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Abstract. We present a novel approach to graph partitioning based
on the notion of natural cuts. Our algorithm, called PUNCH, has two
phases. The first phase performs a series of minimum-cut computations
to identify and contract dense regions of the graph. This reduces the
graph size, but preserves its general structure. The second phase uses
a combination of greedy and local search heuristics to assemble the fi-
nal partition. The algorithm performs especially well on road networks,
which have an abundance of natural cuts (such as bridges, mountain
passes, and ferries). In a few minutes, it obtains excellent partitions for
continental-sized networks.

1 Introduction

Partitioning a graph G = (V,E) into many “well-separated” cells is a funda-
mental problem in computer science with applications in areas such as VLSI
design [5], computer vision [23], image analysis [38], distributed computing [24],
and route planning [10]. Most variants of this problem are known to be NP-
hard [13] and focus on minimizing the cut size, i.e., the number of edges linking
vertices from different cells. Given its importance, there is a rich literature on
the problem, including a wealth of heuristic solutions (see [34, 37] for overviews).

A popular approach is multilevel graph partitioning (MGP), which generally
works in three phases. During the first phase, the graph is iteratively shrunk
by contracting edges. This is repeated until the number of remaining vertices is
small enough to perform an expensive initial partitioning, the second stage of
MGP. Finally, the graph is partially uncontracted, and local search is applied
to improve the cut size. This approach can be found in many software libraries,
such as SCOTCH [27], METIS [20], DiBaP [26], JOSTLE [37], CHACO [18],
PARTY [28], and KaFFPaE [33].

Although MGP approaches can be used for road networks, they do not exploit
the natural properties of such graphs in full. In particular, road networks are
not uniform: there are densely populated regions (which should not be split)
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close to natural separators like bridges, mountain passes, and ferries. Moreover,
known MGPs focus on balancing the sizes of the cells while sacrificing either
connectivity (METIS, SCOTCH, KaFFPaE) or cut size (DiBaP). This makes
sense for more uniform graphs, such as meshes. However, many road network
applications require cells to be connected and one does not want to sacrifice the
cut size. Such applications include route planning [7, 9, 19, 25, 1], distribution of
data [22], and computation of centrality measures [15].

This paper describes PUNCH (Partitioning Using Natural Cut Heuristics),
a partitioning algorithm tailored to graphs containing natural cuts, such as road
networks. Given a parameter U (the maximum size of any cell), PUNCH par-
titions the graph into cells of size at most U while minimizing the number of
edges between cells. The algorithm runs in two phases: filtering and assembly.

The filtering phase aims to reduce the size of the graph significantly while
preserving its overall structure. It keeps the edges that appear in natural cuts,
relatively sparse cuts close to denser areas, and contracts other edges. The notion
of natural cuts and efficient algorithms to compute them are the main contri-
butions of our work. Note that to find a natural cut it is not enough to pick
a random pair of vertices and run a minimum cut computation between them:
because the average degree in road networks is small, this is likely to yield a
trivial cut. We do better by finding minimum cuts between carefully chosen re-
gions of the graph. Edges that never contributed to a natural cut are contracted,
potentially reducing the graph size by orders of magnitude. Although smaller,
the filtered (contracted) graph preserves the natural cuts of the input.

The second phase of our algorithm (assembly) is the one that actually builds
a partition. Since the filtered graph is much smaller than the input, we can use
more powerful (and time-consuming) techniques in this phase. Another impor-
tant contribution of our work is a better local search algorithm for the second
phase. Note that the assembly phase only tries to combine fragments (the con-
tracted regions). Unlike existing partitioners, we do not disassemble fragments.

Note that we focus on finding partitions with small cells, but with no hard
bound on the number of cells thus created. As already mentioned, previous
work in this area has concentrated on finding balanced partitions, in which the
total number of cells is bounded. We show how one can use simple heuristics to
transform the solutions found by our algorithm into balanced ones.

