
 

 

Characterizing Task-Machine Affinity in 
Heterogeneous Computing Environments 

Abdulla M. Al-Qawasmeh1, Anthony A. Maciejewski1, Rodney G. Roberts3, and Howard Jay Siegel1,2 
 

1Department of Electrical and Computer Engineering 
2Department of Computer Science 

Colorado State University, Fort Collins, Colorado, 
USA 

3Department of Electrical and Computer Engineering 
Florida State University, Tallahassee, Florida, USA 

 
{Abdulla.Al-Qawasmeh, aam, hj}@colostate.edu, rroberts@eng.fsu.edu

 
Abstract—Many computing environments are 
heterogeneous, i.e., they consist of a number of different 
machines that vary in their computational capabilities. 
These machines are used to execute task types that vary 
in their computational requirements. Characterizing 
heterogeneous computing environments and 
quantifying their heterogeneity is important for many 
applications. In previous research, we have proposed 
preliminary measures for machine performance 
homogeneity and task-machine affinity. In this paper, 
we build on our previous work by introducing a 
complementary measure called the task difficulty 
homogeneity. Furthermore, we refine our measure of 
task-machine affinity to be independent of the task type 
difficulty measure and the machine performance 
homogeneity measure. We also give examples of how 
the measures can be used to characterize heterogeneous 
computing environments that are based on real world 
task types and machines extracted from the SPEC 
benchmark data. 

Keywords- heterogeneous; computing environments; 
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I. INTRODUCTION 
Many computing environments are heterogeneous, 

i.e., they consist of a number of different machines 
that vary in their computational capabilities. These 
machines are used to execute task types that vary in 
their computational requirements. Different task types 
can be better suited to different machine architectures. 
Further, while a machine A may be better than a 
machine B for one task type, it may not be better for 
another task type; performance is a function of the 
interaction of a machine’s capabilities and a task 
type’s requirements.  

In this paper, we use the term task type to refer to 
an executable program than can be run many times. A 
task is an instance of a task type that is executed once. 

It is common to arrange the estimated time to 
compute (ETC) of task types on machines in an ETC 
matrix. Entry (i, j) in the ETC matrix represents the 
ETC of task type i on machine j. The ETC values can 
be based on user supplied information, experimental 
data, or task profiling and analytical benchmarking 
(e.g., [1, 12, 13, 17, 19, 25, 26]). The determination of 
ETC values is a separate research problem; the 
assumption of such ETC information is a common 
practice in resource allocation research (e.g., [5, 7, 10, 
13, 15, 17, 18, 22, 24]). An ETC value is the 
estimated time to compute a given task type on a 
given machine when it is run alone. 

Quantifying the heterogeneity of a heterogeneous 
computing (HC) environment is important and has 
multiple useful applications. Examples of such 
applications include, predicting the performance of 
HC environments [9], selecting appropriate heuristics 
to use in an HC environment based on its 
heterogeneity [3], “what-if studies” to identify the 
effect of adding/removing task types or machines 
from an HC system on its heterogeneity, and 
generating ETC matrices for simulation studies that 
span the entire range of heterogeneities [2]. The 
purpose of this paper is to provide heterogeneity 
measures that can be used as a standard way to 
compare different heterogeneous computing 
environments.  

Although characterizing the heterogeneity of HC 
environments is important, there has not been much 
research in this area. In [4, 6], methods for generating 
HC environments, based on ETC matrices, for 
simulation studies were proposed. The method in [4] 
has been used widely, e.g., in [8, 11, 14, 16]. 
However, these methods do not deal with the problem 
of characterizing the heterogeneity of existing HC 
environments. To the best of our knowledge there is 
no other research that deals with the problem of 
identifying standard measures for quantifying the 
heterogeneity of computing environments. 

There can be many methods to characterize the 
heterogeneity of an HC environment. In addition, the 

This research was supported by the NSF under grant number
CNS-0905399, and by the Colorado State University George T. Abell
Endowment. 

 

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.125

33

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.125

33

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.125

33



 

 

measured value of the heterogeneity of the 
environment may vary widely depending on the 
methods used.  Therefore, we are motivated to 
determine standard measures of heterogeneity. 

We have identified some properties that 
heterogeneity measures should have. These properties 
directed our choice of the heterogeneity measures.  
First, a heterogeneity measure should match intuition 
and common beliefs about heterogeneity. Second, it 
should not be affected by multiplying the ETC matrix 
by a scaling factor. This is because the ETC values 
can be represented in different time units (e.g., 
seconds vs. minutes). Third, when multiple measures 
are used to examine different aspects of heterogeneity, 
they should be as independent as possible of each 
other (i.e., we should be able to change the value of 
one of the measures independent of the others). There 
is no value of having two or more measures that are 
totally correlated. It would be sufficient to just use one 
of them. For example, if the standard deviation was 
used to represent the heterogeneity of a set of values, 
then there is no value of using the variance as another 
measure of heterogeneity because both measures will 
be totally correlated.  

