

Characterizing Task-Machine Affinity in
Heterogeneous Computing Environments

Abdulla M. Al-Qawasmeh1, Anthony A. Maciejewski1, Rodney G. Roberts3, and Howard Jay Siegel1,2

1Department of Electrical and Computer Engineering
2Department of Computer Science

Colorado State University, Fort Collins, Colorado,
USA

3Department of Electrical and Computer Engineering
Florida State University, Tallahassee, Florida, USA

{Abdulla.Al-Qawasmeh, aam, hj}@colostate.edu, rroberts@eng.fsu.edu

Abstract—Many computing environments are
heterogeneous, i.e., they consist of a number of different
machines that vary in their computational capabilities.
These machines are used to execute task types that vary
in their computational requirements. Characterizing
heterogeneous computing environments and
quantifying their heterogeneity is important for many
applications. In previous research, we have proposed
preliminary measures for machine performance
homogeneity and task-machine affinity. In this paper,
we build on our previous work by introducing a
complementary measure called the task difficulty
homogeneity. Furthermore, we refine our measure of
task-machine affinity to be independent of the task type
difficulty measure and the machine performance
homogeneity measure. We also give examples of how
the measures can be used to characterize heterogeneous
computing environments that are based on real world
task types and machines extracted from the SPEC
benchmark data.

Keywords- heterogeneous; computing environments;
task types; machines; matrix normalization; benchmarks

I. INTRODUCTION
Many computing environments are heterogeneous,

i.e., they consist of a number of different machines
that vary in their computational capabilities. These
machines are used to execute task types that vary in
their computational requirements. Different task types
can be better suited to different machine architectures.
Further, while a machine A may be better than a
machine B for one task type, it may not be better for
another task type; performance is a function of the
interaction of a machine’s capabilities and a task
type’s requirements.

In this paper, we use the term task type to refer to
an executable program than can be run many times. A
task is an instance of a task type that is executed once.

It is common to arrange the estimated time to
compute (ETC) of task types on machines in an ETC
matrix. Entry (i, j) in the ETC matrix represents the
ETC of task type i on machine j. The ETC values can
be based on user supplied information, experimental
data, or task profiling and analytical benchmarking
(e.g., [1, 12, 13, 17, 19, 25, 26]). The determination of
ETC values is a separate research problem; the
assumption of such ETC information is a common
practice in resource allocation research (e.g., [5, 7, 10,
13, 15, 17, 18, 22, 24]). An ETC value is the
estimated time to compute a given task type on a
given machine when it is run alone.

Quantifying the heterogeneity of a heterogeneous
computing (HC) environment is important and has
multiple useful applications. Examples of such
applications include, predicting the performance of
HC environments [9], selecting appropriate heuristics
to use in an HC environment based on its
heterogeneity [3], “what-if studies” to identify the
effect of adding/removing task types or machines
from an HC system on its heterogeneity, and
generating ETC matrices for simulation studies that
span the entire range of heterogeneities [2]. The
purpose of this paper is to provide heterogeneity
measures that can be used as a standard way to
compare different heterogeneous computing
environments.

Although characterizing the heterogeneity of HC
environments is important, there has not been much
research in this area. In [4, 6], methods for generating
HC environments, based on ETC matrices, for
simulation studies were proposed. The method in [4]
has been used widely, e.g., in [8, 11, 14, 16].
However, these methods do not deal with the problem
of characterizing the heterogeneity of existing HC
environments. To the best of our knowledge there is
no other research that deals with the problem of
identifying standard measures for quantifying the
heterogeneity of computing environments.

There can be many methods to characterize the
heterogeneity of an HC environment. In addition, the

This research was supported by the NSF under grant number
CNS-0905399, and by the Colorado State University George T. Abell
Endowment.

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.125

33

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.125

33

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.125

33

measured value of the heterogeneity of the
environment may vary widely depending on the
methods used. Therefore, we are motivated to
determine standard measures of heterogeneity.

We have identified some properties that
heterogeneity measures should have. These properties
directed our choice of the heterogeneity measures.
First, a heterogeneity measure should match intuition
and common beliefs about heterogeneity. Second, it
should not be affected by multiplying the ETC matrix
by a scaling factor. This is because the ETC values
can be represented in different time units (e.g.,
seconds vs. minutes). Third, when multiple measures
are used to examine different aspects of heterogeneity,
they should be as independent as possible of each
other (i.e., we should be able to change the value of
one of the measures independent of the others). There
is no value of having two or more measures that are
totally correlated. It would be sufficient to just use one
of them. For example, if the standard deviation was
used to represent the heterogeneity of a set of values,
then there is no value of using the variance as another
measure of heterogeneity because both measures will
be totally correlated.

In [2], we introduced two measures for
characterizing the heterogeneity of computing
environments. These measures are: machine
performance homogeneity (MPH) and task-machine
affinity (TMA). This paper builds on the research we
have done in [2] and introduces a new complementary
measure that represents the homogeneity of task types
called task type difficulty homogeneity (TDH). This
measure adds a new aspect of heterogeneity that will
enable us to characterize a wider range of
heterogeneous environments.

In this paper, we have identified a computational
procedure that puts a matrix, which represents an HC
environment, in standard form. The standard form
enables us to have the three independent heterogeneity
measures: MPH, TDH, and TMA (satisfying the third
property for heterogeneity measures). Putting the
matrix in standard form also allows us to simplify the
calculation of the TMA.

In summary, the contributions of this paper are:
a) to introduce a new measure that represents the
homogeneity of task types, and that enables us to
characterize wider ranges of heterogeneous
environments, b) to determine a standard matrix form
that keeps the three measures independent, and allows
a simplified calculation of TMA, and c) to illustrate
how the measures can be used to analyze some real
world environments obtained from the SPEC
benchmarks.

