
A Model-based Schedule Representation for Heterogeneous Mapping of Dataflow
Graphs

Hsiang-Huang Wu, Chung-Ching Shen, Nimish Sane, William Plishker, Shuvra S. Bhattacharyya
Department of Electrical & Computer Engineering, and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland, USA
{hhwu, ccshen, nsane, plishker, ssb}@umd.edu

Abstract—Dataflow-based application specifications are
widely used in model-based design methodologies for signal
processing systems. In this paper, we develop a new model
called the dataflow schedule graph (DSG) for representing a
broad class of dataflow graph schedules. The DSG provides
a graphical representation of schedules based on dataflow
semantics. In conventional approaches, applications are rep-
resented using dataflow graphs, whereas schedules for the
graphs are represented using specialized notations, such as
various kinds of sequences or looping constructs. In contrast,
the DSG approach employs dataflow graphs for representing
both application models and schedules that are derived from
them.

Our DSG approach provides a precise, formal framework
for unambiguously representing, analyzing, manipulating, and
interchanging schedules. We develop detailed formulations of
the DSG representation, and present examples and experimen-
tal results that demonstrate the utility of DSGs in the context
of heterogeneous signal processing system design.

Keywords-dataflow graphs, heterogeneous computing, models
of computation, scheduling.

I. INTRODUCTION

Dataflow models of computation are widely used for ex-
pressing the functionality of digital signal processing (DSP)
applications (e.g., see [1]). In DSP-oriented dataflow models
of computation, applications are modeled as directed graphs,
where vertices (actors) represent computational modules for
executing (or firing) tasks, and edges represent first-in-first-
out channels for storing data values (tokens), and imposing
data dependencies between actors. Whenever an actor fires,
it consumes and produces tokens from its input and output
edges, respectively.

Scheduling has been studied extensively in the context of
dataflow-based modeling of DSP systems. Dataflow graph
scheduling involves assigning actors to processors, and se-
quencing subsets of actors that share common processing
resources. For dataflow scheduling of DSP systems, a “pro-
cessor” in this context is typically taken to be a hardware
resource on which execution is time-multiplexed by actors
that are assigned to it. In addition to ensuring that dataflow
graph dependencies are respected, scheduling is often geared
towards exploiting parallelism (performance improvement)

and efficient memory utilization (buffer management). Given
the fundamental role of scheduling in dataflow-based design
flows, and its heavy impact on key implementation metrics,
a wide variety of techniques has evolved over the years and
continues to evolve for scheduling DSP dataflow graphs.
Such techniques target objectives such as buffer optimiza-
tion [2], joint code and data minimization [3], quasi-static
scheduling [4], adaptive scheduling [5], [6], and throughput
optimization [7].

As the range of dataflow graph scheduling techniques
continues to expand, based on the heterogeneity of applica-
tion modeling styles and implementation objectives, and the
increasing degree of dynamics in applications, it becomes
increasingly important to develop a common representation
for modeling and working with dataflow schedules. Such
a representation is desirable to enable systematic reuse
of design tool code, analysis techniques, and back-end
implementation methodologies across various scheduling
strategies. Furthermore, a formal representation helps to
integrate different scheduling techniques so that they can be
mixed and matched across different subsystems of a design
based on characteristics and objectives associated with those
subsystems.

In this paper, we address this problem by introducing
a formal framework, called the dataflow schedule graph
(DSG), for precisely representing, analyzing, manipulating,
and interchanging schedules. We have designed the DSG
representation with two major objectives — 1) it should
be rooted in formal dataflow semantics, and 2) it should
accommodate a wide range of schedule classes, includ-
ing static, quasi-static, and dynamic schedules, as well as
both sequential and parallel schedule formats. Furthermore,
because they are based on the same dataflow semantic
framework as the application representations from which
the schedules are derived, DSGs can naturally represent
structures in which schedules are adapted dynamically (e.g.,
in response to changes in input data characteristics).

In Proceedings of the International Heterogeneity in Computing Workshop,

pages 66-77, Anchorage, Alaska, May 2011. Published through the IEEE

Computer Society Press as part of the IPDPS CD-ROM.

II. RELATED WORK

A number of dataflow schedule representations have been
explored previously. The generalized schedule tree (GST)
representation provides a tree-based representation of arbi-
trary looped schedules [8]. A novel schedule format based
on dynamic loop counts that is geared towards SDF buffer
memory minimization is developed in [9]. The interproces-
sor communication graph and synchronization graph models
provide dataflow-based schedule representations for parallel
schedules of homogeneous SDF (HSDF) graphs [10]. HSDF
is a restricted form of SDF in which the dataflow rate on
each input and output port is always equal to 1 [11].