We are not aware of any approach using min-cut computations to reduce the
graph size in the context of graph partitioning. However, work on improving a
partition is vast. For example, many of the algorithms within the MGP frame-
work use local search based on vertex swapping, which improves the cut size
by moving vertices from one cell to another. The most important ones are the
FM [12] and KL [21] heuristics. The FM heuristic runs in worst-case linear time
by allowing each vertex to be moved at most once. Local improvements based
on minimum cuts often yield better results than greedy methods. For example,
Andersen and Lang [2] run several minimum cut computations to improve the
cut between two neighboring cells. Another common approach to optimize a cut
between two cells is based on parametric minimum cut computation [6]. Be-



sides vertex swapping and minimum cuts, local search based on diffusion gives
good results as well [26]. This approach has the nice side effect of optimizing
the shape of the cells, but it requires an embedding of the graph. Most other
methods, including ours, do not.

The remainder of this paper is organized as follows. We explain the two
phases of our algorithm in Sections 2 (filtering) and 3 (assembly). Section 4
shows how to find balanced partitions with PUNCH. In Section 5 we present
extensive experiments. Section 6 contains concluding remarks.

Preliminaries. The input to the partitioning problem is an undirected graph
G = (V,E). Each vertex v ∈ V has a positive size s(v), and each edge e =
{u, v} ∈ E has a positive weight w(e) (or, equivalently, w{u, v}). We are also
given a cell size bound U . We assume G is simple (without loss of generality)
and connected (since we can process each connected component independently).

By extension, the size s(C) of a set C ⊆ V is the sum of the sizes of its
vertices, and the weight of a set F ⊆ E is the sum of the weights of its edges. A
partition P = {V1, V2, . . . , Vk} of V is a set of disjoint subsets (also called cells)
such that ∪k

i=1Vi = V . Any edge {u, v} with u ∈ Vi and v /∈ Vi is called a cut
edge. Given a set S ⊆ V , let δ(S) = {{u, v} : {u, v} ∈ E, u ∈ S, v 6∈ S} be the
set of edges with exactly one endpoint in S. The set of edges between cells in a
partition P is denoted by δ(P ). The cost of P is the sum of the weights of its
cut edges, i.e., cost(P ) = w(δ(P )).

The goal of the graph partitioning problem is to find a minimum-cost partition
P such that the size of each cell is bounded by U . This problem is NP-hard [13].

2 Filtering Phase

The goal of the filtering phase of our algorithm is to reduce the size of the input
graph while preserving its sparse cuts. The phase detects and contracts relatively
dense areas separated by small cuts. The edges in these cuts are preserved, while
all other edges are contracted.

To contract vertices u and v, we replace them by a new vertex x with s(x) =
s(u)+s(v). Also, for each edge {u, z} or {v, z} (with z 6∈ {u, v}) we create a new
edge {x, z} with the same weight. If multiple edges are created (which happens
when u and v share a neighbor), we merge them and combine their weights.
By extension, contracting a set of vertices means repeatedly contracting pairs
of vertices in the set (in any order) until a single vertex remains. Similarly,
contracting an edge means contracting its endpoints.

The filtering phase has two stages. The first finds tiny cuts, i.e., cuts with at
most two edges. The second stage applies a randomized heuristic to find natural
cuts, arbitrary cuts that are small relative to the neighboring areas of the graph.
We discuss each stage in turn.

Detecting Tiny Cuts. The first stage starts with the original graph and gradually
contracts some of its vertices. It consists of three passes.



The first pass uses depth-first search to identify all biconnected components
of the graph. They form a tree T . We make T rooted by picking as a root
the maximum-size edge-connected component, which on road networks typically
corresponds to most of the graph. We then traverse T in top-down fashion. As
soon as we enter a subtree S of total size at most U , we contract it into a single
vertex. Note that this does not affect the optimum solution value: any solution
that splits S in more than one cell can be converted (with no increase in cost)
into one in which S defines a cell on its own.

To shrink the instance even further, we merge the newly-contracted vertex
with its neighbor in the parent component, as long as (1) the subtree has size at
most τ (a pre-determined threshold) and (2) the resulting merged vertex has size
at most U . (We use τ = 5 in our experiments.) Unlike the previous contraction
rule, this one is heuristic: we may lose optimality. This is also the case with most
of the reductions that follow.

During the second pass, we identify all vertices of degree 2. We contract each
path they induce to a single vertex, unless its total size exceeds U .

The third pass, in which we process 2-cuts (cuts with exactly 2 edges), is more
elaborate. In principle there could be Ω(m2) such cuts, but it is easy to see that
the following predicate P ⊆ E×E is an equivalence relation: (e, f) ∈ P ↔ e = f
or e and f form a 2-cut, but neither e nor f form a 1-cut. We identify these
equivalence classes in linear time using the (quite elegant) algorithm of Pritchard
and Thurimella [29]. We then process the equivalence classes one by one.