The rest of the paper is organized as follows.
Section II gives an overview of the research that we
have done in [2]. The new complementary TDH
measure is presented in Section III. In Section IV, we
give examples of heterogeneous environments to

illustrate the motivation behind the measures that we
have introduced in this paper and in [2]. Examples of
HC environments, that are based on real world data
from the SPEC benchmarks, are given in Section V.
Section VI describes the special cases of HC
environments for which the standard form matrix
cannot be determined. Finally, conclusions are
presented in Section VII.

II. OVERVIEW OF PREVIOUS RESEARCH

A. Overview
In this section, we give a brief overview of the

research done in [2]. We explain some of the concepts
introduced in that paper and show how the two
measures (MPH and TMA) are calculated. In addition,
we give more examples to further illustrate the
intuition behind the two measures.

B. Estimated Computation Speed Matrix
Another way of representing an HC environment

is by using an estimated computation speed (ECS)
matrix. The ECS matrix can be obtained from an ETC
matrix by taking the reciprocal of each entry in the
ETC matrix, i.e.,

 ECS(i, j) ൌ 1/ETC(i, j). (1)

Entry (i, j) of the ECS matrix represents the amount of
task type i that can be completed in a unit time on
machine j. Therefore, larger entries in the ECS matrix
correspond to more powerful machines for a specific
task type.

In some HC environments, some machines may
not be able to run specific task types because of
specific task type requirements (e.g., specific
architecture requirements or operating system
requirements). In the ECS matrix, if task type i cannot
run on machine j, then entry (i, j) will be equal to 0.
The corresponding entry in the ETC matrix would be
equal to ∞. Both the ETC and ECS matrices are non-
negative matrices. Although individual entries in the
ECS matrix can be equal to 0, there cannot be
columns with all 0 entries or rows with all 0 entries
because both cases correspond to a machine that
cannot execute any task type or a task type that cannot
be executed on any machine, respectively.

C. Machine Performance Homogeneity
One way to measure the performance of a machine

is by the sum of the values along the corresponding
column in the ECS matrix. For example, the
performance of machine 1 for the ECS matrix in
Figure 1 is 17. Higher column sums correspond to
machines with better performance for the given task
types in the ECS matrix. The performance of
machine j, MPj, for an ECS matrix with T task types is
given by

343434

MPj = ෍ ECS(i, j) .T

i=1

 (2)

Clearly, if all the machines’ performances are equal,
then we have a completely homogeneous computing
environment in terms of machine performance.
However, when the performances are not equal, there
can be a number of different ways to combine the
performance values to measure machine performance
homogeneity (or heterogeneity).

Let the machines of the ECS matrix be sorted in
ascending order of their performance (i.e., the
columns are ordered in ascending order of their sums).
We define the machine performance homogeneity
(MPH) measure to be equal to the average ratio of a
machine performance to its next better performing
machine, i.e., for an ECS matrix with M machines,

MPH =

∑ ൫MPj MPj൅1⁄ ൯M-1
j=1

M െ 1
. (3)

The MPH of the ECS matrix in Figure 1 is 0.52.
The weighting factor (wti) of task type i can be

used to represent a number of characteristics (e.g., the
importance of the task type, the number of times that a
task type is executed, or the probability that a task
type will be executed). Similarly, the weighting
factor (wmj) of machine j can be used to represent a
number of characteristics (e.g., security level of that
machine).

The weighting factors are incorporated in the
equations for calculating each of the measures
presented in this paper. These factors make the

m1 m2 m3

t1 6 10 20

t2 5 3 10

t3 3 5 13

t4 3 4 40
Figure 1. An example ECS matrix to illustate how machine

performance is calculated.

measures more flexible, which enables them to be
applied to a wide variety of environments. Therefore,
the formula for calculating machine j’s performance,
when weighting factors are used, can be generalized
to

MPj ൌ wmj ෍ wtiECS(i, j)

T

i=1

. (4)

D. MPH Compared to Other Measures
We compare MPH with other possible measures

and show that MPH has the first property of a
heterogeneity measure (i.e., it matches the intuition
about heterogeneity) while the other measures do not
have that property. Other possible measures include:
1) the ratio, R, of the performance of the lowest
performance machine to that of the highest
performance one, as a measure of homogeneity (i.e.,
higher values correspond to more homogeneous
environments), 2) the geometric mean1, G, of the
ratios of the performance of the lower performance
machine to that of the higher performance machine in
each pair of adjacent machines in the ECS matrix, as a
measure of homogeneity, and 3) the coefficient of
variation2, COV, of the machines’ performances, as a
measure of heterogeneity. All of the above measures
have the second property of a heterogeneity measure
(i.e., they are not affected by scaling the performances
by a common factor).

Figure 2 shows four examples of possible
machines’ performances of HC environments with
five machines. Intuitively, environment 1 is the most
heterogeneous because none of the machines
performances are equal. Environments 2 and 3 have
the same heterogeneity because they both have four
machines with the same performance and the ratio of
the performance of the most powerful machine and
the performance of the least powerful one is 1/16.
Environment 4 has three machines that have the same
performance. Therefore, it is less heterogeneous than
environment 1 and more heterogeneous that
environments 2 and 3. In the figure, the values of each
of the measures for each of the environments are
given. The only measure that matches intuition is the
MPH measure. Both measures, G and R, capture the
heterogeneity between the highest performance
machine and the lowest performance machine.

1 The geometric mean of a set of n values ai is given by ሺ∏ ܽ௜௡௜ୀଵ ሻଵ/௡.
2 The COV of a set of a set of n values ai with standard deviation S and mean μ is given by S/ μ.