A distinguishing characteristic of our proposed DSG
representation is that it is both dataflow based, and capable
of handling dynamic schedule structures as well as dynamic
dataflow application models. This is in contrast to execution-
sequence based representations, which can usually be char-
acterized formally but lack dataflow semantics and are often
restricted to static schedules.

The most closely related modeling technique is the syn-
chronization graph model. In this model, self-timed multi-
processor schedules are represented as interacting dataflow
graph cycles, where each cycle corresponds to the periodic
execution of the actors that are assigned to a given proces-
sor [10]. A significant body of theory and algorithms has
been developed for this model. We are therefore motivated
to generalize the synchronization graph concept beyond self-
timed schedules, and HSDF graphs.

The DSG can be viewed as such a generalization. The
DSG model can represent dynamic schedules, which can be
applied to static or dynamic application models to improve
flexibility (e.g., load balancing robustness or data dependent
control structures). Furthermore, the model is fully based on
dataflow principles, which together with its accommodation
of dynamic dataflow semantics, allows for integration with
dynamic parameter control methods for dataflow graphs,
such as those provided by parameterized dataflow [5] and
scenario-aware dataflow [6].

The DSG representation can be used in conjunction with
existing task graph scheduling techniques, such as those
developed in [12], [13], [14], [15], [16]. For example, the
DSG can be used to model the sequencing structures derived
by the scheduling techniques (e.g., as a standard interface for
code generation) or to bridge subsystems that are scheduled
using different techniques. Indeed, exploring the optimized
integration of DSG based schedule control with new and
existing task graph scheduling techniques is an interesting
direction for further investigation, and one that is especially
relevant in the area of heterogeneous computing systems.

III. CORE FUNCTIONAL DATAFLOW

For concreteness, we develop the DSG in the context of
a specific form of dataflow — the core functional dataflow

(CFDF) model of computation, which can be viewed as a de-
terministic sub-class of enable-invoke dataflow graphs [17].
CFDF is a highly expressive (Turing complete), dynamic
dataflow model. In Section XI, we discuss how the DSG
model can be adapted to other forms of dataflow (beyond
CFDF).

In CFDF, actors are specified as sets of modes, where each
mode has a fixed production and consumption rate associated
with each input and output port, respectively. Each actor has
an associated current mode, which is maintained as part of
its state. When an actor is invoked, it executes its current
mode, produces and consumes data (as in other dataflow
models), and updates its current mode. Since different modes
of an actor can have different production and consumption
rates, dynamic dataflow can be modeled flexibly in CFDF.

A distinguishing aspect of CFDF (and the non-
deterministic superset EIDF) is that separation of enable
and invoke functionality for actors is defined as a first class
characteristic of the model. Specifically, each actor has an
associated enable function, which can be called at any time
between firings (e.g., by a run-time scheduler), and returns
a Boolean value indicating whether or not there is sufficient
data available on the actor input ports to fire (invoke) the
actor in its current mode. Since such an isolated enable check
is available, the invoke function of an actor assumes that
sufficient data is present, and reads its input data without
blocking reads.

In the implementation of dataflow tools, functionalities
corresponding to the enable and invoke methods are of-
ten interleaved — for example, an actor firing may have
computations that are interleaved with blocking reads of
data that provide successive inputs to those computations.
In contrast, there is a clean separation of enable and invoke
capabilities in EIDF. This separation helps to improve the
predictability of an actor invocation (since availability of
the required data can be guaranteed in advance by the
enable method), and in prototyping efficient scheduling and
synthesis techniques (since enable and invoke functionality
can be called separately by the scheduler). This separation
also leads naturally to a concept of guarded execution,
whereby an actor firing is conditionally executed depending
on whether or not it is enabled.

IV. THE DATAFLOW SCHEDULE GRAPH

REPRESENTATION

Given a CFDF representation GA of an application, a
dataflow schedule graph (DSG) is a dataflow graph that
satisfies certain technical constraints (described later in this
section), and represents the time-multiplexed execution of
GA across a set of hardware resources. Here, a hardware
resource represents an arbitrary computational resource,
such as a processor core, dedicated accelerator or FPGA
subsystem, that executes actors sequentially. Constraints
imposed on the DSG ensure that each hardware resource

can execute at most one actor from GA at any given time.
Tokens that flow along edges of the DSG serve to enable
actors for execution (as it becomes their turn to execute).
DSG tokens can also contain values that are manipulated
and queried during execution of the DSG to achieve various
forms of data- or parameter-dependent schedule control.