In [2], we introduced two measures for 
characterizing the heterogeneity of computing 
environments. These measures are: machine 
performance homogeneity (MPH) and task-machine 
affinity (TMA). This paper builds on the research we 
have done in [2] and introduces a new complementary 
measure that represents the homogeneity of task types 
called task type difficulty homogeneity (TDH). This 
measure adds a new aspect of heterogeneity that will 
enable us to characterize a wider range of 
heterogeneous environments.  

In this paper, we have identified a computational 
procedure that puts a matrix, which represents an HC 
environment, in standard form. The standard form 
enables us to have the three independent heterogeneity 
measures: MPH, TDH, and TMA (satisfying the third 
property for heterogeneity measures). Putting the 
matrix in standard form also allows us to simplify the 
calculation of the TMA.  

In summary, the contributions of this paper are:  
a) to introduce a new measure that represents the 
homogeneity of task types, and that enables us to 
characterize wider ranges of heterogeneous 
environments, b) to determine a standard matrix form 
that keeps the three measures independent, and allows 
a simplified calculation of TMA, and c) to illustrate 
how the measures can be used to analyze some real 
world environments obtained from the SPEC 
benchmarks. 

The rest of the paper is organized as follows. 
Section II gives an overview of the research that we 
have done in [2]. The new complementary TDH 
measure is presented in Section III. In Section IV, we 
give examples of heterogeneous environments to 

illustrate the motivation behind the measures that we 
have introduced in this paper and in [2]. Examples of 
HC environments, that are based on real world data 
from the SPEC benchmarks, are given in Section V. 
Section VI describes the special cases of HC 
environments for which the standard form matrix 
cannot be determined. Finally, conclusions are 
presented in Section VII. 

II. OVERVIEW OF PREVIOUS RESEARCH 

A. Overview 
In this section, we give a brief overview of the 

research done in [2]. We explain some of the concepts 
introduced in that paper and show how the two 
measures (MPH and TMA) are calculated. In addition, 
we give more examples to further illustrate the 
intuition behind the two measures. 

B. Estimated Computation Speed Matrix 
Another way of representing an HC environment 

is by using an estimated computation speed (ECS) 
matrix. The ECS matrix can be obtained from an ETC 
matrix by taking the reciprocal of each entry in the 
ETC matrix, i.e., 

 ECS(i, j) ൌ  1/ETC(i, j). (1) 

Entry (i, j) of the ECS matrix represents the amount of 
task type i that can be completed in a unit time on 
machine j. Therefore, larger entries in the ECS matrix 
correspond to more powerful machines for a specific 
task type. 

In some HC environments, some machines may 
not be able to run specific task types because of 
specific task type requirements (e.g., specific 
architecture requirements or operating system 
requirements). In the ECS matrix, if task type i cannot 
run on machine j, then entry (i, j) will be equal to 0. 
The corresponding entry in the ETC matrix would be 
equal to ∞. Both the ETC and ECS matrices are non-
negative matrices. Although individual entries in the 
ECS matrix can be equal to 0, there cannot be 
columns with all 0 entries or rows with all 0 entries 
because both cases correspond to a machine that 
cannot execute any task type or a task type that cannot 
be executed on any machine, respectively.  

C. Machine Performance Homogeneity 
One way to measure the performance of a machine 

is by the sum of the values along the corresponding 
column in the ECS matrix. For example, the 
performance of machine 1 for the ECS matrix in 
Figure 1 is 17. Higher column sums correspond to 
machines with better performance for the given task 
types in the ECS matrix. The performance of  
machine j, MPj, for an ECS matrix with T task types is 
given by 
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MPj = ෍ ECS(i, j) .T

i=1

 (2) 

Clearly, if all the machines’ performances are equal, 
then we have a completely homogeneous computing 
environment in terms of machine performance. 
However, when the performances are not equal, there 
can be a number of different ways to combine the 
performance values to measure machine performance 
homogeneity (or heterogeneity).  

Let the machines of the ECS matrix be sorted in 
ascending order of their performance (i.e., the 
columns are ordered in ascending order of their sums). 
We define the machine performance homogeneity 
(MPH) measure to be equal to the average ratio of a 
machine performance to its next better performing 
machine, i.e., for an ECS matrix with M machines, 

 
MPH = 

∑ ൫MPj MPj൅1⁄ ൯M-1
j=1

M െ 1
. (3) 

The MPH of the ECS matrix in Figure 1 is 0.52. 
The weighting factor (wti) of task type i can be 

used to represent a number of characteristics (e.g., the 
importance of the task type, the number of times that a 
task type is executed, or the probability that a task 
type will be executed). Similarly, the weighting  
factor (wmj) of machine j can be used to represent a 
number of characteristics (e.g., security level of that 
machine).  