353535

However, they do not capture the spread of the
performance of the intermediate machines.

E. Task-Machine Affinity
MPH represents one aspect of heterogeneity;

however, it does not capture the case where various
sets of task types are better suited to run on different
sets of machines (i.e., task-machine affinity). For
example, the two ECS matrices in Figure 3 are
completely homogeneous in terms of machine
performance. However, the machines in Figure 3(b)
are heterogeneous in the sense that some of the
machines are better suited to execute different sets of
task types. Therefore, in order to represent this
different aspect of heterogeneity we introduce the
TMA measure.

To keep the TMA independent of MPH, we
normalize the ECS matrix by the column sums (which
is equal to the 1-norm because the entries in the ECS
matrix are non-negative) before calculating the TMA.
The MPH of the normalized (and not weighted) ECS
matrix is equal to 1. Intuitively, column correlation,

Environment 1.
1, 2, 4, 8, 16
MPH = 0.5, R = 0.06, G = 0.5, COV = 0.88
Environment 2.
1, 1, 1, 1, 16
MPH = 0.77, R = 0.06, G = 0.5, COV = 1.5
Environment 3.
1,16, 16, 16, 16
MPH = 0.77, R = 0.06, G = 0.5, COV = 0.46
Environment 4.
1, 4, 4, 4, 16
MPH = 0.63, R = 0.06, G = 0.5, COV = 0.90

Figure 2. Machines’ performances of example HC environments.

m1 m2 m3

t1 20 20 20

t2 10 10 10

t3 5 5 5
(a)

m1 m2 m3

t1 5 10 20

t2 20 5 10

t3 10 20 5
(b)

Figure 3. An example ECS matrix to illustate how machine
performance is calculated.

which is quantified by the angle between the column
vectors in the ECS matrix, represents task-machine
affinity. For example, the angles between the columns
in matrix (a) in Figure 3 are 0, which implies no task
machine affinity. However, the angle between any
pair of columns in matrix (b) in Figure 3 is greater
than 0. The singular values, obtained from the
singular value decomposition, of the normalized ECS
matrix can be used to quantify the column correlation.

Let σi denote the ith singular value of a normalized
ECS matrix. For a normalized ECS matrix with T task
types and M machines, there are min(T,M) singular
values. The singular values are ordered such that

σ1 > σ2 > ڄڄڄ > σmin(T, M) > 0.

For a given ECS matrix with normalized columns,
a lower column correlation will correspond to larger
values of the non-maximum singular values relative
to σ1 and an intuitively higher value of TMA.
Therefore, we use the following formula to calculate
TMA:

TMA= ቆ ∑ σi

min(T,M)
i=2ሺminሺT,Mሻ െ 1ሻቇ σ1൘ . (5)

III. TASK DIFFICULTY HOMOGENEITY

A. Overview
The difficulty of a task type is quantified by the

sum of the ECS values of that task type over all
machines (i.e., the corresponding row sum in the ECS
matrix). Task types with higher row sums are
considered less difficult. Because the difficulty of task
types can vary widely, a measure of task type
difficulty is needed. In this section, we present a
measure for task type difficulty homogeneity (TDH)
and show how it is calculated.

In [2], we only used MPH and TMA as measures.
Therefore, a simple column normalization procedure
was sufficient to keep both measures independent.
With the introduction of TDH, however, the 1-norm
normalization procedure is not as straightforward due
to the interactions between the column and the row
normalizations. Therefore, we illustrate how an
iterative normalization procedure can be used to find a
row and column normalized ECS matrix that isolates
the TMA from MPH and TDH. Let a standard ECS
matrix be an ECS matrix with equal row sums and
equal column sums. In addition to keeping the three
measures independent, a standard ECS matrix allows
us to simplify the TMA equation.

B. Calculating Task Difficulty Homogeneity
The calculation procedure for TDH is similar to

that of MPH. However, the homogeneity is calculated
for task types (rows). Let TDi be the difficulty of task

363636

type i. The general formula for calculating task type
difficulty, when weighting factors are used, is

TD௜ ൌ wti ෍ wmjECS(i, j)

M

j=1

. (6)

For the canonical ECS matrix, let both the
machine performances and task difficulties be sorted
in ascending order. Formally, the canonical form ECS
matrix is a matrix where

1. MPj ൑ MPj൅1 for 0 < j < M, and

2. TD௜ ൑ TD௜ାଵ for 0 < i < T.

Following the same intuition behind MPH, we use
a TDH measure that is equal to the average ratio of a
task type difficulty to its next task type difficulty. The
general TDH formula for a canonical ECS matrix is
given by

TDH=

∑ ሺTD௜ TD௜ାଵ⁄ ሻT-1
i=1

T െ 1
. (7)

Both, MPH and TDH take values in the interval (0, 1].

C. The Standard ECS Matrix
For the TMA to be independent of MPH and

TDH, the singular values must be computed from a
standard ECS matrix where all the column sums are
equal, and all the row sums are equal. In this section,
we illustrate how such a standard ECS matrix can be
computed from an ECS matrix with all positive
elements, which we will refer to as a positive matrix.

The problem of row and column normalization has
appeared in other applications. For example, the
requirement for row and column sum normalization
occurs in the practical problem of estimating doubly
stochastic matrices for certain types of Markov
random processes. Motivated by this problem,
Sinkhorn [21] proved that for any positive square
matrix A, there are two diagonal matrices D1 and D2
such that D1AD2 is doubly stochastic. In other words,
given any positive square matrix, one can suitably
scale the individual rows and columns in such a way
that each row and column sums to the same value.
Furthermore, the diagonal matrices D1 and D2 are
unique up to scalar multiplication.