In DSGs, special actors, called schedule control actors
(SCAs) and reference actors (RAs), are selected or developed
as an integral part of the schedule modeling framework.
In contrast to conventional dataflow actors, which represent
functional components from the original application specifi-
cation (application actors), SCAs are dataflow actors that are
dedicated to coordinating control flow in derived schedules.
On the other hand, RAs can be viewed as “pointers” to
application actors. These pointers are equipped with op-
tional auxiliary computations. Intuitively, an RA represents
a scheduling “wrapper” that specifies the computation that
is executed when the corresponding actor is “visited” during
schedule execution. The simplest form of RA is one that sim-
ply performs a guarded execution of the actor that it points
to. However, more capabilities can be incorporated into RAs
using the optional auxiliary computations mentioned above.

V. REFERENCE ACTORS

An RA has a single input port and a single output port.
An RA is a homogeneous synchronous dataflow actor in the
enclosing DSG — that is, it consumes a single token on
each firing from its input, and produces a single token on
its output.

Given an RA A, we represent the application graph actor
pointed to by A with the symbol ref (A), and we refer to
ref (A) as the referenced actor of A.

As illustrated in Figure 1, an RA A consists of two
functions preA and postA, which are executed, respectively,
before and after the guarded execution phase of A. This
guarded execution phase, represented by the block labeled
“guarded firing” in Figure 1, represents the guarded execu-
tion of A in terms of CFDF semantics (see Section III).

firing

RA

A
bufferstate of actor

buffer

postpre guarded

Figure 1. The internal structure of an RA.

We refer to the functions preA and postA as subfunctions
of the enclosing RA. Intuitively, the RA subfunctions pro-
vide a mechanism to process and manipulate data that is used

throughout the graph to control execution of actors (e.g., to
facilitate conditional execution or data dependent iteration
in various parts of the graph). The data manipulated by RA
subfunctions is encapsulated within the DSG tokens that are
produced and consumed by the enclosing RA.

To clarify the operational structure of DSGs, it is useful
to emphasize that the tokens flowing on a DSG are strictly
for schedule control purposes. Furthermore, because actors
in the application graph are allowed to execute only when
they have sufficient data (as specified by the CFDF enabling
conditions), and CFDF is a deterministic dataflow model,
schedule control by DSGs does not violate determinacy —
such control only dictates how actors are time multiplexed
when they are mapped to the same hardware resource.

RAs can contain internal state. Such local (actor-specific)
state is widely known to be compatible with dataflow repre-
sentations since in dataflow graphs, state can be modeled as
self loops with delays (initial tokens) [11], [18]. Thus, the
use of state in RAs does not violate our ability to interpret
DSGs as genuine dataflow representations.

The following categories of data can be used as inputs in
RA subfunctions:

• The value represented by the current DSG token —
i.e., the DSG token that is consumed by the enclosing
RA firing (preA only). This value can be of any type.
The type is a design issue of the particular DSG control
structure that is being developed for a specific schedule
or the particular class of control structures that is being
targeted by a particular scheduling tool.

• The state of the enclosing RA.
• The state of the referenced actor.

The following categories of data serve as outputs for (i.e.,
can be modified by) RA subfunctions:

• The state of the enclosing RA.
• The value of the token that is produced by the RA

(postA only).

Firing of an RA involves the following sequence of steps:

1) The RA consumes a token from its input edge. This
token is passed as input to preA, which executes, and
updates the state of RA.

2) A guarded execution of ref A is carried out. That is,
ref A is fired once if it is enabled.

3) An execution of postA is carried out. This execution
operates on the state of the RA. The output value from
this execution is produced as the output of the RA
firing.

The general purpose of preA and postA is to manipulate
DSG tokens. The values of DSG tokens, in conjunction
with SCAs, contribute to overall schedule control. Com-
putations in preA and postA are optional. For example,
an RA can simply execute the referenced actor uncondi-
tionally, maintain no internal (RA) state, and pass input
DSG values from input to output without modification. Such

“lightweight” RAs are typical in the construction of static
scheduling structures, as well as in dynamic structures where
dynamic schedule control is managed by SCAs. When code
is generated from DSGs, such lightweight RAs can easily
be detected and “optimized away” so that they do not result
in run-time overhead.

An example of a non-lightweight RA is one that updates
DSG tokens with estimates of the amount of energy or
execution time taken by the associated firings. Such infor-
mation can then be used by the enclosing DSG to adapt
overall schedule control — e.g., when the DSG is embedded
within a parameterized dataflow system or other kind of
reconfigurable dataflow graph framework (e.g., see [5], [6]).