The weighting factors are incorporated in the 
equations for calculating each of the measures 
presented in this paper. These factors make the 
 

m1 m2 m3 

t1 6 10 20 

t2 5 3 10 

t3 3 5 13 

t4 3 4 40 
Figure 1.  An example ECS matrix to illustate how machine 

performance is calculated. 

measures more flexible, which enables them to be 
applied to a wide variety of environments. Therefore, 
the formula for calculating machine j’s performance, 
when weighting factors are used, can be generalized 
to 

 
MPj ൌ wmj ෍ wtiECS(i, j)

T

i=1

. (4) 

D. MPH Compared to Other Measures 
We compare MPH with other possible measures 

and show that MPH has the first property of a 
heterogeneity measure (i.e., it matches the intuition 
about heterogeneity) while the other measures do not 
have that property. Other possible measures include: 
1) the ratio, R, of the performance of the lowest 
performance machine to that of the highest 
performance one, as a measure of homogeneity (i.e., 
higher values correspond to more homogeneous 
environments),  2) the geometric mean1, G, of the 
ratios of the performance of the lower performance 
machine to that of the higher performance machine in 
each pair of adjacent machines in the ECS matrix, as a 
measure of homogeneity, and 3) the coefficient of 
variation2, COV, of the machines’ performances, as a 
measure of heterogeneity. All of the above measures 
have the second property of a heterogeneity measure 
(i.e., they are not affected by scaling the performances 
by a common factor). 

Figure 2 shows four examples of possible 
machines’ performances of HC environments with 
five machines. Intuitively, environment 1 is the most 
heterogeneous because none of the machines 
performances are equal. Environments 2 and 3 have 
the same heterogeneity because they both have four 
machines with the same performance and the ratio of 
the performance of the most powerful machine and 
the performance of the least powerful one is 1/16. 
Environment 4 has three machines that have the same 
performance. Therefore, it is less heterogeneous than 
environment 1 and more heterogeneous that 
environments 2 and 3. In the figure, the values of each 
of the measures for each of the environments are 
given. The only measure that matches intuition is the 
MPH measure. Both measures, G and R, capture the 
heterogeneity between the highest performance 
machine and the lowest performance machine. 

1  The geometric mean of a set of n values ai is given by ሺ∏ ܽ௜௡௜ୀଵ ሻଵ/௡. 
2  The COV of a set of a set of n values ai with standard deviation S and mean μ is given by S/ μ. 
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However, they do not capture the spread of the 
performance of the intermediate machines. 

E. Task-Machine Affinity 
MPH represents one aspect of heterogeneity; 

however, it does not capture the case where various 
sets of task types are better suited to run on different 
sets of machines (i.e., task-machine affinity). For 
example, the two ECS matrices in Figure 3 are 
completely homogeneous in terms of machine  
performance. However, the machines in Figure 3(b) 
are heterogeneous in the sense that some of the 
machines are better suited to execute different sets of 
task types. Therefore, in order to represent this 
different aspect of heterogeneity we introduce the 
TMA measure. 

To keep the TMA independent of MPH, we 
normalize the ECS matrix by the column sums (which 
is equal to the 1-norm because the entries in the ECS 
matrix are non-negative) before calculating the TMA. 
The MPH of the normalized (and not weighted) ECS 
matrix is equal to 1. Intuitively, column correlation, 
 

Environment 1.  
1, 2, 4, 8, 16 
MPH = 0.5, R =  0.06, G = 0.5, COV = 0.88 
Environment 2.  
1, 1, 1, 1, 16 
MPH = 0.77, R =  0.06, G = 0.5, COV = 1.5   
Environment 3.  
1,16, 16, 16, 16 
MPH = 0.77, R =  0.06, G = 0.5, COV = 0.46  
Environment 4.  
1, 4, 4, 4, 16 
MPH = 0.63, R =  0.06, G = 0.5, COV = 0.90  

Figure 2.  Machines’ performances of example HC environments. 

m1 m2 m3 

t1 20 20 20 

t2 10 10 10 

t3 5 5 5 
(a) 

m1 m2 m3 

t1 5 10 20 

t2 20 5 10 

t3 10 20 5 
(b) 

Figure 3.  An example ECS matrix to illustate how machine 
performance is calculated. 

which is quantified by the angle between the column 
vectors in the ECS matrix, represents task-machine 
affinity. For example, the angles between the columns 
in matrix (a) in Figure 3 are 0, which implies no task 
machine affinity. However, the angle between any 
pair of columns in matrix (b) in Figure 3 is greater 
than 0. The singular values, obtained from the 
singular value decomposition, of the normalized ECS 
matrix can be used to quantify the column correlation. 