While Sinkhorn's theorem and its proof
specifically apply to positive square matrices, the
results can also, after suitable modifications, be used
to convert a positive rectangular matrix through a
series of row and column normalizations into a
positive matrix with the property that the row sums
are equal and the column sums are equal. This is
illustrated in Appendix A. Hence, we have the
following result.

Theorem 1. For a T ൈ M ECS matrix with
positive elements, there are diagonal matrices D1 and
D2 such that, for any nonzero scalar k, D1(ECS)D2 is
a positive matrix whose rows each sum to Mk and
whose columns each sum to Tk. Furthermore, D1 and
D2 are unique up to scalar multiples.

Sinkhorn provided an iterative procedure to obtain
the required diagonal matrices and proved that the
procedure converged. A similar iterative procedure is
also applied in this work.

D. Simplified TMA Calculation
The singular values of the standard ECS matrix

are related to the column sums and row sums. The
following theorem shows that for a specific choice of
the row sums and the column sums the maximum
singular value of the standard ECS matrix will always
be 1.

Theorem 2. For a T ൈ M ECS matrix with the
property that each row sums to ඥM T⁄ and each
column sums to ඥT M⁄ , the largest singular value is
equal to 1.

The proof of Theorem 2 is given in Appendix B. If
we let k (in Theorem 1) be equal to ඥ1/MT, then it
follows that we can convert an ECS matrix to a
standard one that has the column sums equal to ඥT M⁄
and the row sums equal to ඥM T⁄ . The maximum
singular value of that standard ECS matrix will be
equal to 1. This enables us to rewrite the TMA
equation, presented in Section II-E, in the following
simpler form

TMA= ෍ σi ሺminሺT,Mሻ െ 1ሻ⁄min(T,M)

i=2

. (8)

We use an iterative procedure to normalize the
ECS matrix. The iterative approach generates a series
of ECSk matrices. The procedure switches between
row normalization and column normalization until it
converges to a row and column normalized matrix.
The matrix ECSk is defined by

ECS௞ሺ݅, ݆ሻ ൌ ۔ۖەۖ
ඥTۓ M⁄ ECSkିଵሺi, jሻ∑ ECSkିଵሺq, jሻ௤்ୀଵ , k = 1,3,5,…ඥM T⁄ ECSkିଵሺi, jሻ∑ ECSkିଵሺi, pሻெ௣ୀଵ , k =2,4,6,… . (9)

In cases where the ECS matrix contains zero-valued
elements, the iteration defined by Equation 9 may not
converge. This will be discussed further in
Section VI.

373737

IV. CONTRIVED ILLUSTRATIVE EXAMPLES
To further illustrate the intuition behind MPH,

TDH, and TMA, we show, in Figure 4, some
simple 2 ൈ 2 ECS matrices and where they fall within
the range of all possible values of the three measures.
The examples have near extremal values for each of the
measures. Entries with 0 values in the ECS matrix
represent task types that cannot be executed on specific
machines.

Intuitively, matrices A, B, C and D all have a very
high task-machine affinity because there is at least
one task type that can only be executed on one
machine (i.e., that task type has the highest affinity to
the corresponding machine). The TMA measure
reflects this intuition. All these matrices have a TMA
value of 1. Matrix C is already a standard matrix. The
second singular value of that matrix is 1. When the
procedure in Equation 9 is applied to matrices A, B,
and D they all converge to the standard form of C. In
contrast, matrices E, F, G, and H all have no task-
machine affinity because the performance ratio of
machines 1 and 2 is the same for both task types. The
TMA value for these matrices is 0.

Matrices C, D, G, and H are all nearly
homogeneous in terms of machine performance. The
performances of both machines are nearly
homogeneous over both tasks. All the matrices have
high MPH values. In contrast, matrices A, B, E, and F
are all very heterogeneous in terms of machine
performance. For all four matrices, the performance of
machine 2 is much better than machine 1. These
matrices have low MPH values.

Matrices A, C, E, and G are all nearly
homogeneous in terms of task type difficult. They
have high TDH values. In contrast, the task types of
matrices B, D, F, and H are all very heterogeneous.
For all four matrices, task type 1 is much more
difficult than task type 2. The four matrices have low
TDH values.

V. EXAMPLE ECS MATRICES FROM SPEC
BENCHMARKS

In this section, we show examples of ETC
matrices extracted from the integer and floating point
SPEC benchmarks (SPEC CINT2006Rate and SPEC
CFP2006Rate) [23]. The matrices illustrate how
environments constructed from real world task types
and machines can have widely varying values for each
of the measures proposed in this paper. Note that the
benchmarks were used for illustration purposes only
and the measures proposed in this paper can be
applied to any HC environment that is represented by
an ETC matrix.

The SPEC CINT2006Rate consists of 12 task
types. The SPEC CFP2006Rate consists of 17 task
types. We have extracted the peak runtime values for
five different machines. The machines have
processors that have different architectures and are

produced by different manufacturers. Figure 5 shows
the five different machines. Figures 6 and 7 show the
peak runtime values of each of the five machines for
the SPEC CINT2006Rate and SPEC CFP2006Rate
benchmarks, respectively.

Figure 8 shows two example 2 ൈ 2 ETC matrices
extracted from the values in Figures 6 and 7. The
figures also show the values for each of the measures.

Figure 4. Example extreme 2 ൈ 2 ECS matrices with extremal

values of each of the three measures: MPH, TDH, and TMA.

