
UC Davis
IDAV Publications

Title
Multi-GPU MapReduce on GPU Clusters

Permalink
https://escholarship.org/uc/item/5rw127tw

Authors
Stuart, Jeff A.
Owens, John D.

Publication Date
2011

DOI
10.1109/IPDPS.2011.102

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5rw127tw
https://escholarship.org
http://www.cdlib.org/

Multi-GPU MapReduce on GPU Clusters

Jeff A. Stuart
Department of Computer Science
University of California, Davis

stuart@cs.ucdavis.edu

John D. Owens
Department of Electrical and Computer Engineering

University of California, Davis
jowens@ece.ucdavis.edu

Abstract

We present GPMR, our stand-alone MapReduce li-
brary that leverages the power of GPU clusters for
large-scale computing. To better utilize the GPU, we
modify MapReduce by combining large amounts of
map and reduce items into chunks and using partial
reductions and accumulation. We use persistent map
and reduce tasks and stress aspects of GPMR with
a set of standard MapReduce benchmarks. We run
these benchmarks on a GPU cluster and achieve
desirable speedup and efficiency for all benchmarks.
We compare our implementation to the current-best
GPU-MapReduce library (runs only on a solo GPU)
and a highly-optimized multi-core MapReduce to show
the power of GPMR. We demonstrate how typical
MapReduce tasks are easily modified to fit into GPMR
and leverage a GPU cluster. We highlight how total
and relative amounts of communication affect GPMR.
We conclude with an exposition on the types of MapRe-
duce tasks well-suited to GPMR, and why some tasks
need more modifications than others to work well with
GPMR.

1. Intro

While the performance of single-core CPUs has stag-
nated [1], both the programmability and performance
of the graphics processor (GPU) have increased dra-
matically in recent years, with a broad variety of
applications demonstrating order-of-magnitude gains
in both performance and price-performance. GPUs
particularly excel at the throughput-oriented workloads
that are characteristic of scientific computation and
large-scale server applications.

However, programmers and scientists focus most of
their efforts on single-GPU development, neglecting
the domain of GPU clusters. GPUs have yet to ef-

fectively tackle problems of true scale and we see
two primary reasons for this: programming multi-
GPU clusters is non-trivial and lacks powerful toolsets
and APIs, and the GPU is often treated as a slave
device in most GPU-computing applications. We tend
to implement large-scale problems on CPU clusters
and develop powerful toolsets and APIs for multiple
CPUs. One such toolset is the large-dataset processing
model called MapReduce [2], first developed at Google
and widely used both at Google and elsewhere.

MapReduce makes programming clusters easier via a
high-level model that puts the focus on the problem
and not the mundane details inherent to distributed
applications (e.g. communication, resource allocation).
And while MapReduce targets data-parallel problems,
it also performs well on other large-scale tasks. This
has resulted in interest in developing new algorithms
within the MapReduce programming model, as well as
porting algorithms to fit MapReduce.

As with MapReduce, data-parallel processing is han-
dled well by GPUs, even a GPU cluster. But existing
GPU-MapReduce work only targets solo GPUs, and
only in-core algorithms. We show how to implement
MapReduce on a GPU cluster and hope to open GPU
computing to larger application domains.

Implementing MapReduce on a cluster of GPUs poses
several challenges. First, multi-GPU communication is
difficult as GPUs cannot source or sink network I/O;
thus supporting dynamic and efficient communication
across many GPUs is hard. Second, GPUs do not
have inherent out-of-core support and virtual memory.
Third, a naive GPU-MapReduce implementation ab-
stracts away the compututational resources of the GPU
and possible optimizations. Finally, the MapReduce
model does not explicitly handle the system architec-
ture inherent with GPUs.

Our library, GPU MapReduce (GPMR for short, pro-
nounced G-Primer), specifically tackles these chal-

lenges: data movement, out-of-core data management,
and maintaining full GPU access, as well as modifying
MapReduce to be more natural and efficient on GPUs.
However, GPMR specifically targets the MapReduce
programming model, not a fully-featured MapReduce
implementation - GPMR is stand-alone and does not
sit atop Hadoop or another MapReduce package. In
particular, it does not handle fault tolerance, and it
does not provide a distributed file system (it is storage
agnostic). Within the model, though, we implement
specific extensions for the GPU, including batching
Maps and Reduces via Chunking to maintain GPU
utilization, adding Accumulation to the Map substage,
adding a Partial Reduction substage, handling out-of-
core datasets, and assembling the MapReduce pipeline
to achieve a high overlap of communication and com-
putation. We evaluate our library not only on problems
that scale well but also on problems with significant
scalability challenges; these are presented in Section 5.

2. Background

In this section, we present an overview of the GPU as
well as a background on MapReduce.

2.1. The GPU and CUDA

The GPU is a many-core machine with multiple
SIMD multiprocessors (SM) that can run thousands of
concurrent threads. GPMR leverages CUDA [3] and
we use its terminology to describe the GPU. Up to
512 GPU threads are grouped into scheduling units
(blocks). Within a block, threads are grouped into 32-
wide SIMD execution units (warps). An SM can keep
many blocks resident at once, but only executes one
warp’s threads in lockstep at a time. Context switch-
ing between warps (even from different blocks) has
negligible overhead, allowing the GPU to hide long-
latency operations. An SM has thousands of registers
and kilobytes of scratchpad memory (shared memory).
Registers are tied to specific threads, so shared memory
is used for thread communication. Nickolls et al. [3]
has a more extensive discussion of CUDA and how it
maps to the GPU.

Kirk and Hwu’s book [4] outlines techniques for
efficient GPU programs, three of which we summarize
here. Efficient programs require many threads and
blocks to keep the GPU full, but each block should use
few resources to allow many blocks to remain simul-
taneously resident on an SM. Memory accesses from

a warp are most efficient when accessing consecutive
addresses in memory (called coalescing). And because
the transfer cost between CPU and GPU is high, and
even the cost of memory accesses on the GPU is high
compared to the cost of arithmetic operations, efficient
programs must perform a lot of work per data element
to amortize memory-transfer costs.