VI. SCHEDULE CONTROL ACTORS

To model dynamic scheduling structures, SCAs generally
play an important role in conjunction with RAs. An SCA is
an actor that can have any positive number of input ports and
any positive number of output ports. In other words, an SCA
must have at least one input port and output port, and may
have any number of additional input or output ports. The
dataflow behavior of an SCA exhibits the following lumped
homogeneous synchronous dataflow (LHSDF) condition: for
every firing f of an SCA C, we have that nc = np = 1,
where nc represents the total number of tokens consumed by
C across all input ports during f , and np represents the total
number of tokens produced across all output ports during f .

Note that an SCA C can have internal state, and if we
model that state as a self-loop edge for C, then this edge is
treated independently of the LHSDF condition — i.e., such
a self-loop edge is a standard HSDF edge whose dataflow
does not “count towards” the values of nc and np.

A token in a DSG can be interpreted loosely as an “actor
level program counter” for a given target processor. The
LHSDF condition for SCAs along with the HSDF semantics
of RAs guarantee that there is only one such program
counter (thread of control) that is “demanded of” each target
processor. This ensures that the schedule execution modeled
by the DSG conforms to the assumption that individual
target processors execute actors sequentially.

Note that while our proposed DSG model is used to model
schedules for CFDF graphs, SCAs and hence DSGs do
not necessarily conform to CFDF semantics. The primary
requirement for SCAs in the context of the associated actor
level program counter concept is most naturally captured by
LHSDF semantics as opposed to CFDF.

We introduce several types of SCA actors that will be
used in this paper. Table I summarizes properties of these
actors. The loop actor has two pairs of inputs and outputs.
One pair is used to perform computations within the loop
repeatedly, while the other pair is used for conditionally
branching into and exiting the loop based on certain control
conditions. Since there is only one DSG token, execution

always proceeds unambiguously either inside or outside the
loop.

SCA actors can be paired with other SCA actors to pro-
vide special control functions that involve their coordination.
For example, if and fi provide DSGs with the capability of
selecting computations conditionally. The number of outputs
for a given if actor must match the number of inputs to the
corresponding fi actor to provide conditional selection of
the computations that are enclosed by the matching if and
fi pair.

The pair snd and rec is used for interprocessor commu-
nication and synchronization in concurrent DSGs (CDSGs),
which are discussed further in Section VIII.

Table I
EXAMPLES OF SCAS.

SCA # of inputs # of outputs
loop 2 2
if 1 ≥ 2
fi ≥2 1

snd 1 2
rec 2 1

VII. SEQUENTIAL DATAFLOW SCHEDULE GRAPHS

A DSG for a single-processor schedule represents the
time-multiplexed (sequential) execution of a set of actors on
a single processing resource. Execution of the DSG models
the evolution of actor firings in the associated sequential
schedule. To preserve this sequential execution property, a
sequential DSG (SDSG) imposes the restriction that at most
one token can be present in the entire DSG at any given
time. This requirement formally captures the interpretation
of DSG tokens as actor level program counters in the context
of single-processor schedules. Just as the program counter
in a conventional processor “points to” a single instruction
at any given time, the unique SDSG token points to a single
SDSG actor, which is the next actor to execute.

For example, consider the class of single appearance
schedules for SDF graphs [3]. These schedules are repre-
sented in terms of looped schedules such that each actor
appears exactly once, implying, for example, minimal code
size under inline implementation. For example, the looped
schedule (3(2ab)c), involving 3 actors a, b, c, and 2 loops
represented by the two nested, parenthesized terms, repre-
sents the firing sequence ababcababcababc.

To demonstrate SDSGs for single appearance schedules,
we apply the loop SCA that was introduced in Section VI.
Figure 2(a) shows an SDF graph (GA) and an associated
single appearance schedule (A(2B)C). A simple SDSG
(GS) is shown in Figure 2(b). In this example, loop

1
, which

is an instance of the loop actor, implements an outer loop
that models a finite blocking factor J . This blocking factor
value gives the number of times that the schedule is to

be repeated. If the schedule is to be repeated indefinitely
(J = ∞), then loop

1
should be removed, and the output of

RC should be connected directly to RA.

The actor loop
2
, which is also an instance of the loop SCA

defined in Section VI, implements control for an inner loop
that corresponds to the nested subschedule (2B). A token
in this SDSG does not carry any values; it simply points to
the next actor in the SDSG that is to be executed.

The “D” symbols on the graph in Figure 2 correspond to
delays, and are implemented as initial tokens in the graph.
Functionally, a delay corresponds to the z−1 operator in
signal processing.