To process a class S ⊆ E, we first compute the connected components of the
graph GS = (V,E \ S), then contract every component whose size is at most U .

Note that we cannot afford to look at Θ(|V |) vertices to process each equiv-
alence class, since there are too many of them. We get around this by always
traversing two components at a time. Initially, we take an arbitrary edge of the
equivalence class and start traversing the two components containing its end-
points. Whenever we finish traversing one component, we start visiting the next
one in the cycle. After k−1 components are visited in full (where k is the number
of components), we stop. At this point, only the largest component, which typ-
ically contains almost the entire graph, has not been visited in full. In total, to
process the equivalence class we visit no more than twice the number of vertices
in the smaller components.

Detecting Natural Cuts. The second stage of the filtering phase of PUNCH
detects natural cuts in the graph. Unlike the cuts in the previous section, they
do not have a preset number of edges. Intuitively, a natural cut is a sparse cut
separating a local region from the rest of the graph. Our algorithm finds natural
cuts throughout the graph, ensuring that every vertex is inside some such cut.

It is tempting to look for a good cut by picking two vertices (s and t) within
a local region and computing the minimum cut between them. Unfortunately,
since the average degree on a road network is very small (lower than 3), such
s–t cuts are usually trivial, with either s or t alone in its component.

Alternatively, one could try a more complicated procedure, such as deter-
mining the sparsest cut of some region R, i.e., the cut C ⊆ R minimizing



w(δ(C))/(s(C) · s(R \ C))). This could be useful, but finding such a cut is NP-
hard, and practical approximation algorithms are not known [3].

By computing a minimum cut between sets of vertices, we get a notion of
natural cuts that is both useful and tractable. These cuts are nontrivial and
can be computed by a standard s–t cut algorithm, such as the push-relabel
method [16].

v

Fig. 1. Computing a natu-
ral cut. A BFS tree of size
at most αU is grown from
a center vertex v. The ex-
ternal neighboring vertices
of this tree are the ring
(outer solid line). The set
of all vertices visited by the
BFS while the tree had size
less than αU/f is the core
(gray region). The natu-
ral cut (dashed line) is the
minimum cut between the
contracted versions of the
core and the ring.

Our algorithm works in iterations. Each iteration
picks a vertex v as a center and grows a breadth-
first search (BFS) tree T from v, stopping when s(T )
(the sum of its vertex sizes) reaches αU , for some
parameter 0 < α ≤ 1. We call the set of neighbors
of T in V \ T the ring of v. The core of v is the
union of all vertices added to T before its size reached
αU/f , where f > 1 is a second parameter. (In our
experiments, we use α = 1 and f = 10 as default.)
We temporarily contract the core to a single vertex
s and the ring into a single vertex t and compute
the minimum s–t cut between them (using w(.) as
capacities), as shown in Figure 1.

To pick the centers in each iteration, we need a
rule that ensures that every vertex eventually belongs
to at least one core, and is therefore inside at least
one cut. We accomplish this by picking v uniformly
at random among all vertices that have not yet been
part of any core. The process stops when there are no
such vertices left. Note that we can repeat this entire
procedure C times in order to increase the number
of marked edges, where C (the coverage) is a user-
defined parameter.

When these iterations finish, we contract each connected component of the
graph GC = (V,E\C), where C is the union of all edges cut by the process above.
We call each contracted component a fragment. Figure 2 gives an example.

Note that setting α ≤ 1 ensures that no fragment in the contracted graph has
size greater than U . The transformed problem can therefore still be partitioned

Fig. 2. During the filtering phase, several natural cuts are detected in the input graph
(left). At the end of this phase, any edge not contributing to a cut is contracted. Each
vertex of the resulting graph (right) represents a fragment.



into cells of size at most U , and any such partition can be transformed into a
feasible solution to the original instance.

Finally, we note that the generation of natural cuts can be easily parallelized.
Our implementation first picks all centers sequentially, then runs each minimum-
cut computation (including the creation of the relevant subproblem) in parallel.