383838

The two matrices are almost identical in terms of
machine performance homogeneity. However, the
task type difficulty and task-machine affinity of the
two matrices vary. The task types of matrix (a) are
more homogeneous than the ones of matrix (b).
Because the ratios of the performances of the two
machines of matrix (b) vary widely for each task type,
the TMA value for that matrix is high. In contrast, the
ratios of the performances of the two machines are
very close for each of the task types of matrix (a).

We also have calculated the values of the three
measures for the entire CINT matrix and the entire
CFP matrix. The values are shown in Figures 6 and 7.
The machine performance homogeneity and the task
type difficulty of both matrices are almost identical.
However, for the floating point applications in the
CFP matrix, task types have more affinity to machines
than that of the integer applications in the CINT
matrix.

The iterative normalization procedure for the CFP
and CINT matrices converged in 7 and 6 iterations,
respectively. Every iteration consists of one column
normalization followed by one row normalization.
The procedure stops when the maximum error in any
column or row norm is less than 1/108.

The benchmarks presented in this section are for
general purpose CPUs. We expect HC environments
that consist of special purpose computing resources
(e.g., accelerators and GPGPUs) and tasks that are
better suited to run on these resources to have higher
TMA values and lower TDH and MPH values.

VI. ISSUES WITH STANDARD FORM MATRICES
In the ECS matrix, it may be desirable to have

entries equal to 0 that correspond to machines that
cannot execute specific task types. However, when the
ECS matrix has some entries that are equal to 0, the
iterative normalization procedure described in Section
III-C is not guaranteed to converge to a standard ECS
matrix. Consider the following ECS matrix

൭0 0 1
1 1 0
0 0 1

൱. (10)

In its current form, this matrix is not normalized
because the second row and third column sums are
both 2 while the other row and column sums are 1. It
can be shown that there exists no combination of row
and column normalizations to convert this matrix to a
standard ECS matrix. To see this, observe that
although row and column normalizations affect the
values of the individual elements of the ECS matrix,
zero-valued elements remain zero-valued elements
and non-zero elements remain non-zero elements for
any combination of row and column normalization.
Consequently, those elements that are equal to 0 will
remain 0 for any combinations of row and column

m1 = ASUS TS100-E6 (P7F-X) server system

(Intel Xeon X3470)
m2 = Fujitsu SPARC Enterprise M3000
m3 = CELSIUS W280 Intel Core i7-870
m4 = ProLiant SL165z G7

(2.2 GHz AMD Opteron 6174)
m5= IBM Power 750 Express

(3.55 GHz, 32 core, SLES)
Figure 5. The five machines used from the SPEC benchmarks.

m1 m2 m3 m4 m5

400.perlbench 625 974 627 563 1159

401.bzip2 971 1592 988 956 1363

403.gcc 642 1166 631 626 1026

429.mcf 267 946 266 463 416

445.gobmk 639 1124 642 719 957

456.hmmer 300 1698 205 391 920

458.sjeng 768 1756 779 912 1235

462.libquantum 537 686 548 431 523

464.h264ref 1082 1814 1092 1095 1804

471.omnetpp 557 1450 569 698 1850

473.astar 707 1235 714 699 1179

483.xalancbmk 414 758 415 414 793

TDH = 0.90 MPH = 0.82 TMA = 0.07

Figure 6. SPEC CINT2006Rate Data.

normalizations. Therefore, if there was a normalized
version of this ECS matrix, each of the four nonzero
elements must equal 1 so that the first and last row
sums are 1 and the first two column sums are 1.

However, this results in the original matrix, which
is clearly not normalized due to the fact that, unlike
the other row and column sums, the second row and
third column sums are not equal to 1.

The authors of [20] have presented a sufficient
condition for a matrix to be row and column
normalized. We summarize their results here.

A square matrix A with non-negative elements is
said to be decomposable if there are permutation
matrices P and Q such that PAQ has the block form

൬A11 0
A21 A22

൰ (11)

where A11 and A22 are square matrices. In other words,
a matrix A with non-negative elements is
decomposable if one can reorder the rows and
columns so as to obtain the above form. If one cannot
do this, then the matrix is said to be fully

393939

m1 m2 m3 m4 m5

410.bwaves 677 1776 664 1238 528

416.gamess 777 2701 778 1267 2522

433.milc 845 2210 851 1056 1104

434.zeusmp 694 1132 706 741 1034

435.gromacs 576 838 592 481 1061

436.cactusADM 859 1204 845 105 345

437.leslie3d 704 1507 711 1207 499

444.namd 657 979 678 648 789

447.dealII 589 893 596 518 764

450.soplex 509 1635 520 1018 441

453.povray 253 465 264 319 451

454.calculix 531 954 551 471 1227

459.GemsFDTD 855 2431 874 1420 1588

465.tonto 693 1122 724 626 1146

470.lbm 1102 1348 1150 892 940

481.wrf 964 1349 939 858 1621

482.sphinx3 1694 2887 1668 1298 3148

TDH = 0.91 MPH = 0.83 TMA = 0.13.
Figure 7. SPEC CFP2006Rate Data.

m4 m5 TDH=0.16

471.omnetpp 698 1850 MPH=0.31

436.cactusADM 105 345 TMA=0.05
(a)

m1 m4 TDH=0.28

436.cactusADM 859 105 MPH=0.30

450.soplex 509 1018 TMA=0.60
(b)

Figure 8. Example 2 ൈ 2 ETC matrices extracted form the SPEC
CINT2006Rate and CFP2006Rate benchmarks. The values for

each of the measures are given for both matrices.

indecomposable. For any square matrix A with non-
negative elements that is fully indecomposable, there
exists diagonal matrices D1 and D2 such that D1AD2
has equal row sums and equal column sums. An
example of a simple matrix that fails the above
condition is the matrix in Equation 10. This matrix is
decomposable because it can be placed in the block
form of Equation 11 by moving the last column to the
front to obtain

൭1 0 0
0 1 1
1 0 0

൱. (12)

The upper left 1 ൈ 1 matrix is A11 and the lower
right 2 ൈ 2 matrix is A22 matrix.