Let σi denote the ith singular value of a normalized 
ECS matrix. For a normalized ECS matrix with T task 
types and M machines, there are min(T,M) singular 
values. The singular values are ordered such that 

σ1 > σ2 > ڄڄڄ > σmin(T, M) > 0.  

For a given ECS matrix with normalized columns, 
a lower column correlation will correspond to larger 
values of the non-maximum singular values relative  
to σ1 and an intuitively higher value of TMA. 
Therefore, we use the following formula to calculate 
TMA: 

 
TMA= ቆ ∑ σi

min(T,M)
i=2ሺminሺT,Mሻ െ 1ሻቇ σ1൘ . (5) 

III. TASK DIFFICULTY HOMOGENEITY  

A. Overview 
The difficulty of a task type is quantified by the 

sum of the ECS values of that task type over all 
machines (i.e., the corresponding row sum in the ECS 
matrix). Task types with higher row sums are 
considered less difficult. Because the difficulty of task 
types can vary widely, a measure of task type 
difficulty is needed. In this section, we present a 
measure for task type difficulty homogeneity (TDH) 
and show how it is calculated. 

In [2], we only used MPH and TMA as measures. 
Therefore, a simple column normalization procedure 
was sufficient to keep both measures independent. 
With the introduction of TDH, however, the 1-norm 
normalization procedure is not as straightforward due 
to the interactions between the column and the row 
normalizations. Therefore, we illustrate how an 
iterative normalization procedure can be used to find a 
row and column normalized ECS matrix that isolates 
the TMA from MPH and TDH. Let a standard ECS 
matrix be an ECS matrix with equal row sums and 
equal column sums.  In addition to keeping the three 
measures independent, a standard ECS matrix allows 
us to simplify the TMA equation.  

B. Calculating Task Difficulty Homogeneity 
The calculation procedure for TDH is similar to 

that of MPH. However, the homogeneity is calculated 
for task types (rows). Let TDi be the difficulty of task 
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type i. The general formula for calculating task type 
difficulty, when weighting factors are used, is  

 
TD௜ ൌ wti ෍ wmjECS(i, j)

M

j=1

. (6) 

For the canonical ECS matrix, let both the 
machine performances and task difficulties be sorted 
in ascending order. Formally, the canonical form ECS 
matrix is a matrix where 

1. MPj ൑ MPj൅1 for 0 < j < M, and 

2. TD௜ ൑ TD௜ାଵ for 0 < i < T. 

Following the same intuition behind MPH, we use 
a TDH measure that is equal to the average ratio of a 
task type difficulty to its next task type difficulty. The 
general TDH formula for a canonical ECS matrix is 
given by 

 
TDH= 

∑ ሺTD௜ TD௜ାଵ⁄ ሻT-1
i=1

T െ 1
. (7) 

Both, MPH and TDH take values in the interval (0, 1]. 

C. The Standard ECS Matrix 
For the TMA to be independent of MPH and 

TDH, the singular values must be computed from a 
standard ECS matrix where all the column sums are 
equal, and all the row sums are equal. In this section, 
we illustrate how such a standard ECS matrix can be 
computed from an ECS matrix with all positive 
elements, which we will refer to as a positive matrix. 

The problem of row and column normalization has 
appeared in other applications. For example, the 
requirement for row and column sum normalization 
occurs in the practical problem of estimating doubly 
stochastic matrices for certain types of Markov 
random processes. Motivated by this problem, 
Sinkhorn [21] proved that for any positive square 
matrix A, there are two diagonal matrices D1 and D2 
such that D1AD2 is doubly stochastic. In other words, 
given any positive square matrix, one can suitably 
scale the individual rows and columns in such a way 
that each row and column sums to the same value. 
Furthermore, the diagonal matrices D1 and D2 are 
unique up to scalar multiplication. 

While Sinkhorn's theorem and its proof 
specifically apply to positive square matrices, the 
results can also, after suitable modifications, be used 
to convert a positive rectangular matrix through a 
series of row and column normalizations into a 
positive matrix with the property that the row sums 
are equal and the column sums are equal. This is 
illustrated in Appendix A. Hence, we have the 
following result. 

Theorem 1. For a T ൈ M ECS matrix with 
positive elements, there are diagonal matrices D1 and 
D2 such that, for any nonzero scalar k, D1(ECS)D2 is 
a positive matrix whose rows each sum to Mk and 
whose columns each sum to Tk. Furthermore, D1 and 
D2 are unique up to scalar multiples. 

Sinkhorn provided an iterative procedure to obtain 
the required diagonal matrices and proved that the 
procedure converged. A similar iterative procedure is 
also applied in this work. 

D. Simplified TMA Calculation 
The singular values of the standard ECS matrix 

are related to the column sums and row sums. The 
following theorem shows that for a specific choice of 
the row sums and the column sums the maximum 
singular value of the standard ECS matrix will always 
be 1.  