3 Assembly Phase

During the assembly phase, we finally find a partition. We take as input the graph
produced by the filtering phase. Although this is the graph of fragments (not
the original input), we also refer to it as G = (V,E) in this section to simplify
notation. Any valid partition of this input corresponds to a valid partition of
the original graph, with the same cost. To obtain good partitions, the assembly
phase uses several tools: a greedy algorithm, a local search, and a multistart
heuristic with combination. We discuss each in turn.

Greedy Algorithm. We use a randomized greedy algorithm to find a reasonable
initial partition. It repeatedly contracts pairs of adjacent vertices, and stops when
no new contraction can be performed without violating the size constraint. Each
step picks, among all pairs of adjacent vertices with combined size at most U ,
the pair {u, v} that minimizes a score function. This function is randomized and
depends on the sizes of both vertices and on the weight of the edge between
them. We tried many score functions and settled for score({u, v}) = r ·w{u, v} ·
(
√

1/s(u) +
√

1/s(v)), where r is a random number between 0 and 1.
Intuitively, we want to merge vertices that are relatively small but tightly con-

nected. The precise formula is based on the observation that, on road networks,
we expect a region of size k to have about O(

√
k) outgoing edges. Moreover,

by adding two independent fractions we implicitly give higher importance to the
smaller region. Different score functions may work better for other graph classes.

The randomization term (r) is relevant for the local search and the multistart
heuristic, as we shall see. It is biased towards 1 to ensure that the contribution
of the deterministic term is not too small. More precisely, we use two constants a
and b, both between 0 and 1. With probability a, we pick r uniformly at random
in the range [0, b]; with probability 1 − a, we pick r uniformly at random from
[b, 1]. After some parameter testing, we ended up using a = 0.03 and b = 0.6.

For a fixed pair of vertices, the score function is computed once and stored.
After a contraction, it is recomputed (with fresh randomization terms) for all
edges incident to the contracted vertex.

Local Search. Greedy solutions may be reasonable, but they can be greatly
improved by local search. The local search views the current partition as a con-
tracted graph H. Each vertex of H corresponds to a cell of the partition, and
there is an edge {R,S} in H between cells R and S if there is at least one edge
{u, v} in G with u ∈ R and v ∈ S. As usual, the weight of {R,S} in H is the
sum of the weights of corresponding edges in G.



We tried several variants of the local search, all of them consisting of a se-
quence of reoptimization steps. Each such step first creates an auxiliary instance
G′ = (V ′, E′) consisting of a connected subset of cells of the current partition. In
this auxiliary instance, some of the original cells are uncontracted (i.e., decom-
posed into their constituent fragments in G), while others remain contracted.
The weight of an edge in E′ is given by the sum of the weights of the corre-
sponding edges in G.

We run the randomized greedy algorithm on G′, and use the result to build
the corresponding modified solution H ′ (of G) in a natural way. If H ′ is better
than H, we make H ′ our new current solution, replacing H. Otherwise, we say
that this reoptimization step failed, and keep H as the current solution.

We tested three local searches, which differ in how they build the auxiliary
instances G′, as Figure 3 illustrates. The simplest variant picks, in each step, a
pair {R,S} of adjacent cells and creates an auxiliary instance G′

RS consisting
of the uncontracted versions of R and S. We call this variant L2. The second
variant, L+

2 , is similar, but also includes in G′
RS the (contracted) neighbors of

R and S in H. The third variant, L∗
2, extends L+

2 by also uncontracting the
neighbors of R and S.

For all variants, each step is fully determined by a pair {R,S} of cells. The
reoptimization step itself, however, is heuristic and randomized. In practice, it
is worth repeating it multiple times for the same pair {R,S}. We maintain for
each pair {R,S} of adjacent cells a counter ϕRS . Initially set to zero, it roughly
measures the number of unsuccessful reoptimization steps applied to {R,S}. If
a reoptimization step on {R,S} fails, we increment ϕRS . If it succeeds, we reset
the counters associated with all edges in H ′ having at least one endpoint in an
uncontracted region of G′

RS .
Our algorithm uses the ϕRS counters and a user-defined parameter ϕ ≥ 1

to decide when to stop. The parameter limits the maximum number of allowed
failures per pair. Among all pairs {R,S} with ϕRS < ϕ, we pick one uniformly
at random for the next reoptimization step. If no such pair is available, the

Fig. 3. Local searches L2, L+
2 , and L∗

2 as defined by the same pair of cells. Search L2

(left) reoptimizes an auxiliary instance corresponding to the uncontracted versions of
the two central cells. L+

2 (center) also includes the (contracted) neighboring cells in the
auxiliary instance. In L∗

2 (right) the neighboring cells are uncontracted as well. (Cells
split by dashed lines are uncontracted; cells in the auxiliary instance are shaded.)



algorithm stops. As one would expect, increasing ϕ leads to better solutions,
but slows down the algorithm.

