thus, in the
general case it should be able to reach the same resolution
as the scheduler, 1 second. KRASH completely relies on the
group scheduling feature to regulate the load: the load
balance between boulders and other processes is performed by
the scheduler itself. Consequently, its resolution is the same
as the scheduler, 1 second. Finally, the resolution metric is not
relevant to CPU frequency scaling method. This is because this
method does not generate any observable load, although, as all
the other methods, it induces a degradation in NAS execution
time.

On this CPU-only intensive computation, the degradation
should be as close as possible to 100%: twice the time to
complete, which corresponds to a perceived load of 50%.
KRASH, along with CPU frequency scaling, produces the best
result: KRASH is better in average but CPU frequency scaling
has a lower standard deviation. We guess that the worse results
observed for Wrekavoc and Real time priority are due to their
action from outside the scheduler: timeslices are divided less
accurately between processes.

2) Obtrusiveness comparison: The obtrusiveness of a CPU-
only load generation method encompasses all the side effects
caused by the generation method on other resources in the
system. System tasks that are the most affected by the kind
of CPU load we generate are the ones that can usually be
overlapped with computation tasks: networking operations and
I/Os transactions. When hindering the scheduler efforts to
nicely order running processes, a load generation method
might prevent overlapping and induce worse than expected
network or I/Os performance degradation. Consequently, we
present in this section a collection of experiments that outlines
the general side effects produced by each generation method
on these resources.

The first experiment focuses on I/Os performance. It con-
sists in running the command dd to copy a file on the local

filesystem in a loaded machine. In this experiment the system
write cache has no importance for two reasons. The first reason
is that we give the fdatasync option to dd which forces
physical write at the end of the copy. The second reason is that
the most important performance factor in this experiment is
the scheduling of I/O tasks. These tasks issue write operations
with a system call, posting a command in the write queue of
the I/O scheduler. They often need to be scheduled as soon as
possible to benefit from overlapping with computation. This
claim is validated by the fact that we obtain the same results
without the fdatasync option. Table III presents the results
of this experiment when copying a 1GB file on a machine
loaded at 50%.

Time to copy the file
average standard Slowdown

deviation
None 10.2 0.8 1
KRASH 20.5 0.5 2
Wrekavoc 24.9 1.7 2.4
Real time priority 36.6 1.8 3.6
Frequency scaling 24.3 1.8 2.4

Table III: Side effects on I/Os evaluated for several load generation
solutions.

As we can notice, only KRASH produces the expected
slowdown of 2. It is the only method that lets the scheduler
use its usual optimizations: I/O tasks are scheduled in priority
(as long as the remaining loading process can get the desired
50% of CPU time). The CPU frequency scaling solution lets
the scheduler use these optimizations, but the degraded CPU
frequency results in a coarser granularity and a higher than
expected load. Wrekavoc and Real time priority produce even
worse results. This is because they disturb the scheduler work:
signals issued by Wrekavoc to regulate the dd load might
occur just before blocking I/O operations, unscheduling the
task twice: one time with the signal and the second time when
performing the blocking call. Furthermore, the supervisor
process polls the /proc virtual filesystem resulting in even
more I/O operations. Regarding Real time priority, the change
in the scheduler policy (FIFO scheduling) simply alters the
usual I/O optimizations. It appears that this last strategy is the

worst one regarding I/Os obtrusion.
The next experiment focuses on the effects of our generation

methods on network performance. The benchmark we use in
our evaluation is NAS NBP DT, which performs intensive
point-to-point blocking MPI communications between all the
involved processes. We run this benchmark with 80 processes
and a random communication topology. The slowdowns we
obtain on this benchmark when loading the machine at 50%
with our different methods are reported in Table IV.

Execution time
average standard Slowdown

deviation
None 2.9 0.5 1
KRASH 6.2 0.8 2.1
Wrekavoc NA NA > 100
Real time priority 11.3 3.2 3.9
Frequency scaling 4.4 0.6 1.5

Table IV: Effects of load generation solutions on NAS NBP DT.

