
Engineering a Scalable High Quality Graph Partitioner

Manuel Holtgrewe, Peter Sanders, Christian Schulz

Abstract

We describe an approach to parallel graph partitioning that scales to hundreds of processors
and produces a high solution quality. For example, for many instances from Walshaw’s bench-
mark collection we improve the best known partitioning. We use the well known framework
of multi-level graph partitioning. All components are implemented by scalable parallel algo-
rithms. Quality improvements compared to previous systems are due to better prioritization of
edges to be contracted, better approximation algorithms for identifying matchings, better local
search heuristics, and perhaps most notably, a parallelization of the FM local search algorithm
that works more locally than previous approaches.

1 Introduction
Many important applications of computer science involve processing large graphs, e.g., stemming
from finite element methods, digital circuit design, route planning, social networks,. . . Very often
these graphs need to be partitioned or clustered such that there are few edges between the blocks
(pieces). In particular, when you process a graph in parallel on k PEs (processing elements) you
often want to partition the graph into k blocks of about equal size. In this paper we focus on a
version of the problem that constrains the maximum block size to (1 + ε) times the average block
size and tries to minimize the total cut size, i.e., the number of edges that run between blocks. It is
well known that there are more realistic (and more complicated) objective functions involving also
the block that is worst and the number of its neighboring nodes [14] but minimizing the cut size has
been adopted as a kind of standard since it is usually highly correlated with the other formulations.
We believe that the results presented here will be adaptable to other objective functions and also to
other setting such as graph clustering where k and the block sizes are not necessarily fixed.

We begin in Section 2 by introducing basic concepts. The main part of the paper are the sections
on contraction 3, initial partitioning 4, and refinement 5. Section 6 summarizes extensive experi-
ments done to tune the algorithm and evaluate its performance. Some related work is discussed in
Section 7 and Section 8 summarizes the results and gives some outlook on future work.

2 Preliminaries
Consider an undirected graph G = (V,E, c, ω) with edge weights ω : E → R>0, node weights
c : V → R≥0, n = |V |, and m = |E|. We extend c and ω to sets, i.e., c(V ′) :=

∑
v∈V ′ c(v) and
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ω(E ′) :=
∑

e∈E′ ω(e). Γ(v) := {u : {v, u} ∈ E} denotes the neighbors of v.
We are looking for blocks of nodes V1,. . . ,Vk that partition V , i.e., V1 ∪ · · · ∪ Vk = V and

Vi ∩ Vj = ∅ for i 6= j. The balancing constraint demands that ∀i ∈ 1..k : c(Vi) ≤ Lmax :=
(1 + ε)c(V )/k + maxv∈V c(v) for some parameter ε. The objective is to minimize the total cut∑

i<j w(Eij) where Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. By default, our initial inputs will have
unit edge and node weights. However, even those will be translated into weighted problems in the
course of the algorithm.

A matching M ⊆ E is a set of edges that do not share any common nodes, i.e., the graph
(V,M) has maximum degree one.

An edge coloring C assigns a color (a number) to each edge of a graph such that no two incident
edges have the same color. Note that the edges with a particular color define a matching, i.e., C
partitions the edges into matchings. We will be interested in colorings with a small number of
different colors used.

Contracting an edge {u, v} means to replace the nodes u and v by a new node x connected
to the former neighbors of u and v. We set c(x) = c(u) + c(v). If replacing edges of the
form {u,w} , {v, w} would generate two parallel edges {x,w}, we insert a single edge with
ω({x,w}) = ω({u,w}) + ω({v, w}). Uncontracting an edge e undos its contraction. In or-
der to avoid tedious notation, G will denote the current state of the graph before and after a
(un)contraction unless we explicitly want to refer to different states of the graph.

The multilevel approach to clustering consists of three main phases.
In the contraction (coarsening) phase, we iteratively identify matchings M ⊆ E and contract

the edges in M . This is repeated until |V | falls below some threshold. Contraction should quickly
reduce the size of the input and each computed level should be reflect the global structure of the
input network. In particular, nodes should represent densely connected subgraphs.

Contraction is stopped when the graph is small enough to be directly partitioned in the initial
partitioning phase using some other algorithm. We could actually use a trivial initial partitioning
algorithm if we contract until exactly k nodes are left. However, if |V | � k we can afford to run
some fairly expensive algorithm for initial partitioning.

In the refinement (or uncoarsening) phase, the matchings are iteratively uncontracted. After
uncontracting a matching, the refinement algorithm moves nodes between blocks in order to reduce
the cut size or balance. The nodes to move are often found using some kind of local search. The
intuition behind this approach is that a good partition at one level of the hierarchy will also be a
good partition on the next finer level so that refinement will quickly find a good solution.

3 Contraction
We distinguish two separate choices for computing a matching: A rating function for the edges
telling us which edges are how valuable for the matching and a matching algorithm that tries to
find a matching of near maximum weight efficiently. Contractions are run until the graph is “small
enough”.
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3.1 Edge Rating
In most previous work, the edge weight ω(e) itself is used as a rating function (see Section 7 for
more details). We additionally consider

expansion({u, v}) :=
ω({u, v})
c(u) + c(v)

expansion∗({u, v}) :=
ω({u, v})
c(u)c(v)

expansion∗2({u, v}) :=
ω({u, v})2

c(u)c(v)

innerOuter({u, v}) :=
ω({u, v})

Out(v) + Out(u)− 2ω(u, v)

where Out(v) :=
∑

x∈Γ(v) ω({v, x}). These bounds are heuristically inferred from a few basic
principles: its good to contract heavy edges because this decreases the cut size. For the same reason
we want to avoid clusters with many outgoing edges. Furthermore, we preferably contract light
nodes because we want to keep the node weight at any level of contraction reasonably uniform.

In [15] several other functions based on ratings used in graph clustering are considered. How-
ever, they did not lead to very good results so that we do not go into details here.

3.2 Sequential Matching Algorithms
Although the maximum weight matching problem can be solved optimally in polynomial time,
the available algorithms are too slow for very large graphs so that all graph partitioners use fast
approximation algorithms. We tried three different matching algorithms that all run in linear or
near linear time:
SHEM: Sorted Heavy Edge Matching is the algorithm used in Metis [22]. The nodes are sorted
by increasing degree and then scanned. For each scanned node v, the heaviest edge {u, v} incident
to v is put into the matching and all remaining edges incident to u and v are excluded from further
consideration. This algorithm is very fast but cannot give any worst case guarantees.
Greedy: The edges are sorted by descending weight and then scanned. When edge {u, v} and
neither u nor v are matched yet, {u, v} is put into the matching. The Greedy algorithm guarantees
a matching whose weight is at least half of the weight of a maximum weight matching.
GPA: The Global Path Algorithm was proposed in [17] as a synthesis of the Greedy algorithm
and the Path Growing Algorithm [7]. All three algorithms achieve a half-approximation in the
worst case, but empirically, GPA gives considerably better results. Similar to Greedy, GPA scans
the edges in order of decreasing weight but rather than immediately building a matching, it first
constructs a collection of paths and even cycles. Afterwards, optimal solutions are computed for
each of these paths and cycles using dynamic programming.