GPMR also leverages the “CUDA Data-Parallel Prim-
itives” library [5], specifically its scan [6] and sort [7]
primitives. Using CUDPP, we were able to design
GPMR more easily and focus on the API since CUDPP
handles many of the difficult aspects.

2.2. MapReduce

MapReduce is a programming model that combines
two separate higher-order functions in functional-
programming languages, map and reduce (also known
as fold). Programmers specify map and reduce func-
tions. The input to map is a set of data items; each
map invocation outputs a sequence of independent key-
value pairs. All like-keyed values are grouped together
and passed to a reduce function which processes them
to output a sequence of new values.

Google’s MapReduce implementation was built for
large-scale data processing, large data sets are input
to many mapping nodes. Intermediate data is streamed
back out to buffer cache, partitioned, and sent to pro-
cessing nodes to be reduced. Google uses MapReduce
for much of its internal data processing, and because
of its success Google popularized MapReduce with
industry and academia. Since that time, developers
and researchers have created many MapReduce pack-
ages. We compare GPMR to two popular packages,
Phoenix [8] (C++), and Mars [9] (CUDA).

i-MapReduce [10] (previously CGL MapReduce) is
another MapReduce package, and potentially the first
to use data streams instead of hard disk access.
Intermediate data values and reduction results are
streamed directly to new mapper and reducer nodes
for further processing. This allows for an efficient,
iterative MapReduce algorithm with many consecutive
MapReduce processes.

Recent efforts have gone towards porting MapReduce
to parallel processors like GPUs and IBM’s Cell.
Catanzaro et al. created a single-node library for
GPUs [11] but the focus was on many small tasks;
the main contribution was creating an efficient small-
sequence sort on the GPU. Mars was the first large-
scale GPU system, though its scalability is limited; it

uses only one GPU and in-GPU-core tasks. Another
shortcoming is that the library, not the user, schedules
threads and blocks, making it hard to fully exploit
certain GPU capabilities (e.g. inter-block communica-
tion). MapCG [12] is another GPU-based MapReduce
library. The main goal was to allow for portable
multicore MapReduce code that could run on the GPU.
Like Mars, MapCG only offers limited scalability as it
uses but one GPU.

CellMR [13] is a single-node implementation of
MapReduce on the Cell Engine that alleviates the
in-core dilemma of Mars by streaming map data in
small pieces. CellMR divides the traditional map-
reduce pipeline into three successive steps: map, partial
reduction that is on still-resident key-value pairs, and
global reduction.

3. Moving from the CPU to the GPU

The simple in-core, single-node CPU MapReduce im-
plementation is easy. Take a set of indivisible work
units (items) and Map them, generating key-value
pairs. Sort these pairs by key and Reduce all like-
keyed pairs and gather the final output. Translating
this model to the GPU is straightforward: copy the
input data to the GPU; make Map, Sort, and Reduce
kernel calls; and copy the output data back to the
CPU. Each data item in Map and Reduce is assigned
to one GPU thread, and we process many items (a
“Chunk”) with a single kernel call. This model is sim-
ilar to the Mars GPU MapReduce implementation [9],
but it ignores two practical scalability problems for
GPUs: what happens when the size of the data set
exceeds in-core memory? And how do we scale across
nodes? Map and Reduce should be distributed across
nodes, but then each Map output could potentially feed
any/all Reduce instances. Thus we need to Partition our
Map output. Both the partitioning and communication
implementations must be efficient, but previous GPU
MapReduce implementations address neither of these.

We implement several changes and optimizations to
this model to build GPMR. The first to only expose
partitioning and sorting to the programmer (similar
to Hadoop) in a manner that allows programmers to
optimize for particular workloads and leverage the
GPU with minimal PCI-e overhead when desired. For
all tasks, we relax the mapping constraint of one-
item, one-thread. This yields a more flexible mapping;
a many-to-one or one-to-many mapping of items to
threads might be desirable and more efficient than a
one-to-one mapping. We also note that many GPU

algorithms use inter-thread cooperation, and relaxing
this mapping allows for such. For instance, many GPU-
computing applications use reductions or parallel-
prefix operations. Our relaxed mapping gives more
flexibility to the user and more efficient higher-level
operations.

Processing items in chunks yields additional benefits.
Each GPU thread knows the item on which every other
GPU thread is working, which allows for more natural
programming on the GPU and block-level communi-
cation within a chunk. One of the contentious points
with chunking is the trade off between abstraction
and performance. Sticking to the design principles
of GPMR, we want to give full access to the GPU
(i.e. allow block-wide reductions, manually schedule
threads per block, etc.) to make GPMR as fast and
efficient as possible, so chunking simply makes sense.
We cannot speak for every developer, but we believe
that chunking provides a good level of abstraction
from the original data. And since chunking also allows
developers full access to the GPU, they can leverage
higher-level GPU operations.

We now turn to optimization opportunities from re-
structuring the pipeline. Any experienced parallel pro-
grammer would say that the key to parallel efficiency
is to reduce communication times as much as possible
and to overlap communication with computation. All
of our optimizations focus on reducing communica-
tion times at the expense of more computation time.
We believe that communication is almost always the
bottleneck and GPU computation is relatively cheap.

Each optimization essentially reconfigures the MapRe-
duce pipeline1. The first optimization is a variation
on an existing optimization in MapReduce, Combine.
Before the library transmits pairs to Reducers, like-
keyed pairs can be Combined, which does not emit
any new keys but instead generates a single value to
be associated with a key, ensuring that the node only
sends one value per key to a Reducer. This is not a new
optimization, but it requires a GPU implementation.
GPMR must use an efficient storage strategy for pre-
emitted key-value pairs to stream them back down to
the GPU for combination. Unlike in Hadoop, Combine
happens only when all Maps complete in order to
minimize network traffic as much as possible. This
differs from the Hadoop Combine in that it typically
only combines values from the same Map instance. The
purpose of the GPMR Combine substage is to reduce

1. As there are many combinations, showing all with a full
explanation of where they make the most sense is beyond the limits
of this paper.

network traffic at the expense of added PCI-e transfer
time and GPU computation time.