Theorem 2. For a T ൈ M ECS matrix with the 
property that each row sums to ඥM T⁄  and each 
column sums to ඥT M⁄ , the largest singular value is 
equal to 1. 

The proof of Theorem 2 is given in Appendix B. If 
we let k (in Theorem 1) be equal to ඥ1/MT, then it 
follows that we can convert an ECS matrix to a 
standard one that has the column sums equal to ඥT M⁄  
and the row sums equal to ඥM T⁄ . The maximum 
singular value of that standard ECS matrix will be 
equal to 1. This enables us to rewrite the TMA 
equation, presented in Section II-E, in the following 
simpler form 

 
TMA= ෍ σi ሺminሺT,Mሻ െ 1ሻ⁄min(T,M)

i=2

. (8) 

We use an iterative procedure to normalize the 
ECS matrix. The iterative approach generates a series 
of ECSk matrices. The procedure switches between 
row normalization and column normalization until it 
converges to a row and column normalized matrix. 
The matrix ECSk is defined by 

ECS௞ሺ݅, ݆ሻ ൌ ۔ۖەۖ
ඥTۓ M⁄ ECSkିଵሺi, jሻ∑ ECSkିଵሺq, jሻ௤்ୀଵ , k = 1,3,5,…ඥM T⁄ ECSkିଵሺi, jሻ∑ ECSkିଵሺi, pሻெ௣ୀଵ , k =2,4,6,… . (9) 

In cases where the ECS matrix contains zero-valued 
elements, the iteration defined by Equation 9 may not 
converge. This will be discussed further in  
Section VI. 
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IV. CONTRIVED ILLUSTRATIVE EXAMPLES 
To further illustrate the intuition behind MPH, 

TDH, and TMA, we show, in Figure 4, some  
simple 2 ൈ 2 ECS matrices and where they fall within 
the range of all possible values of the three measures. 
The examples have near extremal values for each of the 
measures. Entries with 0 values in the ECS matrix 
represent task types that cannot be executed on specific 
machines. 

Intuitively, matrices A, B, C and D all have a very 
high task-machine affinity because there is at least 
one task type that can only be executed on one 
machine (i.e., that task type has the highest affinity to 
the corresponding machine). The TMA measure 
reflects this intuition. All these matrices have a TMA 
value of 1. Matrix C is already a standard matrix. The 
second singular value of that matrix is 1. When the 
procedure in Equation 9 is applied to matrices A, B, 
and D they all converge to the standard form of C. In 
contrast, matrices E, F, G, and H all have no task-
machine affinity because the performance ratio of 
machines 1 and 2 is the same for both task types. The 
TMA value for these matrices is 0.  

Matrices C, D, G, and H are all nearly 
homogeneous in terms of machine performance. The 
performances of both machines are nearly 
homogeneous over both tasks. All the matrices have 
high MPH values. In contrast, matrices A, B, E, and F 
are all very heterogeneous in terms of machine 
performance. For all four matrices, the performance of 
machine 2 is much better than machine 1. These 
matrices have low MPH values.  

Matrices A, C, E, and G are all nearly 
homogeneous in terms of task type difficult. They 
have high TDH values. In contrast, the task types of 
matrices B, D, F, and H are all very heterogeneous. 
For all four matrices, task type 1 is much more 
difficult than task type 2. The four matrices have low 
TDH values. 

V. EXAMPLE ECS MATRICES FROM SPEC 
BENCHMARKS  

In this section, we show examples of ETC 
matrices extracted from the integer and floating point  
SPEC benchmarks (SPEC CINT2006Rate and SPEC 
CFP2006Rate) [23]. The matrices illustrate how 
environments constructed from real world task types 
and machines can have widely varying values for each 
of the measures proposed in this paper. Note that the 
benchmarks were used for illustration purposes only 
and the measures proposed in this paper can be 
applied to any HC environment that is represented by 
an ETC matrix.  

The SPEC CINT2006Rate consists of 12 task 
types. The SPEC CFP2006Rate consists of 17 task 
types. We have extracted the peak runtime values for 
five different machines. The machines have 
processors that have different architectures and are 

produced by different manufacturers. Figure 5 shows 
the five different machines. Figures 6 and 7 show the 
peak runtime values of each of the five machines for 
the SPEC CINT2006Rate and SPEC CFP2006Rate 
benchmarks, respectively. 

Figure 8 shows two example 2 ൈ 2 ETC matrices 
extracted from the values in Figures 6 and 7. The 
figures also show the values for each of the measures. 