We have not tried more sophisticated linear time algorithms that achieve 2/3-approximations
since in [17] they empirically turn out to be much slower yet not much better than GPA.
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3.3 Parallel Matching Algorithms
In our basic strategy we follow [16]. We first compute a preliminary partition of the graph, e.g.,
using coordinate information. Currently we have implemented a recursive bisection algorithm for
nodes with 2D coordinates that alternately splits the data by the x-coordinate and the y-coordinate
[2, 3]. We can also use the initial numbering of the nodes. Note that the initial partitioning does
not directly affect the final partitioning computed later – its main purpose is to increase locality for
the compuation of matchings.

We then combine a sequential matching algorithm running on each partition and a parallel
matching algorithm running on the gap graph. The gap graph consists on those edges {u, v}
where u and v reside on different PEs and ω({u, v}) exceeds the weight of the edges that may have
been matched by the local matching algorithms to u and v. The parallel matching algorithm itself
iteratively matches edges that {u, v} are locally heaviest both at u and v until no more edges can
be matched.

4 Initial Partitioning
The contraction is stopped when the number of remaining nodes on some PE is below
max (20, n/(αk2)) for some tuning parameter α. The graph is then small enough to be parti-
tioned on a single PE. Our framework allows using pMetis or Scotch for initial partitioning. We
use the sequential algorithms and run them simultaneously on all PEs, each with a different seed
for the random number generator. Since initial partitioning is very fast, it is also repeated several
times. The best solution is then broadcast to all PEs.

5 Refinement
Recall that the refinement phase iteratively uncontracts the matchings contracted during the con-
traction phase. After a matching is uncontracted, local search based refinement algorithms move

⇒
Figure 1: A graph which is partitioned into four blocks and its corresponding quotient graph Q.
The quotient graph has an edge coloring indicated by the numbers and each edge set induced by
edges with the same color form a matching M(c). Pairs of blocks with the same color can be
refined in parallel.
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nodes between block boundaries in order to reduce the cut while maintaining the balancing con-
straint. As most other current systems, we adopt the basic approach from [10] which runs in linear
time. The basic idea behind our parallel refinement algorithm is that at any time, each PE may
work on one pair of neighboring blocks performing a local search constrained to moving nodes
between these two blocks. In order to assign pairs of blocks to PEs, we use the quotient graph Q
whose nodes are blocks of the current partition and whose edges indicate that there are edges be-
tween these blocks in the underlying graph G. Since we have the same number of PEs and blocks,
each PE will work the block assigned to it and at one of its neighbors in Q. From now on, we will
therefore identify blocks and PEs. Figure 1 gives an example.

We use matchings of Q to define with which neighbor in Q a PE is working at a particular
point in time. If u, v is in the matching, both corresponding PEs will refine the partitions u and v
using different seeds for their random number generator. See Section 5.2 for more details. After
the local search is finished, the better partitioning of the two blocks is adopted.

Of course, for a good partition, we need to perform local search on every edge of Q eventually
(we call this a global iteration). Section 5.1 describes our approaches for ensuring this.

We ensure this by iterating through the matchings defined by an edge coloring of Q. See
Section 5.1 for more details.

Overall, this approach naturally defines a nested loop controlling our local search strategy. The
innermost loop moves nodes between two blocks using the FM-algorithm [10]. A local iteration
repeats this local search. A global iteration iterates over the colors of an edge coloring. The loops
terminate when either no improvement was found (in strong variants: when no improvement was
found twice in a row.) or when a preset maximum number of iterations is exceeded.

5.1 Choosing Matchings
We have implemented two strategies. One finds edges of Q not yet used for local search in a
randomized local way. The other steps through the colors of an edge coloring of the quotient
graph Q. Note that this requires only local synchronization between PEs actually collaborating at
a particular point in time. We only describe the latter one here since it performs slightly better in
our experiments. Our coloring algorithm is a parallelization of a well known sequential greedy
edge coloring algorithm: Each PE has a set L of free colors that have not been used for coloring
incident edges. In each round of the algorithm, PEs throw a coin with sides active and passive.
An active PE u picks a random incident uncolored edge {u, v} and sends this edge together with
its free-list to PE v. These requests are rejected if they are sent to other active PEs. Passive PEs v
process requests ({u, v} ,L′) by choosing the color c = minL ∩ L′ for edge {u, v} and sending c
back to u. This algorithm is repeated until all edges are colored. It can be shown that this algorithm
needs at most twice as many colors as an optimal edge coloring.

5.2 Refinement Between Two Blocks
We use a fully distributed graph data structure. More precisely, we use hybrid between a static
and a dynamic graph data structure. Immediately after uncontracting a matching, every PE stores
the partition it is responsible for in a static adjacency array representation (also called forward-star
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Figure 2: Refinement between two blocks using boundary exchange.

representation), i.e., there is an edge array storing target nodes and edge weights and a node array
storing node weights and the start of the relevant segment in the edge array. In addition, we use
a hash table to store migrated nodes and a second edge array for the corresponding edges. See
[23] for more details. Before a local search operation, we perform a bounded breadth first search
starting from the boundary of each block, and send copies of this boundary array to the partner
PE in the local search. The local search is then limited to this boundary area. This way, for large
graphs, only a small fraction of each block has to be communicated. If it should really happen that
the local search would profit from going beyond the boundary area, this will be possible in the next
iteration of some of the outer loops. Figure 2 shows this schematically.

The local search algorithm itself is basically the FM-algorithm [10]: For each of the two blocks
A, B under consideration, a PE keeps a priority queue of nodes eligible to move. The priority is
based on the gain, i.e., the decrease in edge cut when the node is moved to the other side. Each node
is moved at most once within a single local search. The queues are initialized in random order with
the nodes at the partition boundary. We have tried several queue selection strategies: Alternating
between A and B [10], MaxLoad where always the heavier block gives a node, and TopGain,
where the queue promising larger gain is used. In order to achieve a good balance, TopGain adopts
the exception that MaxLoad is used when one of the blocks is overloaded. When not otherwise
mentioned, we use TopGain with random tie breaking. There is also a variant TopGainMaxLoad
that uses MaxLoad when both queues promise the same gain.

The search is broken when more than αmin {|A|, |B|} nodes have been moved without yield-
ing an improvement. When the search stops, search is rolled back to the state with the lexicograph-
ically best value of the tuple (imbalance, cutValue). Where imbalance is max(0,max(c(A) −
Lmax, c(B)− Lmax)).

6 Experiments
Implementation. We have implemented the algorithm described above using C++ and MPI.
Overall, our program consists of about 34 000 lines of code. Priority queues for the local search
are based on binary heaps. Hash tables use the library (extended STL) provided with the GCC
compiler.

System. We have run our code on cluster with 200 nodes each equipped with two Quad-core
Intel Xeon processors (X5355) which run at a clock speed of 2.667 GHz, have 2x4 MB of level
2 cache each and run Suse Linux Enterprise 10 SP 1. All nodes are attached to an InfiniBand 4X
DDR interconnect which is characterized by its very low latency of below 2 microseconds and a
point to point bandwidth between two nodes of more than 1300 MB/s. Our program was compiled
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using GCC Version 4.3.1 and optimization level 3 using OpenMPI 1.2.8. Henceforth, a PE is one
core of this machine.