Using chunks allows for two more optimizations:
Partial Reduction (similar to what is found in
CellMR [13]) and Accumulation. These two stages are
similar but differ in a few key ways. They are also
mutually exclusive (at most one can be used).

Partial Reduction minimizes communication costs be-
tween the CPU and the GPU. As key-value pairs
are emitted, GPMR stores them on the GPU. Once
a mapper finishes with a chunk, the library transfers
all emitted key-value pairs from GPU memory back
to system memory. To mitigate this cost, the user can
execute Partial Reductions on GPU-resident key-value
pairs to combine like-keyed pairs, resulting in fewer
pairs and reduced transfer cost. The primary purpose
of Partial Reduction is to reduce PCI-e communication
and network-transfer time at the expense of more GPU
computation.

Accumulation is similar to Partial Reduction in that the
goal is to reduce the number of key-value pairs and
transfer costs, but it is not a logically separate stage of
the pipeline. It works by giving each mapper explicit
knowledge of the key-value pairs resident on the GPU.
When the library Maps the first chunk, it generates an
initial set of key-value pairs that remain resident on
the GPU, and each subsequent Map kernel combines
its output with those pairs. Any combination of the
following is done with Accumulation: adding new
pairs, reducing the number of pairs, and combining
pairs (the overall number of pairs remains the same).
Accumulation should result in the final number of key-
value pairs being lower than if no accumulation were
used. The main purpose of using accumulation is to
reduce both PCI-e and network costs.

As a general rule, Partial Reduction is more useful
when the expected final key-value set is large, and
Accumulation should be used when the expected fi-
nal key-value set is small. Partial Reduction yields
gains when reducing like-keyed pairs is faster than
transferring them; the user can overlap sending those
key-value pairs to reducers with executing more maps.
Accumulation works well when the number of final
keys is much lower than the number of emitted key-
value pairs and the user can quickly index keys in the
output.

4. Implementation

We wrote GPMR in C++ and CUDA and designed it
to be easy-to-use and extensible while still allowing
full access to the GPU. Every part of the MapReduce
pipeline is programmable by the user, though we
provide default implementations of the Partitioner,
Scheduler, and Sorter.

Each GPU is controlled by a separate process and each
process executes the MapReduce pipeline. The three
primary stages to the MapReduce work flow are Map,
Sort, and Reduce. Map is divided into many separate
substages, while Sort and Reduce are each indivisible.
All stages and substages are customizable by the user.
Figure 1 shows a diagram of a typical GPMR work
flow.

Scheduler

Map + Partial

Reduce+ Partition

Bin

Sort

Scheduler

Reducer

Scheduler

Map + Partial

Reduce+ Partition

Bin

Sort

Scheduler

Reducer

Figure 1: The MapReduce work flow: The GPU executes
dashed-outline stages, the CPU executes solid-outline stages.
The dashed line transition between Bin and Sort stage
denotes that GPMR transfers data to another processor,
potentially over the network. GPMR individually streams
chunks to GPUs and executes a Mapper on each. If supplied,
GPMR executes a Partial Reduction and then if no Combiner
is supplied, a partition. GPMR copies the key-value sets to
the CPU and transmits them over the network while the
scheduler loops over a new chunk. If the user supplies a
Combiner, GPMR stores all key-value pairs in CPU memory
(due to the size limitations of the GPU memory) until all
Maps complete, and then executes the Combiner on each
unique key before partitioning the key-value pairs. Once
each process receives all of its pairs, GPMR executes Sort
followed by Reduce.

4.1. Map Stage

The Map stage is broken into several substages; the
Map itself, Accumulation, Partial Reduction, Combi-
nation, and Partition. Depending on which of these
substages (described earlier) the user activates, this
stage can take many forms.

Map processes an input chunk and outputs a set of key-
value pairs. The entire chunk is copied to the GPU
via a user-supplied function (typically a wrapper for
cudaMemcpyAsync) at once and processed by one or
more user-supplied kernels. This model allows the raw
use of the GPU while still maintaining the MapReduce
model of data-independent elements. Map works on
one chunk at a time as GPMR assumes each chunk
and its output will consume most of the GPU memory.
Chunking also gives us an efficient, out-of-core tech-
nique for GPU MapReduce. We can use chunks that
are a fraction of the size of available memory, allowing
us to Map or Reduce a chunk while simultaneously
streaming another chunk to or from the GPU.

One particular facet of the Map stage (and the Reduce)
is the need for load balancing. GPMR tracks the per-
GPU work in a dynamic queue. If one GPU finishes
its work in its local queue and other GPUs have much
more work to do, we shift chunks between the local
queues. This is important as due to this requirement,
chunks must implement a serialization method.

Partition. The Partition substage divides key-value
pairs into buckets to be sent to each Reducer, where
most likely a Reducer resides on a different node.
The Partitioner arranges all key-value pairs for a
specific Reducer consecutively, thus requiring only one
network send per Reducer. If the user omits Partition,
all pairs are sent to a single Reducer (best for jobs
with small intermediate data).

We supply a default round-robin Partitioner for integer
keys. But we made the Partitioner extensible for a
few reasons. First, we impose no strict definition of a
key and therefore we cannot assume keys are four-byte
integers. Hence we cannot simply use modulation or
division to determine the destination Reducer. Second,
even when keys are integer values, there is no best-
performance distribution for all MapReduce jobs (e.g.
round-robin vs. consecutive blocks).

Bin. The Bin substage is responsible for transmitting
partitioned key-value pairs to reduce tasks. This is typ-
ically done either through network I/O or a distributed
file system; GPMR is storage and transfer-mechanism
agnostic, so it makes no explicit assumptions about

which the programmer uses. Bin is the only stage of
the pipeline executed on the CPU as opposed to the
GPU. This is because the GPU cannot interact with
the file system or network. Since GPMR evaluates
the Bin substage on the CPU, GPMR takes advantage
of modern multicore processors by running it in a
separate thread, yielding a more thorough overlap of
communication with the mapping computation.