Note that while being indecomposable is a
sufficient condition for being able to row and column
normalize a positive matrix, it is not a necessary
condition. This is illustrated by a diagonal matrix with
positive elements on its diagonal. Such matrices are
already in the decomposable form given in (11), but
they can be easily converted into the identity matrix
through row and column normalization to obtain the
desired form.

The case for rectangular matrices with non-
negative components is handled in a similar way. In
this case, consider an m ൈ n matrix A with m < n (for
the case when m > n, one can transpose, do the row
and column normalizations, and transpose back). In
this case, one says that A is fully indecomposable if
every m ൈ m submatrix of A is fully indecomposable.
In future work, we will investigate evaluating the
TMA for ECS matrices that cannot be row and
column normalized.

VII. CONCLUSIONS
In this paper, we introduced a new complementary

measure of task type difficulty homogeneity (TDH).
We have shown the motivation behind the TDH,
MPH, and TMA measures through many illustrative
examples and ones extracted from the SPEC
benchmarks. In addition, we have demonstrated the
importance of the measures for characterizing wider
ranges of heterogeneous environments.

We have also explained the importance of keeping
the three measures independent and how, with the
introduction of TDH, the column normalization
procedure in [2] is not sufficient to keep the measures
independent. Therefore, we illustrated how an
iterative row and column normalization procedure can
be used to keep the measures independent.

ACKNOWLEDGMENTS
The authors thank Luis Briceño and Bhavish

Khemka for their valuable comments on this work.

REFERENCES

[1] S. Ali, T. D. Braun, H. J. Siegel, A. A. Maciejewski, N.
Beck, L. Boloni, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, and B. Yao, “Characterizing
resource allocation heuristics for heterogeneous
computing systems,” Advances in Computers Volume
63: Parallel, Distributed, and Pervasive Computing,
2005, pp. 91–128.

[2] A. M. Al-Qawasmeh, A. A. Maciejewski, and H. J.
Siegel, “Characterizing heterogeneous envinronments

404040

using singular value decomposition,” 19th
Heterogeneous Computing Workshop (HCW 2010),
24th International Parallel and Distributed Processing
Symposium, Workshops and PhD Forum (IPDPSW
2010), Apr. 2010.

[3] A. M. Al-Qawasmeh, A. A. Maciejewski, H. J. Siegel,
J. Smith, and J. Potter, “Statistical measures for
quantifying task and machine heterogeneity,”
Supercomputing, accepted to appear.

[4] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and
S. Ali.,“Representing task and machine heterogeneities
for heterogeneous computing systems,” Tamkang
Journal of Science and Engineering, Special 50th
Anniversary Issue, Vol. 3, No.3, Nov. 2000, pp.195–
207.

[5] H. Barada, S. M. Sait, and N. Baig, “Task matching and
scheduling in heterogeneous systems using simulated
evolution,” 10th heterogeneous Computing Workshop
(HCW 2001), 15th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2001), Apr.
2001.

[6] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, R. F.
Freund, D. Hensgen, M. Maheswaran, A. I. Reuther, J.
P. Robertson, M. D. Theys, and B. Yao, “A
comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous
distributed computing systems,” Journal of Parallel
and Distributed Computing, Vol. 61, No. 6, Jun. 2001,
pp. 810–837.

[7] L. Briceno, H. J. Siegel, A. Maciejewski, M. Oltikar, J.
Brateman, J. White, J. Martin, and K. Knapp,
“Heuristics for Robust Resource Allocation of Satellite
Weather Data Processing onto a Heterogeneous Parallel
System,” IEEE Transactions on Parallel and
Distributed Systems, accepted to appear.

[8] L. Canon and E. Jeannot, Precise Evaluation of the
Efficiency and the Robustness of Stochastic DAG
Schedules, Research Report 6895, INRIA, April 2009.

[9] R. C. Chiang, A. A. Maciejewski, A. L. Rosenberg, and
H. J. Siegel, "Statistical predictors of computing power
in heterogeneous clusters," 19th Heterogeneous
Computing Workshop (HCW 2010), 24th International
Parallel and Distributed Processing Symposium,
Workshops and PhD Forum (IPDPSW 2010), Apr.
2010.

[10] M. K. Dhodhi, I. Ahmad, and A. Yatama, “An
integrated technique for task matching and scheduling
onto distributed heterogeneous computing systems,”
Journal of Parallel and Distributed Computing, Vol.
62, Sept. 2002, pp. 1338–1361.

[11] B. Eslamnour and S. Ali, “Measuring robustness of
computing systems,” Simulation Modelling Practice
and Theory, Vol. 17, No. 9, Oct. 2009, pp. 1457-1467.

[12] R. F. Freund and H. J. Siegel, “Heterogeneous
processing,” IEEE Computer, vol. 26, June 1993,
pp.13–17.

[13] A. Ghafoor and J. Yang, “A distributed heterogeneous
supercomputing management system,” IEEE Computer,
Vol. 26, No. 6, June 1993, pp. 78–86.

[14] D. Huang, Y. Yuan, L. Zhang, and K. Zhao, “Research
on tasks scheduling algorithms for dynamic and
uncertain computing grid based on a+bi connection
number of SPA,” Journal of Software, Vol. 4, No 10,
Dec 2009, pp. 1102-1109.

[15] M. Kafil and I. Ahmad, “Optimal task assignment in
heterogeneous distributed computing systems,” IEEE
Concurrency, Vol. 6, No. 3, July 1998, pp. 42–51.