Instances. We report experiments on two suites of instances summarized in Table 1. rggX is a
random geometric graph with 2X nodes where nodes represent random points in the unit square and
edges connect nodes whose Euclidean distance is below 0.55

√
lnn/n. This threshold was choosen

in order to ensure that the graph is almost connected. DelaunayX is the Delaunay triangulation
of 2X random points in the unit square. Graphs bcsstk29 ..fetooth and ferotor ..auto come from
Chris Walshaw’s benchmark archive [28]. Graphs bel , nld , deu and eur are undirected versions of
the road networks of Belgium, the Netherlands, Germany, and Western Europe respectively, used
in [5]. Instances af _shell9 and af _shell10 come from the Florida Sparse Matrix Collection [4].
coAuthorsDBLP , citationCiteseer are examples of social networks taken from [12]. Coordinate
information is available for rggX , DelaunayX , the road networks, bel , nld , deu and eur , and for
the finite element grahs feocean and fetooth.

For the number of partitions k we choose the values used in [28]: 2, 4, 8, 16, 32, 64. Our
default value for the allowed inbalance is 3 % since this is one of the values used in [28] and the

graph n m
rgg17 217 1 457 506
rgg18 218 3 094 566
Delaunay17 217 786 352
Delaunay18 218 1 572 792
bcsstk29 13 992 605 496
4elt 15 606 91 756
fesphere 16 386 98 304
cti 16 840 96 464
memplus 17 758 108 384
cs4 33 499 87 716
pwt 36 519 289 588
bcsstk32 44 609 1 970 092
body 45 087 327 468
t60k 60 005 178 880
wing 62 032 243 088
finan512 74 752 522 240
ferotor 99 617 1 324 862
bel 463 514 1 183 764
nld 893 041 2 279 080
af_shell9 504 855 17 084 020

graph n m
rgg20 220 13 783 240
Delaunay20 220 12 582 744
fetooth 78 136 905 182
598a 110 971 1 483 868
ocean 143 437 819 186
144 144 649 2 148 786
wave 156 317 2 118 662
m14b 214 765 3 358 036
auto 448 695 6 629 222
deu 4 378 446 10 967 174
eur 18 029 721 44 435 372
af_shell10 1 508 065 51 164 260
coAuthorsDBLP 299 067 1 955 352
citationCiteseer 434 102 32 073 440

Table 1: Basic properties of the graphs from our benchmark set. left: small to medium sized
inputs, right: large instances. The latter class is split into five groups: geometric graphs, FEM
graphs, street networks, sparse matrices, and social networks. Within their groups, the graphs are
sorted by size.
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default value in Metis.
When not otherwise mentioned, we perform 10 repetitions of each run and report the average

result. When averaging over multiple instances, we use the geometric mean in order to give every
instance the same influence on the final figure.

6.1 Configuring the Algorithm
Any multilevel algorithm has a considerable number of choices between algorithmic components
and tuning parameters. In the following we explore the most important of these choices. In each
case we will infer either a single “good” setting or two choices: the fast setting aims at a low exe-
cution time that still gives good partitioning quality and the strong setting targets good partitioning
quality without investing an outrageous amount of time. At no point we tune parameters specifi-
cally for one instance. All other parameters are fixed at the default choices. When not otherwise
mentioned, we use the fast parameter setting. For some of the values we do not show experiments
to save space and because the experiments we did try do not give much new insight. Table 2 sum-
marizes the settings. There is also a minimal variant where for all parameters the smallest possible
value is chosen. Although the minimal variant can be viewed as overly crippled, it is useful when
comparing to other, faster solvers.

Edge Ratings. Table 3 shows the average performance for different edge ratings. Note that the
plain edge weight is considerably worse than the other ratings – up to 8.8 %. The other ratings
are fairly close to each other and further experiments indicate that the remaining differences heav-
ily depend on the instances and other parameters of the strategy. We adopt expansion∗2 in the
following.

parameter minimal fast strong
rating expansion∗2

matching GPA
stop contraction n/60k2

init. part. Scotch
init. repeats 1 3 5
queue selection TopGain
BFS search depth 1 5 20
stop refinement - no change 2× no change
max. global iterations 1 15 15
local iterations 1 3 5
matching selection distr. edge coloring
FM-patience α 1 % 5 % 20 %
avg. cut (geom.) 2985 2910 2890
avg. time (geom.)[s] 0.67 1.29 2.10

Table 2: Parameter settings the for our main strategies.
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Edge Rating avg. best. avg. bal. avg. t
expansion∗2 2910 2819 1.025 1.29
expansion∗ 2914 2815 1.025 1.30
innerOuter 2914 2816 1.025 1.32
expansion 2940 2841 1.025 1.31
weight 3165 3010 1.026 1.40

Seq. Match. avg. best. avg. bal. avg. t
gpa 2910 2819 1.025 1.29
shem 2984 2883 1.025 1.29
greedy 3854 3347 1.025 1.78

Table 3: Results for KaPPa-Fast for different edge ratings and matching algorithms.

Sequential Matching Algorithm. In Table 3, we see that the other algorithms have at least
2.5 % worse edge cuts than GPA. Note that the overall running time in both configurations is
about the same – although GPA is slower than SHEM, this disadvantage is offset by less work
in the refinement phase. The greedy algorithm performs worse than the other strategies. This is
astonishing since in [17] it produces fairly good results. Moreover, in the sequential experiments
in [15] it also works well and outperforms SHEM. Apparently, there are some negative interactions
with the parallelization here.

Initial Partitioning. So far, we tried pMetis and Scotch for initial partitioning. pMetis is about
4.7 % worse than Scotch and only has slightly lower overall runtime. We therefore adopt it as our
default initial partitioner.

Queue Selection. Table 4 indicates that TopGain gives about 3.2 % better solutions than the
more standard MaxLoad strategy. Interestingly, the details of the strategy are very important.
Without resolving to MaxLoad in an overloaded situation we would not be able to fulfill the balance
constraint. On the other hand, even using MaxLoad for tie breaking we are already worse than the
seemingly stupid Alternating rule.

Global Iterations, Local Iterations, BFS Depth, and Local Search Parameters. For these
parameters we get the predictable effect that more work yields better solutions albeit at a decreasing
return on investment. It is then hard to say what parameters would be optimal. Roughly, our fast
strategy represents values that yield execution times no more than 20 % larger than for the smallest
possible value. These increases in execution time add up to 63 % more execution time than the fast
strategy on average.

Queue Sel. S. avg. best. bal. avg. t
TopGain 2910 2819 1.025 1.29
Alternate 2942 2839 1.024 1.27
TopgainMaxLoad 2948 2855 1.014 1.22
MaxLoad 3002 2899 1.005 1.34

Variant avg. best. bal. avg. t
KaPPa-Strong 24227 23739 1.028 36.93
KaPPa-Fast 24725 24254 1.028 21.40
KaPPa-Minimal 26720 26005 1.028 5.94
seq. scotch 26811 - 1.027 5.95
kmetis 28705 26904 1.026 0.79
parmetis 31523 30449 1.041 0.59

Table 4: Left: Results for KaPPa-Fast for different queue selection strategies. Right: Comparison
with other tools.
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6.2 Comparison with other Partitioners
We now switch to our suite of larger graphs since thats what KaPPa was designed for and be-
cause we thus avoid the effect of overtuning our algorithm parameters to the instances used for
calibration.