To parallelize the local search, we try several pairs of regions simultaneously
and, whenever an improving move is found, we make the corresponding change
to the solution sequentially.

Multistart and Combination. We use two strategies to improve the quality of the
solutions we find. The first is to run a multistart heuristic. In each iteration, it
runs our randomized greedy algorithm and applies local search to the resulting
solution. Since both the greedy algorithm and the local search are randomized,
different iterations may find distinct solutions. After M iterations (where M is
an input parameter), the algorithm stops and returns the best solution found.

We can find even better partitions by combining pairs of solutions generated
during the multistart algorithm. To do so, we keep a pool of elite solutions
with capacity k, containing some of the best partitions found so far. Here k
is a parameter of the algorithm; a reasonable value is k = d

√
Me. This is a

standard application of the evolutionary approach, widely used by combinatorial
optimization heuristics, including genetic algorithms [17] and path-relinking [14].

In the first k iterations of the multistart algorithm, we simply add the result-
ing partition P to the pool. Each subsequent iteration also starts by generating
a new solution P (using the randomized greedy algorithm and local search), but
P is not immediately added to the pool. Instead, we first create another solution
P ′ by combining two distinct solutions picked uniformly at random from the
pool. We then combine P and P ′, obtaining a third solution P ′′. Finally, we try
to insert P ′′, P ′, and P into the pool, in this order.

We must still show how to combine two solutions and how to decide whether
a new solution should be inserted into the pool. We discuss each issue in turn.

Combination. Let P1 and P2 be two partitions. The purpose of combining them
is to obtain a third solution P3 that shares the good features of the original
ones. Intuitively, if P1 and P2 “agree” that an edge (u, v) is on the boundary
between two regions, it should be more likely to be a cut edge in P3 as well. Our
algorithm implements this intuition as follows. First, it creates a new instance
G′ with the same vertices and edges as G. For each edge e, define b(e) ∈ {0, 1, 2}
as the number of solutions (among P1 and P2) in which (u, v) is a boundary
edge. The weight w′(e) of e in G′ is its original weight w(e) in G multiplied by
a positive perturbation factor pb(e), which depends on b(e). Intuitively, to make
P3 mimic P1 and P2 we want p0 > p1 > p2, since lower-weight edges are more
likely to end up on the boundary. The algorithm is not too sensitive to the exact
choice of parameters; our experiments use p0 = 5, p1 = 3 and p2 = 2.

We use the standard combination of constructive algorithm and local search
to find a solution of G′, which we turn into P3 (a solution of G) by restoring
the original edge weights. Note that the idea of combining solutions by perturb-
ing the input has been used before, both for graph partitioning [35] and other
problems [32].



Pool management. The purpose of the pool is to keep good solutions found by
the algorithm. While the pool has fewer than k solutions, any request to add a
new solution P is granted. If, however, the pool is already full, we must decide
whether to actually add P or not and, if so, we must pick a solution to evict. If
all solutions already in the pool are better than P , we do nothing. Otherwise,
among all solutions that are no better than P , we evict that one that is most
similar to P . For this purpose, the difference between two solutions is defined as
the cardinality of the symmetric difference between their sets of cut edges. This
replacement strategy has been shown to make similar evolutionary algorithms
more effective by ensuring some diversity in the pool [31].

4 Balanced Partitions

As described, PUNCH solves the standard graph partitioning problem, which
has no hard bound on the number of cells in the solution; it only ensures that no
cell will have size greater than U . We now show how to use PUNCH to compute
balanced partitions. In this variant, the inputs are the number of cells (k) and
the tolerated imbalance (ε); the partitioner must find k cells, each with size at
most (1+ ε)dn/ke, where n is the total number of vertices in the original graph.