The Map Pipeline. Fitting all of the Map substages
together leads to many possible configurations. Know-
ing the effects of each individual piece helps to create
a more efficient overall pipeline. Users can mitigate
a large number of intermediate key-value pairs by
implementing Partial Reduction or Combination. They
can optimize for a small number of unique keys by
using Accumulation, at the cost of not overlapping
communication with computation. A pipeline with a
large set of key-value pairs and many unique keys can
be more efficient via Partial Reduction and tuning the
size of each chunk to allow overlap in computation and
communication.

We summarize the effects of the most common pipeline
configurations. Using Accumulation eliminates the
need for Partial Reduce and Combine. Mapping with-
out Accumulation or Combination, and optionally with
Partial Reduce, causes partitioning after every Map
completes. Using Accumulation or Combination causes
the library to execute only one partition per full Map
stage. This happens after the Combine substage/final
Accumulation. Not using Accumulation or Combina-
tion allows for Binning to take place concurrently with
Maps. Conversely, using Accumulation or Combination
mandates that Binning only happens once all Maps
finish.

4.2. Sort Stage

Sort is relatively straightforward. When possible (with
keys that are integer-based), we used radix sort from
CUDPP (GPMR’s default Sorter), and when not, we
implemented our own. After the pairs are sorted,
GPMR discards duplicate keys. Because of the sort,
each key’s value is stored contiguously. Hence, we only
need the number of values and the index of the first
value to describe each sequence. We implemented all
this functionality on the GPU to be as fast as possible.

4.3. Reduce Stage

Reduce is also relatively straightforward. Key-value
sets are divided in a user-driven manner into chunks of
their own, such that each chunk fits in GPU memory.
GPMR does this by issuing a callback to the Reducer
that asks how many value sets should GPMR copy
to the GPU for the next reduction. GPMR issues these
callbacks until it processes the last sequence of values.

4.4. Mapping Applications to GPMR

The most common use case of GPMR is the same
as that of a CPU-based MapReduce library. The user
simply implements a Mapper and optionally a Re-
ducer, and supplies input data. GPMR contains default
implementations of Partitioners and Sorters. GPMR
runs all of these on GPUs.

For performance and scalability, however, leveraging
the various configurations of the GPMR pipeline is
vital. Beyond the default versions, users can specify
their own implementation of a Partitioner or Sorter,
customized for their application; Combiners, Partial
Reducers, and Accumulation can also yield large per-
formance dividends.

Users should use these additional substages, and they
should also tune their pipeline and kernels to be
as GPU-compute-bound as possible. Minimizing the
fraction of communication-only runtime is vital for
scalability; compute-bound jobs are scalable because
much of their time is computation and overlaps with
communication, resulting in high scalability. Real-
world MapReduce tasks span the gamut from compute-
bound to communication-bound; GPMR gives strong
scalability on the former and acceptable scalability on
the latter.

5. Methodology

5.1. Cluster Configuration

To test GPMR, we used the Accelerator cluster at
the National Center for Supercomputing Applications.
The cluster has a total of 32 nodes, each with an
NVIDIA Tesla S1070. The S1070 features 4 NVIDIA
GT200 GPUs each with 4 GB of RAM (though for
testing purposes, we limit RAM usage to 1 GB). Each
node has 2 dual-core 2.4 GHz AMD Opterons and

8 GB of RAM. The nodes are connected via QDR
Inifiniband connected to generation-1 PCI-e. Due to
concurrent users on the cluster, we performed tests on
up to 64 GPUs. 64 CPUs is considered a small-to-
medium cluster, but very few existing cluster instal-
lations worldwide feature more than 64 GPUs. Each
node in this cluster runs RHEL 4 with the 2.6.27 Linux
kernel, and uses the NVIDIA 195.36 driver and the
CUDA 3.0 toolkit. We compiled our library and all
test software using GCC 4.3.2 and MVAPICH2.

We ran the following benchmarks: Matrix Multipli-
cation (MM, multiplies two large square matrices);
Sparse Integer Occurrence (SIO, counts the number of
times each integer appears in a large dataset); Word
Occurrence (WO, counts the number of times each
word occurs in a text corpus); Linear Regression (LR,
computes a linear model of a set of data), and K-Means
Clustering (KMC, partitions a set of data points into
clusters). These are all typical benchmarks for testing
new MapReduce libraries.

5.2. Benchmark Guidelines

Perhaps the most important trait of any MapReduce
application is its scalability. MapReduce libraries do
quite well at parallelizing and scaling algorithms that
are already scalable. GPMR can do just that: MM
has near-perfect scalability even to 64 GPUs. More
important is understanding the performance of GPMR
in the presence of algorithms that are not perfectly
scalable. We thus choose 4 benchmarks that fail to
scale for a diverse set of reasons and analyze their
performance.

Besides scalability, there were other potential perfor-
mance bottlenecks in GPMR. To analyze the impact
of these bottlenecks, we needed to test many aspects
of the library. We list these aspects below and include
both a description of why they are important and which
benchmarks stressed that aspect. Afterward, we explain
the typical CPU implementation of that benchmark,
and then how we modify it to better fit into the GPU
world and onto our GPMR application.

• Multiple emits per thread—Many applications
emit more than one key per map item. This is
easy for a CPU, but takes extra planning with a
GPU. LR, KMC, and WO all test this aspect.

• Non-uniform number of emits per thread—
Different map items from the same chunk may
emit a different number of key-value pairs. This
feature is tested by WO.

• Sparsity of keys—An ideal world would give us a
compact set of integer keys: if the maximum key
is X, all keys in the range [0,X] are present. This
yields efficient partitioning (assuming all keys
have an equal amount of reduction work) and
efficient sorting. Of course, many non-contrived
MapReduce jobs don’t have such a key set, thus
we need more efficient means to partition and sort.
SIO tests this aspect.

• Accumulation—Some MapReduce jobs require
only a small number of unique keys that are com-
bined via an associative and commutative operator
(e.g., addition or multiplication). In these situa-
tions, Accumulation mitigates the cost of PCI-e
transfers. LR and KMC both use accumulation.

• Many key-value pairs—Some mapping tasks emit
a lot of pairs, which imposes a high demand
on memory, the PCI-e bus, and the network in-
terconnect. Such tasks might suffer from limited
scalability if the cost of transferring pairs cannot
be sufficiently overlapped with Mapping. SIO
especially stresses this aspect of GPMR.