Table 4 compares the performances of KaPPa with Scotch, kMetis (sequential) and parMetis
(parallel). Detailed, per instance results can be found in Appendix A. parMetis produces about 30
% larger cuts than the strong variant of KaPPa, 27 % more than the fast one, and still 18 % more
than the minimal one. Note that this differences are much larger than what can be obtained by just
repeated runs, which gives only about 3 % improvement for 10 repetitions. Moreover parMetis is
not able to fully adhere to the balancing constraint. On the other hand, parMetis is at least an order
of magnitude faster.

For kMetis the differences are 18 %, 16 % and 7% respectively. For Scotch, we get 10 % for
the strong variant, 8 % for the fast variant, and similar partitioning quality as for the weak variant.
Comparing average execution times of parallel KaPPa with the sequential algorithms scotch and
kMetis makes little sense because this depends a lot on the number of PEs used.

Although a large gap between the running times remains, the differences get smaller if one
only considers graphs for which the current implementation of KaPPa was optimized: large graphs
with coordinate information that allows geometric prepartitioning. Table 5 in the appendix shows
data for the four graphs in our benchmark suite that have at least one million nodes and coordinate
information (rgg20 , Delaunay20 , deu, eur ). First note that for the European road network, eur ,
KaPPa produces a several times smaller cut than Metis. Apparently, Metis was not able at all to
discover the structure inherent in the network (e.g., due to waterbodies, mountains, and national
borders). KaPPa-minimal now outperforms Scotch, comes close to kMetis and is only a factor 3–6
slower than parMetis. Also note that the absolute execution times are in the range of a few seconds
– few applications working on such large graphs will work on that time scale. Another interesting
observation is that none of the other algorithms consistently complies with the balance constraint
of 3 %. This is astonishing since these graphs have a very “harmless” structure – they are near
planar (except for rgg) and have low maximum degree). It seems that our approach of careful,
pairwise refinement successfully avoids such problems.

For the largest graphs available to us, we have scaled the number of processors further up to
1024. In Figure 3 we see that KaPPa1 scales well all the way to the largest number of processors,
while parMetis reaches its limit of scalabilty at around 100 PEs. Eventually, parMetis is slower
than the fastest variant of KaPPa.

6.3 The Walshaw Benchmark
We now apply KaPPa to Walshaw’s benchmark archive [28, 24] using the rules used there, i.e.,
running time is no issue but we want to achieve minimal cut values for k ∈ {2, 4, 8, 16, 32, 64} and
balance parameter ε ∈ {0.01, 0.03, 0.05}. Thus, we further strengthen the strong strategy: We try
each of the edge ratings innerOuter, expansion∗, and expansion∗2 50 times; BFS search depth is 20;

1The minimal variant scales up to 512 PEs but this could be repaired by breaking the contraction later.
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Figure 3: Scalability for graphs eur, rgg25, and Delaunay25.

FM patience α = 30 %. Tables 21–23 in the Appendix show the results (left: KaPPa, right: best
previous value) indicating an edge rating function that achieved our result. We obtain 54 improved
entries for balance 5 %, 46 improvements for 3 %, and 31 improvements for balance 1 %. One
interpretation is that the improvement due to the TopGain queue selection strategy become less
effective for very small imbalance. Indeed, for balance 0 TopGain yields no improvements.2 For

2However, the MaxLoad strategy given some slack on the balance constraint, yields good solutions that, for small
k, are often fully balanced and yield improved values.
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11 out of 14 instances from the large graphs we obtain improvements somewhere and for 9 out of
20 small instances (for all but two of the small instances we sometimes find a solution with the best
known cut). The biggest absolute improvement is observed for instance add32 at 1 % imbalance,
and k = 64 where the old partition cuts 45 % more edges. We obtain few improvements for
k = 2, perhaps still lacking specialized techniques for that case. We have many improvements for
k = 4 going down for smaller graphs and larger k. Perhaps this could be changed by combining
KaPPa with evolutionary techniques such as [24]. For large k we expect evolutionary methods to
be superior to plain restarts that then have trouble exploring a sufficient part of the solution space.

7 Related Work
This paper is a summary and extension of the diploma theses [23, 15]. There has been a huge
amount of research on graph partitioning so that we refer to overview papers such as [11, 22, 27]
for a general overview. From now on focus on issues closely related to the contributions of our
paper. All successful methods that are able to obtain good partitions for large real world graphs
are based on the multilevel principle outlined in Section 2. The basic idea can be traced back to
multigrid solvers for solving systems of linear equations [25, 9] but more recent practical methods
are based on mostly graph theoretic aspects in particular edge contraction and local search. Well
known software packages based on this approach include Chaco [13], Jostle [27], Metis [22], Party
[8], and Scotch [19]. While Chaco and Party are no longer developed and have no parallel version,
the others have been parallelized also. Probably the fastest available parallel code is the parallel
version of Metis, parMetis. However, its partitioning quality is worse than the sequential version
kMetis. In general it seems to be the case that previous parallelizations came with a penalty in
partitioning quality. In contrast, our parallelization approach seems to improve partitioning quality.

The parallel version of Jostle [27] is similar to our approach since it applies local search to
pairs of neighboring partitions. However, this parallelization has problems maintaining the balance
of the partitions since at any particular time, it is difficult to say how many nodes are assigned
to a particular block. We solve this problems by performing concurrent local searches only on
independent pairs of partitions.

PT-Scotch, the parallel version of Scotch is based on recursive bipartitioning. This is more dif-
ficult to parallelize than direct k-partitioning since in the initial bipartition, there is less parallelism
available. The unused processor power is used by performing several independent attempts in par-
allel. The involved communication effort is reduced by considering only nodes close to boundary
of the current partitioning (band-refinement). We also use band-refinement but using a different
algorithm and with much less replication of work.

DiBaP [18] is a multi-level graph partitioning package based on diffusion. It currently yields
the best partitioning results for the biggest graphs in [26] but has no scalable parallelization.

Most previous approaches use the edge weight to quantify with which preference it is included
into a matching. In [1], many different edge ratings are considered. However all of them use a
very simple rating as the primary sorting criterion. In contrast, our approach genuinely combines
the two sometimes conflicting criteria of contracting heavy edges and light vertices.

The need for fast, (near) linear time algorithms for approximate weighted matchings in
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hierarchical graph partitioning has been a major motivation for developing such algorithms
[21, 7, 6, 20, 17]. In contrast to the heavy edge matching algorithms used in most systems, these
schemes give approximation guarantees of 1/2 [21, 7] or 2/3 [6, 20]. In [17] we developed another
1/2 algorithm that turned out to be even better than the 2/3 algorithms in many practical cases.
Interestingly, only few of these results have so far found their way into actual graph partitioners.
One contribution of our paper is to try them out.