To find an ε-balanced partition with at most k cells, we first use the algo-
rithms described so far (a combination of filtering and assembly) to produce a
standard (potentially unbalanced) partition with U = b(1 + ε)dn/kec. The only
constraint the partition may violate is having ` > k cells. To fix this, we run a
rebalancing algorithm: we choose a set of k base cells and distribute the frag-
ments of the remaining ` − k cells among the base cells. Like other algorithms
for the balanced problem, we may sacrifice cell connectivity.

More precisely, to select the base cells, each cell C of the initial solution is
assigned the score (2 + r)s(C), where r is picked uniformly at random between
0 and 1; the k cells with highest score are chosen. Let V1, V2, . . . , Vk denote the
base cells, and let W be the set of fragments of the remaining cells. Then, we
start an iterative process. In each round, we set U ′ = max1≤i≤k(U − s(Vi)) and
find a partition P ′ of G[W ] (the subgraph induced by W ) with U ′ as an upper
bound on the cell size. We then heuristically merge cells of P ′ with base cells in
the following manner. We process the cells of P ′ in decreasing order of size. Take
a cell C ∈ P ′. Among all base cells Vi with s(Vi) + s(C) ≤ U , we pick one at
random with probability proportional to 1/s(Vi), thus favoring tighter fits. If C
does not fit anywhere (no base cell is small enough), we skip it: C will be split in
the next round. If all cells of P ′ can be thus allocated, we are done. Otherwise,
we proceed to the next round by decreasing U ′ (taking the modified base cells
into account) and finding a new partition P ′.

Because the rebalancing algorithm is randomized (and relatively quick), we
run it several times to rebalance a single initial solution, and pick the best result.

One problem remains: our approach may fail if the fragments built during
the filtering phase are too big. Especially when ε is very small, it may happen
that we cannot rebalance the partition. To make this less likely, when computing



balanced partitions we actually use U/3 during the initial filtering stage, thus
creating smaller fragments. If the rebalancing procedure still fails, we could re-
duce the threshold during filtering even further and start all over again. For the
inputs tested, however, setting the threshold to U/3 is sufficient.

5 Experiments

We implemented PUNCH in C++ and compiled it with Microsoft Visual C++
2010. For parallelization, we use OpenMP. The evaluation was conducted on a
machine equipped with two Intel Xeon X5680 processors and 96 GB of DDR3-
1333 RAM, running Windows 2008R2 Server. Each CPU has 6 cores clocked at
3.33GHz, with 6 x 64 KB L1, 6 x 256KB L2, and 12MB L3 cache.

We use two graphs in our main experiment, both taken from the webpage
of the 9th DIMACS Implementation Challenge [11]. The Europe instance rep-
resents the road network of Western Europe, with 18 million vertices and 22.5
million edges, and was made available by PTV AG [30]. The USA road network
(generated from TIGER/Line data [36]) has 24 million vertices and 29.1 million
edges. In all cases we use an undirected and unweighted variant of the graphs.
Note that the USA data is already undirected. For Europe, this means interpret-
ing all input arcs as undirected and eliminating all parallel edges: If arcs (v, w)
and (w, v) are in the input, we have a single edge {v, w} = {w, v}.

We implemented the push-relabel algorithm of Goldberg and Tarjan [16] to
compute s–t cuts. For our application, the version using FIFO order, frequent
global relabelings, and the send operation performs best (see [16] for details).

We use the following parameters for PUNCH. The filtering phase uses α = 1,
f = 10, and C = 2, and detects both tiny and natural cuts. The assembly phase
uses the L+

2 local search with ϕ = 16. We do not use the combination heuristic
by default. (A detailed study of the effects of these parameters can be found
in the full paper [8].) We use all 12 cores during natural-cut detection and the
assembly phase; our implementation of tiny-cut detection is sequential.

Unbalanced Partitions. Table 1 shows how PUNCH performs on Europe and
USA when the maximum cell size U varies from 210 to 222. It reports the average
number of cells, the average number |V ′| of fragments after filtering, the solution
value (number of cut edges), and the average running time of PUNCH (in total
and of each part). Since our algorithm is nondeterministic due to parallelism and
randomness, all values are aggregated over 50 runs, with varying random seeds.

As expected, the filtering phase reduces the graph size significantly. The tiny-
cut procedure eliminates about half the vertices, while the natural-cut routine
further decreases the number of vertices by 1 to 4 orders of magnitude, depending
on U . Because the filtering phase grows BFS trees parameterized by U , more
edges are marked as candidates (and kept uncontracted) when U is small.