[16] S. U. Khan and I. Ahmad, “Non-cooperative, semi-
cooperative, and cooperative games-based grid resource
allocation,” 20th International Parallel and Distributed
Processing Symposium, Apr. 2006.

[17] A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C.
Wang, “Heterogeneous computing: Challenges and
opportunities,” IEEE Computer, Vol. 26, No. 6, June
1993, pp. 18–27.

[18] C. Leangsuksun, J. Potter, and S. Scott, “Dynamic task
mapping algorithms for a distributed heterogeneous
computing environment,” 4th IEEE Heterogeneous
Computing Workshop (HCW 1995), Apr. 1995,
pp. 30–34.

[19] M. Maheswaran, T. D. Braun, and H. J. Siegel,
“Heterogeneous distributed computing,” Encyclopedia
of Electrical and Electronics Engineering, vol. 8,
JohnWiley, NY, 1999, pp. 679–690.

[20] A. W. Marshall and I. Olkin, “Scaling of Matrices to
Achieve specified row and column sums,” Numerische
Mathematik, Vol. 12, No. 1, 1968,
pp. 83-90.

[21] R. Sinkhorn, “A relationship between arbitrary positive
matrices and doubly stochastic matrices,” The Annals of
Mathematical Statistics, Vol. 35, No. 2 Jun. 1964,
pp. 876-879.

[22] H. Singh and A. Youssef, “Mapping and scheduling
heterogeneous task graphs using genetic algorithms,”
5th IEEE Heterogeneous Computing Workshop (HCW
’96), 1996, pp. 86–97.

[23] Standard performance evaluation corporation (SPEC),
Benchmarks, http://www.spec.org, accessed
January 12, 2011.

[24] D. Xu, K. Nahrstedt, and D. Wichadakul, “QoS and
contentionaware multi-resource reservation,” Cluster
Computing, Vol. 4, No. 2, Apr. 2001, pp. 95–107.

[25] J. Yang, I. Ahmad, and A. Ghafoor, “Estimation of
execution times on heterogeneous supercomputer
architectures,” International Conference on Parallel
Processing, vol. I, Aug. 1993, pp. 219–225.

[26] J. Yang, A. Khokhar, S. Sheikh, and A. Ghafoor,
“Estimating execution time for parallel tasks in
heterogeneous processing (HP) environment,”
Heterogeneous Computing Workshop, pp.,23-28, Apr.
1994.

APPENDIX A
Theorem 1 can be restated using standard matrix

notation as:
Theorem A. Let A be an m ൈ n matrix with positive
elements and let k be a given nonzero scalar. Then
there exists an m ൈ m diagonal matrix D1 and
an n ൈ n diagonal matrix D2 such that the matrix
D1AD2 has the property that each of its rows sums to
nk and each of its columns sums to mk. Furthermore,
D1 and D2 are unique up to a scalar multiple.

Proof. For simplicity, we will prove the result for
a 2 ൈ 3 matrix A. The general m ൈ n case readily
follows using the same approach. Consider a 3 ൈ 2
array of A matrices given by the partitioned matrix

414141

A෩ ൌ ൥A A
A A
A A

൩.
Applying Sinkhorn's theorem to this 6 ൈ 6 positive
matrix, one obtains 6 ൈ 6 diagonal matrices E and F
such that

M෩ ؜ EA෩F ൌ ቎M෩ ଵଵ M෩ ଵଶ
M෩ ଶଵ M෩ ଶଶ
M෩ ଷଵ M෩ ଷଶ቏

is a positive matrix whose rows and columns sum
to 1. The diagonal matrices E and F can be written as
E = diag(E1, E2, E3) and F = diag(F1, F2) where E1, E2,
and E3 are 2 ൈ 2 diagonal matrices and F1 and F2
are 3 ൈ 3 diagonal matrices. Consider now the 6 ൈ 3
matrix

Mഥ ൌ ቎Mഥ ଵ
Mഥ ଶ
Mഥ ଷ቏ ൌ ቎M෩ ଵଵ ൅ M෩ ଵଶ

M෩ ଶଵ ൅ M෩ ଶଶ
M෩ ଷଵ ൅ M෩ ଷଶ቏
ൌ ቎M෩ ଵଵ

M෩ ଶଵ
M෩ ଷଵ቏ ൅ ቎M෩ ଵଶ

M෩ ଶଶ
M෩ ଷଶ቏

where Mഥ ௜ ൌ M෩ ௜ଵ ൅ M෩ ௜ଶ for i = 1, 2, 3. Like M෩ , the six
rows of Mഥ each sum to 1 but the three columns of Mഥ
each sum to 2 instead as each column of Mഥ is a sum of
two columns of M෩ . Next, consider the 2 ൈ 3 matrix
M ൌ Mഥ ଵ ൅ Mഥ ଶ ൅ Mഥ ଷ. The column sums of M match
the column sums of Mഥ while the row sums of M are
given by adding the corresponding rows sums of Mഥ ଵ,
Mഥ ଶ, and Mഥ ଷ. Hence, each row of M has a sum of 3 and
each column has a sum of 2. Next, note that
M ൌ ∑ ∑ M෩ ij