8 Conclusions and Future Work
We have demonstrated that high quality graph partitioning can be done in parallel in a scalable way.
This success is due to several innovations/observations that might also work in the framework
of other graph partitioning and graph clustering systems: Edge rating functions that take into
account other aspects than edge weight give considerably better results (8.8 % on the average for
the experiments in Section 6.1). In particular, it seems that discouraging heavy nodes leads to much
more uniform contraction all over the graph. High quality matching algorithms like GPA also yield
a few percent improvement. In particular, the computational overhead for these algorithms is not
affecting the overall runtime of a high quality graph partitioner, presumably because of less work
in the refinement phase. FM-style local search can also yield improved quality if the highest gain
queue is selected if possible. Feasibility can be maintained using an exception for overloaded
blocks. Again, a few percent improvement in solution quality can be obtained. Perhaps the most
surprising result is that localizing the local search to two blocks at a time does at the same time
enable parallelization and improve partitioning quality compared to global local search. Although
the individual improvement due to each improvement is relatively small, they add up to a sizable
overall improvement. Also note that within a less tuned system, adding one of the improvements
may have a larger effect than in a code with all improvments at once.

The current implementation of KaPPa is a research prototype rather than a widely usable tool.
But considering its good results, we want to further improve it and advance it into a fully usable
system usable for all kinds of inputs ranging from small graphs better handled by a lean sequential
implementation to huge graphs with billions of nodes.

Besides many implementation issues that will hopefully improve execution time, the main
conceptual task will be a generalization of the interface. We want a system where the number of
partitioning PEs P and the number of blocks k can be chosen independently. This is rather straight
forward when k > P since this actually increases the amount of parallelism. For k < P , we could
simply assign more PEs to the same local search (using different seeds). This would improve qual-
ity but reduces scalability and will not work for huge graphs where block sizes may exceed local
memory size. Therefore, we need a parallel refinement algorithm working on only two neighbor-
ing blocks. We also want to improve performance for graphs that are neither prepartitioned nor
equipped with coordinates. The easiest solution for moderate P will be to use parMetis for initial
partitioning. For very large systems we want to develop a very fast prepartitioner that works purely
graph theoretically. A core component will be fast scalable parallel contraction. There will also be
further issues when KaPPa is generalized for graph clustering, hypergraph partitioning, or repar-
titioning. Besides improving the functionality of KaPPa, there are also many ways to improve its
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basic performance. In particular, it would be desirable to implement a more efficient representation
of the distributed graph data structure.

Besides improving functionality of KaPPa, many interesting research questions remain. For
example, one should investigate rating functions for edge contraction more systematically. Other
refinement algorithms, e.g., based on flows or diffusion could be tried within our framework of
pairwise refinement.
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A Detailed Results for the Large Instances.

alg. k graph avg. cut best. cut. avg. balance avg. runtime
KaPPa-strong 64 rgg20 35354 34778 1.030 11.62
KaPPa-strong 64 Delaunay20 25179 24799 1.030 22.04
KaPPa-strong 64 deu 4093 4021 1.029 49.55
KaPPa-strong 64 eur 5393 5290 1.030 308.17
KaPPa-fast 64 rgg20 35539 35086 1.030 9.95
KaPPa-fast 64 Delaunay20 25129 24946 1.030 12.83
KaPPa-fast 64 deu 4146 4078 1.029 31.63
KaPPa-fast 64 eur 5538 5448 1.030 183.98
KaPPa-minimal 64 rgg20 35629 35252 1.030 2.09
KaPPa-minimal 64 Delaunay20 27001 26314 1.029 1.79
KaPPa-minimal 64 deu 4317 4193 1.029 5.97
KaPPa-minimal 64 eur 5770 5569 1.029 29.64
Scotch 64 rgg20 38815 38815 1.031 9.84
Scotch 64 Delaunay20 26163 26163 1.037 7.36
Scotch 64 deu 4978 4978 1.028 19.52
Scotch 64 eur 6772 6772 1.031 77.41
kMetis 64 rgg20 42465 41066 1.030 1.58
kMetis 64 Delaunay20 28543 28318 1.030 1.21
kMetis 64 deu 5385 5147 1.029 5.31
kMetis 64 eur 12738 11313 1.070 30.30
parMetis 64 rgg20 43545 42863 1.050 0.55
parMetis 64 Delaunay20 30321 29535 1.047 0.65
parMetis 64 deu 7273 7083 1.027 0.91
parMetis 64 eur 16427 14976 1.025 5.65

Table 5: Performance for the largest graphs with coordinate information.
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graph avg. cut best. cut. avg. balance avg. runtime
rgg20 15442 15039 1.029 7.20
Delaunay20 11533 11307 1.028 6.31
fetooth 19813 19559 1.029 0.65
598a 28596 27983 1.030 6.76
feocean 9553 9457 1.029 0.70
144 41977 40264 1.030 6.63
wave 47270 46293 1.029 1.47
m14b 49397 48769 1.030 6.41
auto 86001 84236 1.030 12.25
deu 1656 1593 1.029 21.79
eur 2048 1931 1.026 94.56
afshell10 175918 174677 1.029 17.00
coAuthorsDBLP 163463 161842 1.030 9.99
citationCiteseer 254914 253359 1.030 20.07

Table 6: KaPPa-Minimal k = 16

graph avg. cut best. cut. avg. balance avg. runtime
rgg20 24164 23842 1.029 3.94
Delaunay20 18179 17993 1.029 3.33
fetooth 28391 28070 1.030 0.53
598a 43741 43111 1.030 7.74
feocean 15657 15465 1.030 0.47
144 62171 61774 1.030 8.79
wave 68620 68085 1.030 1.02
m14b 73598 72484 1.030 8.12
auto 133723 131545 1.030 20.23
deu 2711 2626 1.029 11.50
eur 3386 3202 1.029 55.63
afshell10 275149 270249 1.030 9.25
coAuthorsDBLP 172830 171784 1.030 8.57
citationCiteseer 285710 278587 1.030 19.83

Table 7: KaPPa-Minimal k = 32
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graph avg. cut best. cut. avg. balance avg. runtime
rgg20 35629 35252 1.030 2.09
Delaunay20 27001 26314 1.029 1.79
fetooth 39095 38423 1.029 0.62
598a 61924 61396 1.029 6.21
feocean 24275 24147 1.030 0.51
144 86950 86067 1.030 8.16
wave 93424 92366 1.030 1.03
m14b 107173 106361 1.030 10.24
auto 187424 185836 1.030 25.39
deu 4317 4193 1.029 5.97
eur 5770 5569 1.029 29.64
afshell10 404085 400378 1.030 4.82
coAuthorsDBLP 180724 180059 1.030 15.82
citationCiteseer 315062 313465 1.030 22.86

Table 8: KaPPa-Minimal k = 64

graph avg. cut best. cut. avg. balance avg. runtime
rgg20 15339 15013 1.029 24.61
Delaunay20 11061 10882 1.029 48.05
fetooth 18524 18198 1.030 3.55
598a 26887 26670 1.030 12.51
feocean 8469 8294 1.030 3.04
144 39492 39266 1.030 17.53
wave 45202 44936 1.030 10.73
m14b 46108 45931 1.030 19.27
auto 80683 79711 1.030 58.20
deu 1618 1556 1.027 78.82
eur 1935 1907 1.028 295.81
afshell10 166480 165625 1.030 69.97
coAuthorsDBLP 150272 149302 1.030 66.47
citationCiteseer 203302 198450 1.030 85.02