 
Figure 4.  Example extreme 2 ൈ 2 ECS matrices with extremal 

values of each of the three measures: MPH, TDH, and TMA.  
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The two matrices are almost identical in terms of 
machine performance homogeneity. However, the 
task type difficulty and task-machine affinity of the 
two matrices vary. The task types of matrix (a) are 
more homogeneous than the ones of matrix (b). 
Because the ratios of the performances of the two 
machines of matrix (b) vary widely for each task type, 
the TMA value for that matrix is high. In contrast, the 
ratios of the performances of the two machines are 
very close for each of the task types of matrix (a).  

We also have calculated the values of the three 
measures for the entire CINT matrix and the entire 
CFP matrix. The values are shown in Figures 6 and 7. 
The machine performance homogeneity and the task 
type difficulty of both matrices are almost identical. 
However, for the floating point applications in the 
CFP matrix, task types have more affinity to machines 
than that of the integer applications in the CINT 
matrix. 

The iterative normalization procedure for the CFP 
and CINT matrices converged in 7 and 6 iterations, 
respectively. Every iteration consists of one column 
normalization followed by one row normalization. 
The procedure stops when the maximum error in any 
column or row norm is less than 1/108.  

The benchmarks presented in this section are for 
general purpose CPUs. We expect HC environments 
that consist of special purpose computing resources 
(e.g., accelerators and GPGPUs) and tasks that are 
better suited to run on these resources to have higher 
TMA values and lower TDH and MPH values. 

VI. ISSUES WITH STANDARD FORM MATRICES  
In the ECS matrix, it may be desirable to have 

entries equal to 0 that correspond to machines that 
cannot execute specific task types. However, when the 
ECS matrix has some entries that are equal to 0, the 
iterative normalization procedure described in Section 
III-C is not guaranteed to converge to a standard ECS 
matrix. Consider the following ECS matrix 

൭0 0 1
1 1 0
0 0 1

൱. (10) 

In its current form, this matrix is not normalized 
because the second row and third column sums are  
both 2 while the other row and column sums are 1. It 
can be shown that there exists no combination of row 
and column normalizations to convert this matrix to a 
standard ECS matrix. To see this, observe that 
although row and column normalizations affect the 
values of the individual elements of the ECS matrix, 
zero-valued elements remain zero-valued elements 
and non-zero elements remain non-zero elements for 
any combination of row and column normalization. 
Consequently, those elements that are equal to 0 will 
remain 0 for any combinations  of  row  and  column 

 
m1 = ASUS TS100-E6 (P7F-X) server system 

(Intel Xeon X3470) 
m2 =  Fujitsu SPARC Enterprise M3000  
m3 = CELSIUS W280 Intel Core i7-870 
m4 = ProLiant SL165z G7  

(2.2 GHz AMD Opteron 6174) 
m5= IBM Power 750 Express 

(3.55 GHz, 32 core, SLES) 
Figure 5.  The five machines used from the SPEC benchmarks. 

m1 m2 m3 m4 m5

400.perlbench 625 974 627 563 1159 

401.bzip2 971 1592 988 956 1363 

403.gcc 642 1166 631 626 1026 

429.mcf 267 946 266 463 416 

445.gobmk 639 1124 642 719 957 

456.hmmer 300 1698 205 391 920 

458.sjeng 768 1756 779 912 1235 

462.libquantum 537 686 548 431 523 

464.h264ref 1082 1814 1092 1095 1804 

471.omnetpp 557 1450 569 698 1850 

473.astar 707 1235 714 699 1179 

483.xalancbmk 414 758 415 414 793 

TDH = 0.90   MPH = 0.82    TMA = 0.07 

Figure 6.  SPEC CINT2006Rate Data. 

normalizations. Therefore, if there was a normalized 
version of this ECS matrix, each of the four nonzero 
elements must equal 1 so that the first and last row 
sums are 1 and the first two column sums are 1. 

However, this results in the original matrix, which 
is clearly not normalized due to the fact that, unlike 
the other row and column sums, the second row and 
third column sums are not equal to 1.  

The authors of [20] have presented a sufficient 
condition for a matrix to be row and column 
normalized. We summarize their results here.  

A square matrix A with non-negative elements is 
said to be decomposable if there are permutation 
matrices P and Q such that PAQ has the block form 

൬A11 0
A21 A22

൰ (11) 

where A11 and A22 are square matrices. In other words, 
a matrix A with non-negative elements is 
decomposable if one can reorder the rows and 
columns so as to obtain the above form. If one cannot 
do this, then the matrix is said to be fully  
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m1 m2 m3 m4 m5