• Compute-bound Scalability—One of the biggest
advantages to MapReduce is that a compute-
bound task should scale very well. However, if
the library imposes any overhead or does not
handle its internals well, this affects scalability.
We wanted to make sure that the internals of
GPMR did not interfere with scalability. MM is
very much GPU-compute bound.

5.3. Benchmark Implementations

5.3.1. Matrix Multiplication. MM is the only appli-
cation we chose that is, in itself, highly scalable on the
GPU. We implemented a straightforward square matrix
multiply in two phases. From the very beginning, we
had to craft the algorithm carefully.

The common CPU MapReduce MM algorithm for
multiplying square matrices of dimension M uses M2

vector-vector multiplications in Map, one for each
element of the result. There is no Sort or Reduce.
This falls short on the GPU in two key ways. First,
vector-vector multiply works well on a GPU only
when reading row vectors of a matrix (coalescing
rules). Second, the GPU has scratchpad memory but
not nearly enough to contain both a row vector and a
column vector if M is sufficiently large.

Due to the limitations of the above algorithm, we used
a hierarchical approach from typical cache-oblivious
algorithms [20]. We tile each matrix into smaller and

smaller pieces until each block in the GPU can fit in
shared memory. Then the entire block performs a small
matrix multiplication where each thread computes an
element of the result as an inner product. Each subma-
trix of the result is also a tile of inner products. We thus
transform the original formulation into N3 uniform-
sized—and at least 10242—tile multiplications. Each
Map tiles this small matrix into a set of 2563 matrices,
which are further divided into 162 matrices. Each block
performs a full inner product of tiles by performing
many 162 tile multiplications. We stop the division here
because a block of 256 threads can read 162 values in a
coalesced manner and perform enough computation to
keep throughput on the GPU very high. To add all the
partial sums of each submatrix and form the result, we
bypass Sort and Reduce and implement another Map
in a separate MapReduce2.

The result is a very scalable, out-of-core implementa-
tion of MM that uses the GPU much more efficiently
(and runs several orders of magnitude faster) than the
direct port of the typical CPU implementation, even on
small matrices. Another point that is well illustrated by
our algorithm is that GPMR allows for a natural use
of the GPU by not forcing any specific thread-to-task
mapping (e.g. one GPU thread per map task).

5.3.2. Sparse Integer Occurrence (SIO). SIO counts
the number of occurrences of each integer in a se-
quence with a random distribution. The GPMR im-
plementation is similar to a CPU implementation and
is straightforward. We chunk as many integers as
possible in a tightly packed array. In the typical CPU
implementation, each thread reads one integer I per
map and emits 〈I,1〉. Our Mapper reads two integers,
I1 and I2, to efficiently access GPU memory and then
emits 〈I1,1〉 and 〈I2,1〉. We forego Partial Reduction
and Accumulation as they yield no speedup with our
intermediate data, and we skip Combine as it causes
slowdown. We use the default Sort. For Reduce, we
knew we could skip the value summation and just
output the values count, but this goes against the spirit
of the benchmark and is not robust to pipeline changes.
We tried assigning each key set to a block instead of a
thread, and then performing an iterative reduction over
the key values. This yielded poor performance because
the data set was sparse and many keys had less than

2. This is due to memory constraints. We built a scalable MM
algorithm using GPMR, and to do so, we had to take into account
that while Maps are broken into chunks, a single-key reduction must
be entirely in-core. Once too many tiles of a matrix are necessary,
this in-core requirement would not be met and thus we had to split
this into two separate GPMR tasks.

five values. Our final and best implementation of the
reducer is the same as the CPU approach: one key per
thread, where the thread sums all values.

5.3.3. Word Occurrence. Like SIO, WO counts all
occurrences of a unique object. Unlike SIO, the objects
are words, not integers. Also, the output set for WO
is much smaller, leading to a different configuration
of the pipeline and drastically different scaling. The
input is a collection of text, with words taken from a
predetermined corpus, separated at line boundaries. For
our test cases, we used randomly generated text from
a forty-three thousand word dictionary. Each chunk
contains millions of bytes.

The typical CPU Mapper implementation has each
Map task scan one line of text and emit 〈W,1〉 for
every found word W . This does not work on a GPU.
Sending one line of text to a Mapper is fine, but
we should not use strings as keys; strings cannot be
read in a single instruction as their length varies, and
forcing all strings into a fixed-size area yields poor
storage performance in many cases—storing a four-
character word in sixteen bytes wastes 75% of the key
space. Using variable-sized keys either requires more
space for a key directory or more time as GPMR must
use atomics to emit keys. Instead, we used a minimal
perfect hash [21] to assign each key a unique, four-byte
integer value. Thus, the GPU Map kernel gives each
thread one line of text and scans the text for words,
then finishes by hashing W and emitting 〈hash(W),1〉.

As our dictionary is small (43k integer-integer pairs
requires less than 350 kB), we chose to use Accumu-
lation. An initial Map task emits all keys with the
value 0. Afterward, whenever we emit a key-value
pair, we simply index into the emit space and use
a fire-and-forget atomic instruction to increment the
associated value. By using Accumulation we mitigate
PCI-e and network transfer and almost completely
remove communication, the bottleneck of the CPU
implementation.

We do not use a Partitioner because we send all key-
value pairs to one node. This is fast on a small number
of GPUs since a single Reduce kernel can handle the
task. However, once the number of GPUs crosses a
certain threshold, key-value pair communication bot-
tlenecks the job, so we enable the default round-robin
Partitioner after the crossover point. For Sorting, we
also use the provided sorter in GPMR.

We started with the CPU Reduce task; each thread
gets one key and performs a linear summation of

all the values. But we noted that once we had more
than a few GPUs, the reduction time, while still quite
small, was significant. The are two reasons for this:
the reads are not coalesced, and each thread has to
wait a (relatively) long time for each read to finish to
complete the sum. We also noted that if we emit all
43k keys, even when not all words were found by a
GPU, the work per key would be balanced. Thus, we
changed our implementation to assign each key to a
warp (not a block). Each warp iterates over its value
set, with the threads in the warp reading and summing
in a coalesced fashion until it reads all values. Then,
the kernel does a warp-wide reduction to finish the
summation. The overall effect was that our reduction
times were reduced (by an order of magnitude in some
cases) down to less than 3 ms.