Table 9: KaPPa-Fast k = 16
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graph avg. cut best. cut. avg. balance avg. runtime
rgg20 24222 23383 1.030 16.93
Delaunay20 17150 16814 1.030 24.44
fetooth 26677 26404 1.030 2.92
598a 41186 40928 1.030 11.91
feocean 14042 13618 1.030 2.15
144 58652 58175 1.030 16.03
wave 64532 64004 1.030 8.19
m14b 69223 68715 1.030 17.99
auto 125876 124920 1.030 46.44
deu 2641 2535 1.029 41.93
eur 3314 3231 1.030 306.52
afshell10 255746 252487 1.030 52.00
coAuthorsDBLP 163767 162577 1.030 58.93
citationCiteseer 233459 229629 1.030 83.14

Table 10: KaPPa-Fast k = 32

graph avg. cut best. cut. avg. balance avg. runtime
rgg20 35539 35086 1.030 9.95
Delaunay20 25129 24946 1.030 12.83
fetooth 36992 36795 1.029 2.57
598a 59233 59026 1.029 9.64
feocean 21973 21809 1.030 2.02
144 82493 82029 1.030 12.05
wave 89297 88924 1.030 6.09
m14b 101861 101410 1.030 17.46
auto 178119 177461 1.030 44.14
deu 4146 4078 1.029 31.63
eur 5538 5448 1.030 183.98
afshell10 384140 380225 1.030 29.43
coAuthorsDBLP 174411 173629 1.030 65.76
citationCiteseer 269854 268188 1.030 86.06

Table 11: KaPPa-Fast k = 64
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graph avg. cut best. cut. avg. balance avg. runtime
rgg20 15199 14953 1.029 35.86
Delaunay20 11008 10816 1.027 67.92
fetooth 18570 18302 1.030 7.18
598a 26825 26467 1.030 17.74
feocean 8350 8188 1.030 5.62
144 39319 39010 1.030 26.04
wave 45048 44831 1.030 20.54
m14b 45762 45352 1.030 28.11
auto 79769 78713 1.030 87.41
deu 1616 1550 1.027 105.96
eur 1900 1760 1.027 497.93
afshell10 166427 165025 1.030 106.63
coAuthorsDBLP 145975 145031 1.030 105.61
citationCiteseer 176690 171233 1.030 142.01

Table 12: KaPPa-Strong k = 16

graph avg. cut best. cut. avg. balance avg. runtime
rgg20 23917 23430 1.029 26.04
Delaunay20 17086 16813 1.030 42.67
fetooth 26617 26397 1.030 5.28
598a 41190 40946 1.030 18.16
feocean 13815 13593 1.030 4.34
144 58631 58331 1.030 24.60
wave 64390 63981 1.030 14.94
m14b 69075 68107 1.030 29.94
auto 125500 124606 1.030 71.77
deu 2615 2548 1.029 73.17
eur 3291 3186 1.029 417.52
afshell10 255535 253525 1.030 80.85
coAuthorsDBLP 161073 160225 1.030 106.63
citationCiteseer 207559 203989 1.030 140.53

Table 13: KaPPa-Strong k = 32
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graph avg. cut best. cut. avg. balance avg. runtime
rgg20 35354 34778 1.030 11.62
Delaunay20 25179 24799 1.030 22.04
fetooth 37002 36862 1.029 4.71
598a 59387 59148 1.029 14.15
feocean 21859 21636 1.030 3.68
144 82452 82286 1.030 19.11
wave 88964 88376 1.030 12.51
m14b 101455 101053 1.030 25.26
auto 177595 177038 1.030 62.64
deu 4093 4021 1.029 49.55
eur 5393 5290 1.030 308.17
afshell10 382923 379125 1.030 43.01
coAuthorsDBLP 172132 171194 1.030 111.90
citationCiteseer 249544 246150 1.030 146.65

Table 14: KaPPa-Strong k = 64

graph avg. cut best. cut. avg. balance avg. runtime
rgg20 18125 17498 1.021 1.53
Delaunay20 12440 11854 1.016 1.14
fetooth 20386 20035 1.029 0.09
598a 28854 27857 1.030 0.17
feocean 10377 10115 1.029 0.13
144 43041 42861 1.030 0.24
wave 49000 48404 1.030 0.22
m14b 49269 48314 1.029 0.36
auto 89139 85562 1.030 0.91
deu 2161 2041 1.007 5.19
eur 9395 3519 1.030 30.58
afshell10 188765 184350 1.014 3.06
coAuthorsDBLP 139658 138334 1.031 0.98
citationCiteseer 157011 153588 1.031 1.05

Table 15: KMetis k = 16
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graph avg. cut best. cut. avg. balance avg. runtime
rgg20 18760 18193 1.048 0.39
Delaunay20 13126 12806 1.043 0.35
fetooth 20686 20255 1.046 0.06
598a 29858 29308 1.047 0.17
feocean 10212 9951 1.043 0.06
144 43019 41841 1.050 0.19
wave 49981 49537 1.048 0.09
m14b 49621 47697 1.048 0.28
auto 87057 84900 1.047 0.54
deu 3166 3063 1.009 1.62
eur 6861 5576 1.073 12.85
afshell10 191995 189925 1.048 0.74
coAuthorsDBLP 193580 190892 1.044 1.44
citationCiteseer 197095 197095 1.047 1.41

Table 16: parMetis k = 16

graph avg. cut best. cut. avg. balance avg. runtime
rgg20 28495 27765 1.029 1.58
Delaunay20 19304 18816 1.029 1.18
fetooth 29052 28547 1.030 0.10
598a 44213 43256 1.030 0.19
feocean 16877 16565 1.030 0.15
144 62481 61716 1.030 0.26
wave 68604 68062 1.030 0.25
m14b 74135 72746 1.030 0.40
auto 134086 133026 1.030 0.99
deu 3445 3319 1.019 5.28
eur 9442 7424 1.078 30.81
afshell10 291590 289400 1.027 3.13
coAuthorsDBLP 160373 159032 1.030 1.19
citationCiteseer 201073 197839 1.031 1.19

Table 17: KMetis k = 32
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graph avg. cut best. cut. avg. balance avg. runtime
rgg20 29227 28650 1.049 0.22
Delaunay20 20141 19803 1.045 0.21
fetooth 28790 28513 1.043 0.07
598a 44422 43968 1.046 0.49
feocean 16259 16010 1.040 0.05
144 62673 62244 1.049 0.51
wave 70365 70072 1.048 0.15
m14b 76447 75356 1.049 0.52
auto 137913 137047 1.047 0.70
deu 4858 4703 1.034 0.87
eur 9616 8366 1.072 7.22
afshell10 293110 289275 1.048 0.35
coAuthorsDBLP 211756 209846 1.046 1.59
citationCiteseer 212524 212524 1.050 1.56

Table 18: parMetis k = 32

graph avg. cut best. cut. avg. balance avg. runtime
rgg20 42465 41066 1.030 1.58
Delaunay20 28543 28318 1.030 1.21
fetooth 39381 39233 1.030 0.12
598a 62703 61888 1.030 0.22
feocean 24531 24198 1.030 0.17
144 87208 86534 1.030 0.30
wave 94083 92148 1.030 0.29
m14b 108141 107384 1.031 0.44
auto 189699 188555 1.030 1.08
deu 5385 5147 1.029 5.31
eur 12738 11313 1.070 30.30
afshell10 427047 421285 1.030 3.18
coAuthorsDBLP 176485 174402 1.033 1.42
citationCiteseer 244330 242677 1.033 1.41