410.bwaves 677 1776 664 1238 528 

416.gamess 777 2701 778 1267 2522 

433.milc 845 2210 851 1056 1104 

434.zeusmp 694 1132 706 741 1034 

435.gromacs 576 838 592 481 1061 

436.cactusADM 859 1204 845 105 345 

437.leslie3d 704 1507 711 1207 499 

444.namd 657 979 678 648 789 

447.dealII 589 893 596 518 764 

450.soplex 509 1635 520 1018 441 

453.povray 253 465 264 319 451 

454.calculix 531 954 551 471 1227 

459.GemsFDTD 855 2431 874 1420 1588 

465.tonto 693 1122 724 626 1146 

470.lbm 1102 1348 1150 892 940 

481.wrf 964 1349 939 858 1621 

482.sphinx3 1694 2887 1668 1298 3148 

TDH = 0.91    MPH = 0.83   TMA = 0.13. 
Figure 7.  SPEC CFP2006Rate Data. 

m4 m5 TDH=0.16 

471.omnetpp 698 1850 MPH=0.31

436.cactusADM 105 345 TMA=0.05 
(a) 

 
m1 m4 TDH=0.28

436.cactusADM 859 105 MPH=0.30

450.soplex 509 1018 TMA=0.60 
(b) 

Figure 8.  Example 2 ൈ 2 ETC matrices extracted form the SPEC 
CINT2006Rate and CFP2006Rate benchmarks. The values for 

each of the measures are given for both matrices. 

indecomposable. For any square matrix A with non-
negative elements that is fully indecomposable, there 
exists diagonal matrices D1 and D2 such that D1AD2 
has equal row sums and equal column sums. An 
example of a simple matrix that fails the above 
condition is the matrix in Equation 10. This matrix is 
decomposable because it can be placed in the block 
form of Equation 11 by moving the last column to the 
front to obtain 

൭1 0 0
0 1 1
1 0 0

൱. (12) 

The upper left 1 ൈ 1 matrix is A11 and the lower  
right 2 ൈ 2 matrix is A22 matrix.  

Note that while being indecomposable is a 
sufficient condition for being able to row and column 
normalize a positive matrix, it is not a necessary 
condition. This is illustrated by a diagonal matrix with 
positive elements on its diagonal. Such matrices are 
already in the decomposable form given in (11), but 
they can be easily converted into the identity matrix 
through row and column normalization to obtain the 
desired form.   

The case for rectangular matrices with non-
negative components is handled in a similar way. In 
this case, consider an m ൈ n matrix A with m < n (for 
the case when m > n, one can transpose, do the row 
and column normalizations, and transpose back). In 
this case, one says that A is fully indecomposable if 
every m ൈ m submatrix of A is fully indecomposable. 
In future work, we will investigate evaluating the 
TMA for ECS matrices that cannot be row and 
column normalized. 

VII. CONCLUSIONS  
In this paper, we introduced a new complementary 

measure of task type difficulty homogeneity (TDH). 
We have shown the motivation behind the TDH, 
MPH, and TMA measures through many illustrative 
examples and ones extracted from the SPEC 
benchmarks. In addition, we have demonstrated the 
importance of the measures for characterizing wider 
ranges of heterogeneous environments. 

We have also explained the importance of keeping 
the three measures independent and how, with the 
introduction of TDH, the column normalization 
procedure in [2] is not sufficient to keep the measures 
independent. Therefore, we illustrated how an 
iterative row and column normalization procedure can 
be used to keep the measures independent.  
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APPENDIX A 
Theorem 1 can be restated using standard matrix 

notation as: 
Theorem A. Let A be an m ൈ n matrix with positive 
elements and let k be a given nonzero scalar. Then 
there exists an m ൈ m diagonal matrix D1 and  
an n ൈ n diagonal matrix D2 such that the matrix 
D1AD2 has the property that each of its rows sums to 
nk and each of its columns sums to mk. Furthermore, 
D1 and D2 are unique up to a scalar multiple. 

Proof. For simplicity, we will prove the result for  
a 2 ൈ 3 matrix A. The general m ൈ n case readily 
follows using the same approach. Consider a 3 ൈ 2 
array of A matrices given by the partitioned matrix 

414141



 

 

A෩ ൌ ൥A A
A A
A A

൩. 
Applying Sinkhorn's theorem to this 6 ൈ 6 positive 
matrix, one obtains 6 ൈ 6 diagonal matrices E and F 
such that  

M෩ ؜ EA෩F ൌ ቎M෩ ଵଵ M෩ ଵଶ
M෩ ଶଵ M෩ ଶଶ
M෩ ଷଵ M෩ ଷଶ቏ 

 
is a positive matrix whose rows and columns sum  
to 1. The diagonal matrices E and F can be written as 
E = diag(E1, E2, E3) and F = diag(F1, F2) where E1, E2, 
and E3 are 2 ൈ 2 diagonal matrices and F1 and F2  
are 3 ൈ 3 diagonal matrices. Consider now the 6 ൈ 3 
matrix 