ଶ
jୀଵଷ௜ୀଵ . Because M෩ ij ൌ E௜AF௝, we have ܯ ൌ ෍ ෍ ௝ଶܨܣ௜ܧ

jୀଵ
ଷ

௜ୀଵ ൌ ൭෍ ௜ଷܧ
௜ୀଵ ൱ ܣ ቌ෍ ௝ଶܨ

௝ୀଵ ቍ.
 Setting ܦଵ ൌ ∑ Ei

ଷ௜ୀଵ and ܦଶ ൌ ∑ Fj
ଶ௝ୀଵ results in

two diagonal matrices D1 and D2 such that M = D1AD2
has row sums equal to 3 and column sums equal to 2.
Lastly, scaling either D1 or D2 by k gives the desired
result. The fact that E = diag(E1, E2, E3)
and F = diag(F1, F2) are unique up to a scalar multiple
implies the same for D1 and D2. Extending the same
approach to the m × n case is now obvious.
 ■

APPENDIX B
As in Appendix A, Theorem 2 is restated using

standard matrix notation.
Theorem B. Let A be an m ൈ n matrix with non-
negative elements with the property that each row
sums to r and each column sums to c. Then mr = nc,
and the largest singular value of A is √rc

with a corresponding input singular
vector v = 1 √n⁄ ڮ 1] 1]T and output singular
vector u ൌ 1 √m⁄ ڮ 1] 1]T, respectively.
Furthermore, if the matrix is scaled so that ݎ = ඥn m⁄
and ܿ ൌ ඥm n⁄ , then the largest singular value is
equal to 1.

Proof. The equality mr = nc follows from the fact
that both values are equal to the sum of the mn
elements of A. The fact that √rc is a singular value
with corresponding input and output singular
vectors v = 1 √n⁄ ڮ 1] 1]T and u ൌ 1 √m⁄ [1 ڮ 1]T,
respectively, readily follows from the facts
that mr = nc, ࢜ܣ ൌ √rc࢛, and ܣT࢛ ൌ √rc࢜.

To show that √rc is in fact the largest singular
value, suppose that w is an input singular vector
associated with the largest singular value. This means
that w is a unit vector that maximizes ||Aw|| over the
set of all unit n-vectors.

We claim that we can assume that the components
of w are non-negative. Obviously, we can assume that
at least one component of the unit vector w is positive
since either w or –w can serve as the input singular
vector. Suppose that w has at least one positive and at
least one negative component. Since A is a matrix
with non-negative elements, each component of the
vector Aw is a non-negative combination of the
components of w. Hence, changing the signs of all the
negative components of w will not decrease the
magnitudes of the individual components of Aw and
will not change the norm of w. We thus obtain another
unit vector z, whose components are equal to the
absolute values of the corresponding components
of w, with the property that ||Az|| > ||Aw||. By the
assumption that ||Aw|| is the largest value over all
unit n-vectors, we conclude that the value ||Az|| = ||Aw||
is the largest singular value of A and that the resulting
vector z is an input singular vector associated with the
largest singular value. We then take the resulting
vector z as our new vector w so that the components
of w are non-negative.

Now if the largest singular value is different
than √rc, then the input singular vectors w and v must
be orthogonal. However, this is impossible as the dot
product of w and v is clearly positive. We thus
conclude that √rc is the largest singular value. The
last part of the theorem is obtained by applying an
appropriate scaling to the matrix A.

 ■

BIOGRAPHIES
Abdulla M. Al-Qawasmeh received his B.S. in

Computer Information Systems from the Jordan
University of Science and Technology in 2005. He
received his M.S. in Computer Science from the
University of Houston Clear Lake in 2008. Since
August, 2008 he has been a Ph.D. student in
Computer Engineering and a Graduate Research

424242

Assistant at Colorado State University. His research
interests include robust heterogeneous computing
systems and resource management in heterogeneous
computing systems.

Anthony A. Maciejewski received the B.S., M.S.,

and Ph.D. degrees in Electrical Engineering in 1982,
1984,and 1987, respectively, all from The Ohio State
University. From 1988 to 2001, he was a Professor of
Electrical and Computer Engineering at Purdue
University. In 2001, he joined Colorado State
University where he is currently the Head of the
Department of Electrical and Computer Engineering.
He is a Fellow of IEEE. A complete vita is available
at www.engr.colostate.edu/~aam.

Rodney G. Roberts received B.S. degrees in

Electrical Engineering and Mathematics from Rose–
Hulman Institute of Technology in 1987 and the
M.S.E.E. and Ph.D. degrees in Electrical Engineering
from Purdue University in 1988 and 1992,
respectively. From 1992 to 1994, he was a National
Research Council Fellow at Wright–Patterson Air
Force Base, Dayton, OH. Since 1994, he has been
with the Florida A&M University–Florida State
University College of Engineering, where he is
currently a Professor of Electrical and Computer
Engineering.

H. J. Siegel was appointed the Abell Endowed

Chair Distinguished Professor of Electrical and
Computer Engineering at Colorado State University
(CSU) in 2001, where he is also a Professor of
Computer Science and Director of the CSU
Information Science and Technology Center (ISTeC).
From 1976 to 2001, he was a professor at Purdue
University. Prof. Siegel is a Fellow of the IEEE and a
Fellow of the ACM. He received a B.S. degree in
electrical engineering and a B.S. degree in
management from the Massachusetts Institute of
Technology (MIT), and the M.A., M.S.E., and Ph.D.
degrees from the Department of Electrical
Engineering and Computer Science at Princeton
University. He has co-authored over 380 technical
papers. His research interests include robust
computing systems, resource allocation in computing
systems, heterogeneous parallel and distributed
computing and communications, parallel algorithms,
and parallel machine interconnection networks. He
was a Coeditor-in-Chief of the Journal of Parallel and
Distributed Computing, and has been on the Editorial
Boards of both the IEEE Transactions on Parallel and
Distributed Systems and the IEEE Transactions on
Computers. He has been an international keynote
speaker and tutorial lecturer, and has consulted for
industry and government. For more information,
please see www.engr.colostate.edu/~hj.

434343