Table 19: KMetis k = 64
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graph avg. cut best. cut. avg. balance avg. runtime
rgg20 43545 42863 1.050 0.55
Delaunay20 30321 29535 1.047 0.65
fetooth 39477 38790 1.047 0.56
598a 63688 62936 1.047 1.82
feocean 26249 25912 1.039 0.12
144 87967 87163 1.047 1.58
wave 95758 94605 1.049 0.44
m14b 108546 107125 1.049 1.98
auto 194958 192198 1.047 1.69
deu 7273 7083 1.027 0.91
eur 16427 14976 1.025 5.65
afshell10 435995 433525 1.049 0.20
coAuthorsDBLP 218798 217403 1.050 2.32
citationCiteseer 219850 219850 1.046 2.32

Table 20: parMetis k = 64
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Graph 2 4 8 16 32 64
3elt ** 90 89 + 201 199 * 354 342 * 597 569 * 1008 969 * 1629 1564
add20 * 618 594 * 1190 1177 * 1752 1704 + 2141 2121 * 2594 2687 * 3082 3236
data + 191 188 * 383 383 * 664 660 ** 1169 1162 * 1912 1865 * 2949 2885
uk * 20 19 + 44 42 * 88 84 + 159 152 * 273 258 ** 445 438
add32 ** 10 10 ** 33 33 ** 66 66 + 124 117 + 223 212 * 495 720
bcsstk33 ** 10169 10097 * 21800 21508 ** 34560 34178 * 56639 54860 * 80237 78132 + 111075 108505
whitaker3 * 127 126 * 383 380 + 668 656 ** 1150 1093 ** 1754 1717 ** 2676 2567
crack ** 184 183 * 370 362 * 694 678 ** 1160 1092 + 1815 1707 + 2717 2566
wingnodal * 1710 1696 ** 3626 3572 ** 5588 5443 ** 8566 8422 * 12384 11980 + 16716 16134
fe4elt2 ** 130 130 * 349 349 + 616 605 ** 1032 1014 + 1694 1657 * 2640 2537
vibrobox * 11308 10310 + 19249 19199 + 24923 24553 + 34505 32167 ** 42432 41399 ** 51229 49521
bcsstk29 ** 2853 2818 ** 8156 8379 * 14813 13965 * 23914 21768 * 37309 34886 + 58987 57054
4elt ** 139 138 ** 329 321 ** 555 534 ** 989 939 * 1639 1559 ** 2718 2596
fesphere ** 386 386 * 794 768 ** 1215 1152 * 1881 1730 * 2745 2565 + 3968 3663
cti ** 334 318 * 973 944 * 1836 1802 ** 2990 2906 * 4375 4223 * 6346 5875
memplus ** 5712 5489 * 9562 9584 ** 12190 11785 * 13908 13241 * 15587 14489 + 17381 17063
cs4 + 389 367 * 1003 940 + 1568 1470 ** 2302 2206 * 3228 3090 * 4458 4169
bcsstk30 ** 6391 6335 + 16651 16622 * 35037 34604 * 73118 71234 * 119316 115770 * 180243 173945
bcsstk31 + 2769 2701 * 7512 7444 ** 13608 13417 * 24821 24277 ** 39455 38086 ** 61327 60528
fepwt ** 342 340 ** 712 705 ** 1454 1442 * 2844 2806 * 5637 5758 ** 8648 8454
bcsstk32 * 4667 4667 * 9440 9538 * 21800 21490 ** 37701 37673 * 63382 61144 * 98842 95199
febody + 266 262 * 649 671 * 1100 1156 * 1910 1931 * 3106 3202 * 5212 5282
t60k * 84 75 * 220 211 * 483 465 + 891 849 * 1466 1391 ** 2297 2211
wing * 851 787 * 1793 1666 * 2720 2589 * 4203 4131 * 6217 5902 + 8534 8132
brack2 ** 731 708 * 3121 3038 * 7363 7269 ** 12177 11983 ** 18236 17798 * 27442 26557
finan512 ** 162 162 * 324 324 * 648 648 ** 1296 1296 * 2592 2592 ** 10862 10560
fetooth * 3893 3823 * 7096 7103 * 11953 12060 + 18227 18283 * 26517 25977 + 37079 35980
ferotor + 2103 2045 ** 7461 7694 ** 13283 13165 + 21249 20773 ** 33266 32783 ** 49079 47461
598a * 2426 2388 * 8131 8197 * 16491 16594 * 26838 27009 ** 40471 40962 * 59445 59098
feocean ** 468 387 * 1914 1878 + 4270 4538 * 8447 8507 + 13673 13767 ** 21774 21854
144 * 6604 6479 * 16162 15345 ** 26266 25818 * 39195 39352 * 58702 58126 * 82904 81145
wave * 8812 8682 ** 17616 17950 + 30375 31697 + 44783 44711 + 64646 64860 * 89332 88863
m14b * 3871 3826 ** 13296 13403 * 26657 27066 * 44013 44330 * 69072 67770 + 102393 101551
auto + 10329 10042 * 28051 27790 * 47321 48442 * 79741 81339 * 126146 124991 ** 179095 175975