Mഥ ൌ ቎Mഥ ଵ
Mഥ ଶ
Mഥ ଷ቏ ൌ ቎M෩ ଵଵ ൅ M෩ ଵଶ

M෩ ଶଵ ൅ M෩ ଶଶ
M෩ ଷଵ ൅ M෩ ଷଶ቏
ൌ ቎M෩ ଵଵ

M෩ ଶଵ
M෩ ଷଵ቏ ൅  ቎M෩ ଵଶ

M෩ ଶଶ
M෩ ଷଶ቏ 

where Mഥ ௜ ൌ M෩ ௜ଵ ൅ M෩ ௜ଶ for i = 1, 2, 3. Like M෩ , the six 
rows of Mഥ  each sum to 1 but the three columns of Mഥ  
each sum to 2 instead as each column of Mഥ  is a sum of 
two columns of M෩ . Next, consider the 2 ൈ 3 matrix 
M ൌ Mഥ ଵ ൅ Mഥ ଶ ൅ Mഥ ଷ. The column sums of M match 
the column sums of Mഥ  while the row sums of M are 
given by adding the corresponding rows sums of Mഥ ଵ, 
Mഥ ଶ, and Mഥ ଷ. Hence, each row of M has a sum of 3 and 
each column has a sum of 2. Next, note that  
M ൌ ∑ ∑ M෩ ij

ଶ
jୀଵଷ௜ୀଵ . Because M෩ ij ൌ E௜AF௝, we have  ܯ ൌ ෍ ෍ ௝ଶܨܣ௜ܧ

jୀଵ
ଷ

௜ୀଵ ൌ ൭෍ ௜ଷܧ
௜ୀଵ ൱ ܣ ቌ෍ ௝ଶܨ

௝ୀଵ ቍ. 
 Setting ܦଵ ൌ ∑ Ei

ଷ௜ୀଵ  and ܦଶ ൌ ∑ Fj
ଶ௝ୀଵ  results in 

two diagonal matrices D1 and D2 such that M = D1AD2 
has row sums equal to 3 and column sums equal to 2. 
Lastly, scaling either D1 or D2 by k gives the desired 
result. The fact that E = diag(E1, E2, E3)  
and F = diag(F1, F2) are unique up to a scalar multiple 
implies the same for D1 and D2. Extending the same 
approach to the m × n case is now obvious. 
 ■ 

APPENDIX B 
As in Appendix A, Theorem 2 is restated using 

standard matrix notation. 
Theorem B. Let A be an m ൈ n matrix with non-
negative elements with the property that each row 
sums to r and each column sums to c. Then mr = nc, 
and the largest singular value of A is √rc   

with a corresponding input singular  
vector v = 1 √n⁄ ڮ 1] 1]T and output singular  
vector u ൌ 1 √m⁄ ڮ 1] 1]T, respectively. 
Furthermore, if the matrix is scaled so that ݎ = ඥn m⁄  
and ܿ ൌ  ඥm n⁄ , then the largest singular value is 
equal to 1. 

Proof. The equality mr = nc follows from the fact 
that both values are equal to the sum of the mn 
elements of A. The fact that √rc is a singular value 
with corresponding input and output singular  
vectors v = 1 √n⁄ ڮ 1] 1]T and u ൌ 1 √m⁄ [1 ڮ 1]T, 
respectively, readily follows from the facts  
that mr = nc,  ࢜ܣ ൌ √rc࢛, and ܣT࢛ ൌ √rc࢜.  

To show that √rc is in fact the largest singular 
value, suppose that w is an input singular vector 
associated with the largest singular value. This means 
that w is a unit vector that maximizes ||Aw|| over the 
set of all unit n-vectors.  

We claim that we can assume that the components 
of w are non-negative. Obviously, we can assume that 
at least one component of the unit vector w is positive 
since either w or –w can serve as the input singular 
vector. Suppose that w has at least one positive and at 
least one negative component. Since A is a matrix 
with non-negative elements, each component of the 
vector Aw is a non-negative combination of the 
components of w. Hence, changing the signs of all the 
negative components of w will not decrease the 
magnitudes of the individual components of Aw and 
will not change the norm of w. We thus obtain another 
unit vector z, whose components are equal to the 
absolute values of the corresponding components  
of w, with the property that ||Az|| > ||Aw||. By the 
assumption that ||Aw|| is the largest value over all  
unit n-vectors, we conclude that the value ||Az|| = ||Aw|| 
is the largest singular value of A and that the resulting 
vector z is an input singular vector associated with the 
largest singular value. We then take the resulting 
vector z as our new vector w so that the components 
of w are non-negative. 

Now if the largest singular value is different  
than √rc, then the input singular vectors w and v must 
be orthogonal. However, this is impossible as the dot 
product of w and v is clearly positive. We thus 
conclude that √rc is the largest singular value. The 
last part of the theorem is obtained by applying an 
appropriate scaling to the matrix A. 

 ■ 
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