5.3.4. K-Means Clustering. KMC is used in machine
learning. The basic task takes a set of points in space
and determines clusters that can best approximate the
space. For both the CPU and GPU benchmark, we
use a fixed-size random set of cluster centers at job
startup. The typical CPU implementation of the Map
kernel reads one point P, finds the index of the closest
center C, and emits 〈index(C),P〉. We implemented
this in GPMR and saw poor results for three reasons:
each thread loads its own point (thus not guaranteeing
coalesced reads), we see far too many intermediate
key-value pairs, and the size of the emitted pair causes
us to issue non-coalesced writes.

The biggest change we made was to use persistent
threads [22] within the Map stage to process many
elements per thread and to use atomic-free Accu-
mulation (discussed below). The entire block reads
points in a coalesced manner and each thread finds
the closest center C. The block performs a series of
reductions of all points belonging to C. As each reduc-
tion completes, the block’s master thread accumulates
the reduction value to global memory. Because the
GPUs we used do not have floating-point atomics, we
were forced to use a per-block global-memory pool.
After the primary kernel completes, another kernel
reduces the values in each block’s pool and emits
the final values. The CPU implementation emits the
〈index(clustercenter), point〉. The GPU emits 〈C,Pdim〉
for each dimension, as well as an extra key per center
(the number of influencing points). This allows for
coalesced writes with negligible overhead for a small
number of dimensions. If the number of dimensions
and centers are large, the typical CPU approach may
prove more efficient as it uses less storage. We also
optimized by using Accumulation. These optimizations

reduced Map times by almost 8×.

For our Partitioner, we sent all keys of a center to
one GPU. Our key-value pairs allow us to use the
default Sort provided by GPMR. In Reduce, each
thread sums the values for a single key. Even with
many GPUs, we used sufficiently few centers and
dimensions to make the full Reduce time negligible.
KMC is an iterative process; the MapReduce results are
new cluster centers, and a full KMC implementation
repeats a fixed number of times or until convergence.
Our benchmark simply runs one iteration.

5.3.5. Linear Regression. LR models the relationship
between two parameters influenced by unknown vari-
ables. We store chunks in much the same way as KMC,
grouping many points together and tightly-packing
them in arrays. In fact, LR is similar to KMC in many
ways and the same optimizations work well. We use
persistent threads to compute the relationship as well
as our own internal Accumulation. As with KMC, we
achieve an almost order-of-magnitude speedup over a
direct port of the typical CPU implementation that we
modeled after the straightforward CPU implementa-
tion. The Mapper emits only six keys upon completion,
and thus we do not use Partitioning (the network
overhead is minimal in both cases). We use the default
sort and perform reductions in a key-per-thread manner
(reduction time is virtually nil).

6. Results

Of our five benchmarks, we expected only MM to scale
well to 64 GPUs and beyond. While our optimizations
greatly aid the scalability of other benchmarks, we
expect either communication or the GPMR internals
to inhibit scalability. Nonetheless, our analysis of the
reasons these applications do not scale well are il-
luminating, and we emphasize that the scale of our
benchmarks is something previously unattainable with
GPU MapReduce libraries.

We ran each GPMR benchmark against two datasets.
One tests strong scalability with four different-sized
inputs; the other tests weak scalability. We only ran
Phoenix against the former, as Phoenix only runs on a
single node. Table 1 describes dataset sizes.

Figure 2 shows runtime breakdowns for our bench-
marks on various cluster configurations. This figure
shows how our applications exhibit different character-
istics as they execute at scale. MM is very compute-
bound and exhibits strong scaling. KMC is also mostly

compute-bound in Map, but communication require-
ments affect performance at scale. LR requires, per
element, very little time for its Maps, but required
communication impacts runtime at scale. SIO shows
changes in characteristics as scale is increased because
the bottleneck changes with the scale: the bottleneck
changes from Sort with a small number of GPUs to
transmitting data with many GPUs. WO, like SIO,
changes as GPU count increases, primarily because
communication is less cumbersome with the the in-
troduction of a partitioner once the GPU count crosses
a certain threshold. For all but MM, it’s difficult to
further improve the application because the commu-
nication simply is a bottleneck; we believe we have
mitigated those factors as much as is feasible with our
implementation.

We show parallel-efficiency, where we use the standard
definition of efficiency of Efficiency = Speedup

#GPUs , graphs
for each benchmark in Figure 3. Note the impor-
tance of Accumulation. We saw dramatically worse
performance in KMC, LR, and especially WO before
implementing Accumulation; before this addition, all
three had similar characteristics to SIO (which cannot
compact intermediate data well).

We also compared our results to both Mars3 and
Phoenix, an optimized CPU-based MapReduce library.
Phoenix runs on a single node, so we compare against
GPMR with one GPU and with four GPUs (both on
one node). Table 2 summarizes speedup results over
Phoenix, while Table 3 gives speedup results of GPMR
over Mars. Note that GPMR with one GPU is faster on
all benchmarks than either Phoenix or Mars, but also
shows good scalability to four GPUs.

Source code size is another important metric. One
significant benefit of MapReduce is the high level of
abstraction, which reduces code size and development
time, since MapReduce handles the low-level details
(communication, scheduling, etc.). Table 4 shows the
number of lines required for the three benchmarks in
Phoenix, Mars, and GPMR. We would also like to
show developer time for each benchmark and platform,
but Mars and Phoenix didn’t published this (we used
the applications provided so as not to introduce bias in
Mars’s or Phoenix’s runtimes). As a frame of reference,
the lead author of this paper implemented and tested
MM in GPMR in three hours, SIO in half an hour,
KMC in two hours, LR in two hours, and WO in four
hours. KMC, LR, and WO were then later modified in
about half an hour each to add Accumulation.

3. We would have liked to compare our results against MapCG as
it advertised better results, but the software was not freely available.