Table 21: Walshaw Benchmark with ε = 1 %. * Expansion∗, ** Expansion∗2, + InnerOuter.
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Graph 2 4 8 16 32 64
3elt ** 87 87 + 200 198 * 343 336 + 584 565 * 1010 958 + 1622 1542
add20 + 619 576 * 1179 1158 ** 1790 1690 + 2161 2095 ** 2559 2493 +3058 3152
data + 193 185 ** 380 378 + 665 650 ** 1157 1133 ** 1912 1802 * 2936 2809
uk ** 18 18 + 42 40 ** 82 81 * 151 148 * 265 251 ** 440 414
add32 + 10 10 **33 33 ** 66 66 + 124 117 + 222 212 * 494 624
bcsstk33 + 10064 10064 ** 21195 21035 + 34386 34078 ** 56262 54510 ** 80001 77672 + 110822 107012
whitaker3 + 126 126 ** 384 378 ** 665 655 + 1138 1092 * 1753 1686 + 2655 2535
crack + 182 182 * 360 360 * 678 676 + 1126 1082 * 1782 1679 + 2670 2553
wingnodal ** 1682 1680 * 3565 3566 + 5430 5401 + 8451 8316 * 12277 11938 + 16702 15971
fe4elt2 + 130 130 + 349 343 ** 608 598 ** 1015 1007 ** 1681 1633 ** 2617 2527
vibrobox ** 11188 10310 ** 19107 18778 ** 24531 24171 + 34189 31516 * 42650 39592 + 50183 49123
bcsstk29 +2818 2818 * 8153 8045 + 14437 13817 + 23532 21410 ** 37015 34407 + 58738 55366
4elt + 138 137 ** 320 319 + 536 523 + 953 914 * 1624 1537 + 2715 2581
fesphere + 384 384 * 796 764 + 1217 1152 * 1851 1706 * 2719 2477 * 3767 3547
cti + 318 318 ** 927 917 * 1773 1716 * 2895 2778 * 4263 4132 * 6207 5763
memplus + 5532 5355 * 9953 9418 + 12239 11628 + 13755 13237 * 15432 14350 + 17870 17002
cs4 + 383 362 * 1001 936 ** 1542 1470 + 2237 2126 + 3164 3048 * 4397 4169
bcsstk30 + 6251 6251 *16528 16577 ** 34505 34559 * 72618 70278 * 118106 114005 + 179278 171727
bcsstk31 + 2676 2676 **7209 7258 * 13253 13246 * 24365 23504 * 38817 37459 ** 60577 58667
fepwt + 340 340 + 705 704 + 1418 1421 * 2789 2784 + 5603 5606 ** 8630 8346
bcsstk32 + 4667 4667 + 8805 9533 + 20992 21307 + 36628 37204 * 62639 59824 ** 97535 92690
febody + 265 262 * 613 668 * 1055 1094 * 1798 1903 + 2928 3086 * 4997 5212
t60k + 74 71 * 211 207 * 470 454 * 875 822 + 1443 1391 ** 2272 2198
wing ** 840 774 * 1761 1636 * 2661 2551 ** 4144 4015 * 6107 5832 ** 8340 8043
brack2 685 684 * 2840 2864 * 7105 6994 * 11687 11741 * 17815 17649 + 26755 26366
finan512 + 162 162 + 324 324 + 648 648 * 1296 1296 * 2592 2592 ** 10944 10560
fetooth * 3807 3792 + 6947 7081 * 11562 11957 * 17678 18093 * 25884 25624 * 36178 35830
ferotor ** 1964 1965 + 7263 7636 ** 12798 12862 + 20404 20521 + 32155 31763 * 47808 47049
598a * 2373 2367 * 7963 7978 * 16079 16031 * 25960 26257 ** 39792 40718 58430 58454
feocean + 311 311 + 1706 1704 * 3976 4019 ** 8004 7838 ** 13196 12746 * 21060 21854
144 + 6512 6438 + 15555 15250 ** 25529 25611 ** 38701 38478 ** 57561 57354 * 80981 80767
wave * 8699 8616 * 16947 17407 ** 29022 29776 * 43168 43791 + 62766 63675 + 87272 87957
m14b * 3833 3823 * 13131 13285 * 26044 26153 * 42942 43962 * 67272 67551 + 100112 101019
auto ** 9806 9782 + 26343 26509 ** 45703 48263 ** 77461 80495 * 123442 124251 ** 175520 174904

Table 22: Walshaw Benchmark with ε = 3 %. * Expansion∗, ** Expansion∗2, + InnerOuter.
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Graph 2 4 8 16 32 64
3elt ** 87 87 ** 199 197 + 339 330 + 581 560 ** 1001 950 ** 1615 1539
add20 ** 579 550 ** 1179 1157 + 1744 1675 + 2150 2081 * 2560 2463 + 3054 3152
data * 188 181 ** 374 368 ** 650 628 + 1147 1086 * 1888 1777 + 2910 2798
uk ** 18 18 + 41 40 ** 81 78 + 152 139 ** 262 246 + 437 410
add32 ** 10 10 ** 33 33 ** 66 65 + 124 117 + 222 212 ** 494 624
bcsstk33 ** 9914 9914 * 20614 20584 + 34190 33938 ** 55868 54323 + 79530 77163 * 110822 106886
whitaker3 ** 126 126 ** 382 378 ** 665 650 * 1130 1084 * 1737 1686 + 2655 2535
crack ** 182 182 ** 360 360 ** 679 667 + 1122 1080 * 1755 1679 + 2651 2548
wingnodal * 1676 1668 * 3545 3536 + 5376 5350 + 8388 8316 ** 12252 11879 ** 16595 15873
fe4elt2 ** 130 130 ** 349 335 * 599 583 ** 1015 991 ** 1660 1633 + 2609 2516
vibrobox ** 11188 10310 ** 18958 18778 * 24121 23930 * 33760 31235 ** 42269 39592 + 49552 48200
bcsstk29 ** 2818 2818 + 8055 7942 * 14009 13614 + 23131 20924 ** 36633 33818 * 58183 54935
4elt ** 137 137 * 319 315 * 526 516 ** 946 902 * 1590 1532 * 2675 2565
fesphere ** 384 384 ** 784 764 + 1217 1152 * 1840 1692 ** 2709 2477 + 3945 3547
cti ** 318 318 + 891 897 * 1737 1716 ** 2885 2725 * 4242 4037 + 6010 5684
memplus ** 5528 5267 + 9489 9299 ** 12091 11555 + 13701 13078 ** 15362 14249 + 17632 16662
cs4 * 373 356 * 990 936 ** 1542 1470 + 2237 2126 * 3141 2995 ** 4364 4116
bcsstk30 ** 6251 6251 ** 16316 16417 ** 34391 34559 + 72087 70043 ** 117512 113321 ** 177303 170591
bcsstk31 ** 2676 2676 ** 7118 7223 * 13104 13058 + 24062 23254 ** 38279 37459 ** 60257 57534
fepwt ** 340 340 ** 700 704 ** 1406 1411 + 2773 2778 + 5525 5606 + 8582 8310
bcsstk32 ** 4667 4667 + 8539 9052 ** 20568 20099 + 35962 35990 ** 61021 59824 ** 96032 91006
febody ** 263 262 * 599 629 * 1055 1072 * 1786 1815 + 2863 3086 + 4897 5043
t60k ** 69 65 + 206 196 * 469 454 * 865 818 ** 1436 1376 ** 2263 2168
wing + 826 770 ** 1734 1636 * 2632 2551 * 4106 4015 * 6063 5806 + 8300 7991
brack2 ** 660 660 ** 2739 2755 * 6776 6883 + 11557 11558 * 17617 17529 + 26555 26281
finan512 ** 162 162 ** 324 324 ** 648 648 * 1296 1296 ** 2592 2592 ** 10909 10560
fetooth ** 3785 3773 * 6863 7027 + 11498 11957 * 17509 18090 * 25641 25624 + 35795 35476
ferotor ** 1955 1957 + 7031 7520 * 12643 12678 ** 20098 20263 + 31611 31576 + 47186 46608
598a ** 2344 2336 + 7837 7978 ** 15794 16031 * 25782 26257 ** 39478 40179 ** 58180 58307
feocean ** 311 311 ** 1688 1704 * 3952 4019 + 7671 7838 + 12953 12746 + 20660 21784
144 * 6502 6362 + 15313 15250 ** 25529 25611 + 38182 38478 + 57202 57354 + 80653 80257
wave ** 8613 8563 + 16780 17306 + 28753 29776 + 42810 43791 ** 62382 63675 ** 86867 87654
m14b ** 3844 3802 * 13124 13285 ** 25701 26153 + 42644 43747 * 66845 67551 + 99460 100183
auto * 9587 9450 + 25805 26097 ** 44915 48174 + 76500 80495 ** 121988 124251 ** 174173 174904

Table 23: Walshaw Benchmark with ε = 5 %. * Expansion∗, ** Expansion∗2, + InnerOuter.
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