This dependence also explains our running times. The procedure for detecting
tiny cuts, which is not parallelized, is almost independent of U and takes about
30 seconds. Natural-cut detection is executed on bigger subgraphs as U increases.



Table 1. Performance of 50 runs of PUNCH on Europe and USA, with varying max-
imum cell sizes (U). Under “cells”, we report the lower bound (lb = dn/Ue) and the
average number of cells in the actual solution. Column |V ′| refers to the average number
of vertices (fragments) after filtering. “solution” reports the average and best solutions
found. Finally, the average running times of each phase of the algorithm (tiny cuts,
natural cuts, and assembly) and in total are shown.

cells solution time [s]
graph U lb avg |V ′| best avg worst tny nat asm total

Europe 1024 17589 20128.7 1366070 168463 168767 169098 24.5 17.5 37.6 79.7
4096 4398 5000.4 605864 68782 69034 69290 24.5 18.2 19.9 62.5

16384 1100 1247.5 258844 28279 28448 28604 24.5 27.1 10.1 61.6
65536 275 313.9 104410 11257 11403 11518 24.4 51.3 4.8 80.5

262144 69 80.9 34768 4124 4194 4268 24.4 80.0 1.7 106.1
1048576 18 21.8 10045 1422 1464 1527 24.4 122.9 0.6 147.9
4194304 5 5.8 2014 369 371 376 24.2 172.2 0.3 196.6

USA 1024 23387 26725.2 1826293 222349 222636 222896 33.1 21.1 50.3 104.6
4096 5847 6642.6 787382 87584 87762 87949 33.1 21.3 25.5 79.9

16384 1462 1661.2 293206 34175 34345 34523 33.1 30.6 11.3 75.0
65536 366 417.7 89762 12627 12767 12906 33.1 53.1 3.7 89.9

262144 92 108.6 22728 4506 4556 4616 33.1 69.2 1.0 103.3
1048576 23 27.4 4615 1415 1504 1607 33.1 84.3 0.3 117.6
4194304 6 7.0 931 381 383 389 33.1 105.3 0.3 138.7

Still, the total time spent on it increases only by one order of magnitude as U
increases by more than three (from 210 to 222). The reason is that the number of
min-cut computations decreases as U increases. Conversely, the assembly phase
gets faster as U increases because it operates on smaller graphs. For very small
values of U , the assembly phase is the main bottleneck. In total, we need between
1 and 3 minutes to find good partitions of Europe or the USA.

We note there are differences between the two graphs. When U is large,
the contracted version of USA has less than half as many vertices as the corre-
sponding graph of Europe, even though Europe is 25% smaller than USA before
contraction. This indicates the USA network has more obvious natural cuts at a
more global scale. (This could be—at least partially—an artifact of this partic-
ular data set; as observed on the DIMACS webpage [11], several important road
segments, including some on bridges and freeways, are missing from the USA
graph.) The difference is much less pronounced for smaller values of U .

Although randomized, PUNCH is quite robust: over 50 executions, the best
and worst solutions found are close to average. Moreover, the solutions found,
although not perfectly balanced, are not too far from it. On average, PUNCH
finds solutions with about 15% more cells than a perfectly balanced partition.

Balanced Partitions. We now consider balanced partitions, where the maximum
number k of cells is bounded and each cell must have size at most U∗ = b(1 +
ε)dn/kec, where ε is the tolerated imbalance. We use ε = 0.03, as is common in



Table 2. Best solution quality of strong PUNCH when finding balanced partitions
with ε = 0.03 for varying k, aggregated over 9 runs. Columns |V | and |E| report the
number of vertices and edges of the instance.

best solution
instance |V | |E| 2 4 8 16 32 64

luxembourg 114599 119666 16 46 79 139 235 369
belgium 1441295 1549970 70 161 308 532 880 1401
netherlands 2216688 2441238 40 81 191 360 652 1186
italy 6686493 7013978 36 89 198 338 665 1166
great-britain 7733822 8156517 82 213 377 633 1118 1796
germany 11548845 12369181 108 276 485 845 1475 2282
asia 11950757 12711603 7 20 47 110 238 452
europe 50912018 54054660 138 311 515 905 1488 2509