MM SIO WO KMC LR

Input Element Size — 4 bytes 1 byte 16 bytes 8 bytes
Elems in first set (×106) 10242, 20482,

40962, 163842 1, 8, 32, 128 1, 16, 64, 512 1, 8, 32, 512 1, 16, 64, 512
Elems in second set (×106/GPU) — 1, 2, 4, 1, 2, 4, 8, 16, 1, 2, 4, 1, 2, 4, 8, 16

8, 16, 32 32, 64, 128, 256 8, 16, 32 32, 64

Table 1: Dataset Sizes for all benchmarks. We tested Phoenix against the first input set for SIO, KMC, LR, and the second set
for WO. We tested Mars against the first input set for KMC, MM, and WO (these were included in the distribution). We tested
GPMR against all available input sets.

12 4 8 16 32 64
Number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

Matrix Multiplication

16384 x 16384
4096 x 4096
2048 x 2048
100% Efficiency

1 4 8 16 32 64
Number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
p
e
e
d
u
p
 (

X
)

Data Fits
In-core

Sparse Integer Occurrence

100% Efficiency
128 Million Elements
32 Million Elements
8 Million Elements
1 Million Elements

1 4 8 16 32 64
Number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
ff

ic
ie

n
cy

Word Occurrence

100% Efficiency
512 Million Elements
64 Million Elements
16 Million Elements
1 Million Elements

1 4 8 16 32 64
Number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
ff

ic
ie

n
cy

K-Means Clustering

100% Efficiency
512 Million Elements
32 Million Elements
8 Million Elements
1 Million Elements

1 4 8 16 32 64
Number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
ff

ic
ie

n
cy

Linear Regression

100% Efficiency
512 Million Elements
64 Million Elements
16 Million Elements
1 Million Elements

Figure 3: GPMR Parallel Efficiency for (top left to bottom right) MM, SIO, WO, KMC, and LR. MM is the only GPU-compute
bound application. SIO exhibits super-linear speedup at four GPUs because the data fits in core. Scalability drops as node count
increases due to overhead from the network. WO exhibits similar behavior. K-Means stops exhibiting strong scaling beyond 20
GPUs, but still has more than 60% efficiency at 64 GPUs. LR exhibits poor scaling beyond four GPUs (the dip in the graph is
when the job becomes multi-node, but with an imbalance in used GPUs per node). Little time is required to perform the map,
and communication affects scalability even though it’s quite light.

MM KMC LR SIO WO

1-GPU 162.712 2.991 1.296 1.450 11.080
4-GPU 559.209 11.726 4.085 2.322 18.441

Table 2: Speedup for GPMR over Phoenix on our large
(second-biggest) input data from our first set. The exception
is MM, for which we use our small input set (Phoenix
required almost twenty seconds to multiply two 1024×1024
matrices). The 4 GPU test uses 4 GPUs on a single node.

MM KMC WO

1-GPU Speedup 2.695 37.344 3.098
4-GPU Speedup 10.760 129.425 11.709

Table 3: Speedup for GPMR over Mars on 4096 × 4096
Matrix Multiplication, an 8M-point K-Means Clustering, and
a 512 MB Word Occurrence. These sizes represent the largest
problems that can meet the in-core memory requirements of
Mars. The 4 GPU test uses 4 GPUs on a single node.

MM KMC WO

Phoenix 317 345 231
Mars 235 152 140
GPMR 214 129 397

Table 4: Lines of source code for the three common bench-
marks in Phoenix, Mars, and GPMR. We exclude setup
as it was about equal for all benchmarks and had little
to do with the actual MapReduce code. For GPMR we
included boilerplate code (ḣ files, and CUDA-kernel wrapper
functions). GPMR’s WO is large because of the hashing
required.

MM KM LR SIO WO
Benchmark

0.0 %

10.0 %

20.0 %

30.0 %

40.0 %

50.0 %

60.0 %

70.0 %

80.0 %

90.0 %

100.0 %

R
u
n
ti

m
e
 (

%
)

1
 G

P
U

8
 G

P
U

s
6

4
 G

P
U

s

1
 G

P
U

8
 G

P
U

s
6

4
 G

P
U

s

1
 G

P
U

8
 G

P
U

s
6

4
 G

P
U

s

1
 G

P
U

8
 G

P
U

s
6

4
 G

P
U

s

1
 G

P
U

8
 G

P
U

s
6

4
 G

P
U

s

Map
Complete Binning
Sort
Reduce
GPMR Internal / Scheduler

Figure 2: GPMR runtime breakdowns on our the largest
datasets. This figure shows how each application exhibits
different runtime characteristics, and also how exhibited
characteristics change as we increase the number of GPUs.

7. Conclusion

GPMR offers many benefits to MapReduce program-
mers, the most important of which are new capabilities,
scalability, and ease-of-use. While it is unrealistic
to expect perfect scalability from all but the most
compute-bound tasks, the minimal overhead and trans-
fer costs of GPMR place it well in comparison to
other MapReduce libraries. GPMR also gives devel-
opers flexibility in several areas, especially compared
to Mars. GPMR allows flexible mappings between
threads and keys and customization of the MapReduce
pipeline with communication-reducing stages (both
PCI-e and network), while still providing sensible
default implementations. Our results show that even
difficult applications that typically are not addressed
by GPUs still show moderate scalability with GPMR.

Like other MapReduce libraries, GPMR does not scale
a communication-bound job well. These jobs are gated

by PCI-e and network/disk throughput. Because the
advantage of the GPU over the CPU is primarily
computation, MapReduce tasks need substantial com-
putation to reap the benefits via GPMR.

We would like to draw a broad conclusion about the
proper configuration of a GPU cluster for MapReduce.
Unfortunately, our results show this is dependent on the
characteristics of the task at hand, including its input
sizes, intermediate data sizes, and the computational
complexity of the Map and Reduce. This implies that
each job, and to a certain degree each input set for
a job, may require a different configuration to run at
maximum potential. Thus, we conclude that GPMR
users should devote at least some time to deciding what
stages of the pipeline are suitable for their jobs.