We can point out that CPU frequency scaling produces a
moderate slowdown of 1.5 only, rather than 2 as we could have
expected when loading the machine at 50%. This surprising
result is explained by the way this application works: distinct
MPI processes synchronize on their blocking point-to-point
communication. Thus, the overlapping between computation
and communications occurring in different processes plays
a significant role. This slowdown of 1.5 just outlines the
fact that the communications are not fully overlapped with
computations when running the benchmark on an unloaded
machine: there is still room for more overlapping on a
slower CPU. In contrary, with KRASH, the CPU is made
unavailable during long periods (whole timeslices). This does
not increase the number of opportunities for further compu-
tation/communications overlapping. This is also what would
a real concurrent application do. It results in an expected
slowdown of 2. Real time priority degrades twice as desired
the performance of this benchmark, for the same reasons as in
the I/O case: blocking operations are not given priority because
of the FIFO scheduling policy. Finally, in this experiment,
Wrekavoc produces exceedingly high additional system load.
The resulting execution time roughly corresponds to a slow-
down of 100. This is because Wrekavoc creates a new supervi-
sor process for each new user process: with 80 processes in our
benchmark this becomes a serious bottleneck. This confirms
the claim we made in Section IV-B that Wrekavoc is not suited
to load more processes than available CPU cores.

The last benchmark is a compilation of gcc with a maxi-
mum of 16 parallel processes. This benchmark involves pro-
cesses with varying duration executing a mix of CPU intensive
and I/O operations (compilation of more than 30000 files with
a total size of 300MB). As in previous experiments, we inflict
a load of 50% on all the CPU cores. The resulting slowdown
is reported in Table V.

In this benchmark, the pure I/Os performance is less critical
that in the case of dd. Thus, CPU frequency scaling and
KRASH perform as well, slowing down the compilation by an
expected factor of 2. For the same reasons as in the case of dd,

Execution time
average standard Slowdown

deviation
None 197 3 1
KRASH 387 7 2
Wrekavoc NA NA > 100
Real time priority 558 5 2.8
Frequency scaling 392 21 2

Table V: Effects of load generation solutions on gcc compilation.

Real time priority degrades more than desired the execution,
resulting in a slowdown of 2.8. Finally, Wrekavoc exhibits the
same behavior as in the case of the NAS NBP DT benchmark:
it generates an exceedingly high system overhead, although,
in this case, there are never more running processes than
CPU cores. The reason is that the compilation of gcc involves
the execution of many low duration processes. In this case,
the overhead of the supervisor processes used by Wrekavoc
(creation, /proc scanning, and termination) consumes most
of system resources.

V. (UN)RELATED WORKS

The load injection research area focuses on producing
stressing situations to test various kinds of server-type com-
puting systems (I/O, web, routing). CLIF [8] is an example
of well known load injection tool. Despite the similarity of
our intention (producing a load), the topic we address in
this article is radically different from load injection concerns.
In the context of load injection, the system is viewed as a
black box on which we act by fetching input data that induce
computation. The main issue in this context is to determine
statistical distributions of input data scenarii and their effect
on the observed system. In this article we are not interested in
statistical characterization of load profiles, but rather in system
mechanics that enable us to reproduce a desired CPU load.
Thus, this article is not to be misinterpreted as an article about
load injection.

Benchmarking consists in executing a program written
specifically to test the performance of a given system. The
intent of this test is either to evaluate the overall performance
when executing an application that belongs to a given class
(NAS NPB [7], LINPACK [9], HPCC [10]) or to evaluate
the performance of a specific part of the executing platform
(HBench:OS [3], SPEC MPI [14]). In benchmarking, the goal
is to produce a focused intensive activity on an unloaded
system to evaluate its performance. In this article we aim at
making the CPU unavailable according to a given load profile
in a reproducible way. The activity of the CPU during this
unavailability periods (intensive activity or simple empty loop)
does not matter. Thus, results from the benchmarking research
area cannot be of any help to solve our problem.

VI. CONCLUSION

In this article, we have presented a new method for the
reproducible generation of CPU load in a shared memory ma-
chine. As we outlined in this whole work, the main issue in this
context is reproducibility whatever the present environment

on the target machine (other processes, allocated resources).
Aiming at ideal reproducibility induces other objectives as a
side effect: precision, unobtrusiveness and, most of the time,
unintrusiveness. We presented a new methodology for CPU
load generation that cooperates with the system scheduler to
reach our objectives. We argue that this method is the only way
to generate a dynamic load profile with the best precision. We
also presented an implementation of this method for Linux
taking advantage of recent kernel capabilities.