Table 3. Performance of default PUNCH when finding balanced partitions with ε =
0.03 for varying k, aggregated over 9 runs.

median solution average time [s]
instance 2 4 8 16 32 64 2 4 8 16 32 64

luxembourg 16 46 82 148 245 377 1.2 2.4 2.4 1.9 1.5 2.2
belgium 72 167 316 565 923 1436 16.0 19.9 20.8 20.4 15.7 18.3
netherlands 40 81 191 380 679 1210 28.1 17.1 15.2 15.0 12.1 16.9
italy 36 91 201 349 690 1187 97.8 78.6 65.0 51.9 41.7 40.0
great-britain 84 225 393 638 1175 1846 60.4 60.6 57.7 50.8 43.6 47.6
germany 113 283 509 881 1512 2332 128.6 125.8 104.7 91.5 74.3 76.4
asia 7 20 48 112 249 470 67.5 76.6 60.1 50.9 46.1 43.7
europe 140 312 523 955 1536 2576 1051.0 814.0 627.4 512.8 427.7 375.0

Table 4. Performance of strong PUNCH when finding balanced partitions with ε =
0.03 for varying k, aggregated over 9 runs.

median solution average time [s]
instance 2 4 8 16 32 64 2 4 8 16 32 64

luxembourg 16 46 80 142 238 377 7.2 16.4 18.1 13.7 11.1 8.6
belgium 71 163 313 548 900 1421 51.2 99.9 113.6 115.0 94.9 58.5
netherlands 40 81 191 369 662 1199 132.2 57.3 52.8 59.2 50.1 48.4
italy 36 90 200 339 673 1175 157.2 173.8 174.3 135.1 110.2 80.7
great-britain 83 220 381 636 1140 1821 103.6 165.5 189.8 167.0 135.3 108.5
germany 111 279 503 852 1488 2317 195.6 347.7 291.8 253.9 214.1 153.0
asia 7 20 48 111 242 462 83.4 200.0 95.3 73.7 66.4 58.4
europe 139 311 522 923 1517 2538 2217.9 1451.8 939.8 732.5 604.0 494.6

the literature [4]. As described in Section 4, to find a balanced partition with
PUNCH we first run the filtering stage with U = U∗/3. We could then run the
assembly stage with U = U∗ to generate an initial unbalanced solution, which
we make balanced by reassigning some fragments. In practice, the variance of



the assembly phase is rather large when k is very small (2 or 4), which we can
remedy by running it several times.

More precisely, our default algorithm for finding a balanced partition is as
follows: (1) run the filtering stage once with U = U∗/3; (2) use the multistart
algorithm to create d32/ke (unbalanced) solutions with U = U∗; (3) rebalance
each unbalanced solution 50 times (as described in Section 4); (4) return the
best balanced solution thus found. We use ϕ = 512 when finding unbalanced
solutions (step 2), and ϕ = 128 during rebalancing (step 3). We also consider a
strong version of balanced PUNCH. The only difference from the default version
is that it creates d256/ke (unbalanced) solutions, instead of d32/ke.

Table 2 reports the best solutions found by strong PUNCH on the road
networks (streets) of the 10th DIMACS challenge [4]. Tables 3 and 4 report, for
each variant, the median solution over 9 runs and average running times.

We observe that the strong version of PUNCH yields slightly better results
but takes more time. However, the gain in solution quality is relatively small.
We also observe that the median and best solutions (comparing Tables 4 and 2)
are very close to each other. We conclude that PUNCH is also very robust for
finding balanced partitions.

6 Conclusion

We presented PUNCH, a new algorithm for graph partitioning that works par-
ticularly well on road networks. The key feature of PUNCH is its graph reduc-
tion routine: By identifying natural cuts and contracting dense regions, it can
reduce the input size by orders of magnitude, while preserving the natural struc-
ture of the graph. Because of this efficient reduction in size, we can run more
time-consuming routines to assemble a good partition. As a result, we obtain
partitions for road networks better than most previous approaches. Only Buf-
foon [33] sometimes finds better partitions than PUNCH, and it does so by using
our filtering phase and running KaFFPaE on the fragment graph. The resulting
partitions are sometimes slightly better than those found by PUNCH, but for
the price of much higher running times. Altogether, PUNCH provides a good
trade-off between solution quality and running times: It needs only a few minutes
to generate an excellent partition, which is fast enough for most applications.
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