Another hardware question for any GPMR user is
whether to use a cluster configuration with enough
GPU internal memory to avoid out-of-core computa-
tion. Many modern GPUs still have 512 MB of RAM
or less, and thus it is quite hard to fit a problem of
significant size in core. Our experience shows that
with the proper chunk arrangement, and careful use
of Accumulation or Partial Reduction when available,
out-of-core work does not have a strong effect on
GPMR jobs, and thus using a small set of GPUs
and executing an out-of-core job can show the same
scalability as a large, many-GPU in-core job.

One last hardware feature that is limiting to GPMR is
the lack of any interplay between GPUs and network
interconnects. We hope that GPU and network vendors
work together to allow sourcing and sinking by the
GPU for network I/O. This is possible as the PCI-e
bus supports peer-to-peer communication, and GPMR
would benefit by moving intermediate data between
nodes without having to route through CPU memory.

8. Acknowledgements

Thanks to our funding agencies, the SciDAC Institute
for Ultrascale Visualization and the National Science
Foundation (Awards OCI-1032859 and CCF-1017399),
to NVIDIA for equipment donations, and to NCSA and
Wen-Mei Hwu for allowing us access to their GPU
cluster. We would also like to thank Jeff Dean and
Heshan Lin for their valuable feedback.

References

[1] M. Ekman, F. Warg, and J. Nilsson, “An in-depth look
at computer performance growth,” ACM SIGARCH

Computer Architecture News, vol. 33, no. 1, pp. 144–
147, Mar. 2005.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified
data processing on large clusters,” Communications of
the ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[3] J. Nickolls, I. Buck, M. Garland, and K. Skadron,
“Scalable parallel programming with CUDA,” ACM
Queue, pp. 40–53, Mar./Apr. 2008.

[4] D. B. Kirk and W. W. Hwu, Programming Massively
Parallel Processors. Morgan Kaufmann, 2010.

[5] M. Harris, J. D. Owens, S. Sengupta, Y. Zhang, and
A. Davidson, “CUDPP: CUDA data parallel primitives
library,” 2009, http://gpgpu.org/developer/cudpp/.

[6] M. Harris, S. Sengupta, and J. D. Owens, “Parallel
prefix sum (scan) with CUDA,” in GPU Gems 3,
H. Nguyen, Ed. Addison Wesley, Aug. 2007, ch. 39,
pp. 851–876.

[7] N. Satish, M. Harris, and M. Garland, “Designing
efficient sorting algorithms for manycore GPUs,” in
Proceedings of the 23rd IEEE International Parallel
and Distributed Processing Symposium, May 2009.

[8] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis, “Evaluating mapreduce for multi-
core and multiprocessor systems,” in International Sym-
posium on High-Performance Computer Architecture.
Los Alamitos, CA, USA: IEEE Computer Society,
2007, pp. 13–24.

[9] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and
T. Wang, “Mars: a MapReduce framework on graphics
processors,” in Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques, Oct. 2008, pp. 260–269.

[10] J. Ekanayake and G. Fox, “High performance parallel
computing with clouds and cloud technologies,” in
Proceedings of the First International Conference on
Cloud Computing, Oct. 2009.

[11] B. Catanzaro, N. Sundaram, and K. Keutzer, “A Map
Reduce framework for programming graphics proces-
sors,” in Third Workshop on Software Tools for Multi-
Core Systems, Apr. 2008.

[12] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin,
“MapCG: Writing parallel program portable between
CPU and GPU,” in Proceedings of the 19th Interna-
tional Conference on Parallel Architectures and Com-
pilation Techniques, Sep. 2010, pp. 217–226.

[13] M. M. Rafique, B. Rose, A. R. Butt, and D. S.
Nikolopoulos, “CellMR: A framework for supporting
MapReduce on asymmetric Cell-based clusters,” in
Proceedings of the 23rd IEEE International Parallel
and Distributed Processing Symposium, May 2009.

[14] H. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker,
“Map-Reduce-Merge: Simplified relational data pro-
cessing on large clusters,” in SIGMOD ’07: Proceed-
ings of the 2007 ACM SIGMOD International Confer-
ence on Management of Data, Jun. 2007, pp. 1029–
1040.

[15] C. Jin and R. Buyya, “MapReduce programming model
for .NET-based cloud computing,” in Euro-Par ’09:
Proceedings of the 15th International Euro-Par Confer-
ence on Parallel Processing. Berlin: Springer-Verlag,
Aug. 2009, pp. 417–428.

[16] S. Chen and S. W. Schlosser, “Map-Reduce
meets wider varieties of applications,” Intel
Research Pittsburgh, Tech. Rep. IRP-TR-08-05,
May 2008. [Online]. Available: http://www.pittsburgh.
intel-research.net/~chensm/papers/IRP-TR-08-05.pdf

[17] J. H. C. Yeung, C. C. Tsang, K. H. Tsoi, B. S. H.
Kwan, C. C. C. Cheung, A. P. C. Chan, and P. H. W.
Leong, “Map-Reduce as a programming model for
custom computing machines,” in FCCM ’08: Pro-
ceedings of the 2008 16th International Symposium
on Field-Programmable Custom Computing Machines,
Apr. 2008, pp. 149–159.

[18] R. Lämmel, “Google’s MapReduce programming
model—revisited,” Science of Computer Programming,
vol. 68, no. 3, pp. 208–237, Oct. 2007.

[19] Y. Gu and R. L. Grossman, “Sector and sphere: the
design and implementation of a high-performance
data cloud.” Philosophical transactions. Series A,
Mathematical, physical, and engineering sciences, vol.
367, no. 1897, pp. 2429–2445, Jun. 2009. [Online].
Available: 10.1098/rsta.2009.0053

[20] H. Prokop, “Cache-oblivious algorithms,” Master’s the-
sis, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology,
Jun. 1999.

[21] R. J. Cichelli, “Minimal perfect hash functions made
simple,” Communications of the ACM, vol. 23, pp. 17–
19, January 1980.

[22] T. Aila and S. Laine, “Understanding the efficiency
of ray traversal on GPUs,” in Proceedings of High
Performance Graphics 2009, Aug. 2009, pp. 145–149.