We compared our implementation to other CPU load gener-
ation tools and methods. As we emphasized in our qualitative
comparison, our tool KRASH is the only one that is able
to generate any dynamic load profile, while the others are
usually restricted to continuous loads. Then, our quantita-
tive comparison showed that some of the existing methods
have noticeable intrusiveness issues under high system load
conditions. Furthermore, because they act from outside the
scheduler, all these methods have serious obtrusiveness issues.
In some case this even makes the whole generator meaningless
and unusable. Because of its conception, our method avoids
these pitfalls and always precisely generates the desired load
without noticeable intrusiveness or obtrusiveness. KRASH is
available for download at http://krash.ligforge.imag.fr, it is
provided free of charge under the terms of the GNU GPL
license.

KRASH is expected to be used as an experimentation
environment for adaptive parallel algorithms efficiency com-
parison. It is able to produce dynamic CPU loads on shared
memory machines that are similar to real loads. While the CPU
is usually the most important resource in high performance
computing, some applications also heavily depend on other
parts of the system such as caches, memory, I/O subsystem or
network. Our future works will focus on extending KRASH
to make it able to generate load on these other parts.

REFERENCES

[1] Robert D. Blumofe. Executing multithreaded programs efficiently. PhD
thesis, Cambridge, MA, USA, 1995.

[2] Raphaël Bolze, Franck Cappello, Eddy Caron, Michel Daydé, Frédéric
Desprez, Emmanuel Jeannot, Yvon Jégou, Stephane Lanteri, Julien
Leduc, Noredine Melab, Guillaume Mornet, Raymont Namyst, Pascale
Primet, Benjamin Quetier, Olivier Richard, El-Ghazali Talbi, and Iréa
Touche. Grid’5000: A large scale and highly reconfigurable experimental
grid testbed. Journal of High Performance Computing, 4(20):481–494,
2006.

[3] Aaron Baeten Brown. A decompositional approach to computer system
performance evaluation, October 03 1997.

[4] Albert Cahalan. PROCPS, 1997-2008.
[5] Louis-Claude Canon and Emmanuel Jeannot. Wrekavoc: a tool for

emulating heterogeneity. In 15th IEEE Heterogeneous Computing
Workshop (HCW 06), 2006.

[6] Henri Casanova, Arnaud Legrand, and Martin Quinson. Simgrid: a
generic framework for large-scale distributed experiments, April 14
2008.

[7] David Bailey et al. The NAS parallel benchmarks. Technical Report
RNR-91-002, NAS Systems Division, January 1991.

[8] Bruno Dillenseger. Flexible, easy and powerful load injection with clif
version 1.1. In In Fifth Annual ObjectWeb Conference, 2006.

[9] Jack Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK
benchmark: past, present and future. Concurrency and Computation:
Practice and Experience, 15(9):803–820, August 2003.

[10] Jack Dongarra, Piotr Luszczek, and Allan Snavely. HPC challenge
(HPCC) benchmark suite. In SC’07 USB Key. ACM/IEEE, Reno, NV,
November 2007.

[11] KRASH: Kernel for Reproduction and Analysis of System Heterogene-
ity. http://krash.ligforge.imag.fr/, 2008-2009.

[12] Sebastien Godard. SYSSTAT, 2002-2008.
[13] Uri Lublin and Dror G. Feitelson. The workload on parallel supercom-

puters: Modeling the characteristics of rigid jobs. JPDC: Journal of
Parallel and Distributed Computing, 63, 2003.

[14] Matthias S. Muller, Kumaran Kalyanasundaram, Greg Gaertner, Wesley
Jones, Rudolf Eigenmann, Ron Lieberman, Matthijs Van Waveren, and
Brian Whitney. SPEC HPG benchmarks for high-performance systems.
Int. J. of High Performance Computing and Networking, 1:162–170,
December 07 2005.

[15] Jens Gustedt Olivier Dubuisson and Emmanuel Jeannot. Validating
Wrekavoc: a tool for heterogeneity emulation. In 18th IEEE Hetero-
geneous Computing Workshop (HCW 09), 2009.

[16] Ravi Iyer Srihari Makineni. Measurement-based analysis of tcp/ip
processing requirements. In In 10th International Conference on High
Performance Computing (HiPC 2003), 2003.

[17] Daouda Traore, Jean-Louis Roch, Nicolas Maillard, Thierry Gautier, and
Julien Bernard. Adaptive parallel algorithms and applications to stl. In
Springer-Verlag, editor, EUROPAR 2008, Las Palmas, Spain, August
2008.