Execution of the SDSG shown in Figure 2(b) proceeds as
follows. The delay (initial token) on the edge (RC , loop

1
)

causes execution to begin with a firing of loop
1
. This

actor loop
1

has one input port, one output port, and an
internal state that maintains a loop iteration count no, which
corresponds to the number of remaining schedule iterations,
and is initialized to the blocking factor value J . Each time
loop

1
fires, it first checks the value of no. If no = 0, then

the firing completes with an output token produced on the
output edge that is connected to END . On the other hand, if
no > 0, then the value of no is decremented, and the firing
completes with a token produced on the output edge that is
connected to RA.

This token has the effect of passing processor control to
RA, which then fires the referenced actor A once and passes
control (through its output token) to loop

2
.

The actor loop
2

has two input ports in1 and in2 and two
output ports out1 and out2 , as shown in Figure 2(b). loop

2

also has a state variable ni, which maintains the number of
iterations remaining in the current inner loop invocation.

When loop
2

consumes a DSG token from in1 , it resets ni

to 2, and produces an output token on out1 to enable RB .
On the other hand, when loop

2
consumes its input from in2 ,

it first decrements the value of ni. If after this decrement
operation ni > 0, then it again produces an output token
on out1 ; otherwise, it produces an output token on out2 ,
which effectively exits the inner loop, and passes control to
RC .

Actors RB and RC , like RA, operate by consuming a
single token each from their unique input edges, firing their
associated referenced actors, and producing a single output
token on their unique output edges. In the case of RC , the
output token produced has the effect of passing control to
the next invocation of the outer loop iteration control.

We emphasize that under correct operation, an SDSG
contains at most one token. Thus, for an enabled SCA that
has multiple input edges, there is never ambiguity about
which input edge the next firing will consume data from
— the SCA will simply consume the input token from the
unique edge that has a nonzero buffer population.

D

AR RB RC

GS

B CA 2 1 1 2

schedule: (A(2B)C)

GA

out1

out2

1

1

1

1

D

in1

in2

1

1

1
loop

2
loop

(b)

(a)

D

Figure 2. (a) An SDF graph (b) A design example of an SDSG for the
single appearance schedule (A(2B)C).

VIII. CONCURRENT DATAFLOW SCHEDULE GRAPHS

Efficient parallel computation is an important motivation
for use of dataflow graphs in many implementation contexts.
For this purpose, the concept of the DSG can be naturally
extended to handle concurrent execution of multiple SDSG
“threads”. Multiple SDSGs can be integrated to execute
concurrently through the use of a special kind of actor
called an inter-SDSG coordination actor (ICA). We refer
to the resulting class of communicating, concurrent SDSGs
as concurrent DSGs (CDSGs).

Two specific ICAs are snd and rec, which perform com-
munication and associated synchronization of data that is
passed between different processors. As shown in Figure 3,
snd and rec both have one pair of input and output ports
each — IN PC and OUTPC — for the execution-enabling
SDSG token (i.e., the token that is analogous to a program
counter or “PC”, as described in Section VII). Additionally,
the snd actor has a second output port that is used to send
data to another processor, and similarly, the rec actor has
a second input port that is used to receive interprocessor
communication (IPC) data. We refer to these output and
input ports as OUT IPC and IN IPC , respectively.

Every instance of a snd actor is paired with a correspond-
ing rec actor in the sense that the OUT IPC port of each snd

actor is connected to the IN IPC port of the corresponding
rec actor. The snd represents the communication of a single
token, including any necessary synchronization functionality
(e.g., checking for available buffer space) from the sending
processor to the processor on which the corresponding rec

actor resides. Similarly, the rec represents receipt of a single
token, including any associated synchronization functional-
ity (e.g., to check whether the corresponding interprocessor
communication buffer is non-empty before reading).

In general, the synchronization and data communica-
tion features of the rec and snd actors can be decou-

pled into more specialized ICAs that separately perform
communication and synchronization. Such decoupling of
synchronization and IPC operations can lead to opportunities
for significantly reduced synchronization overhead (e.g.,
see [10]). Design and application of ICAs for such decoupled
synchronization and IPC is a useful direction for further
work.

snd

IN

PCOUT PCOUT

PCIN
IPCIN

IPCOUT

rec: receiversnd: sender

rec

PC

Figure 3. The snd and rec actors.

Figure 4 illustrates an HSDF application graph, and a
partitioning of this graph across four processors. Figure 5
illustrates a CDSG representation of a multiprocessor sched-
ule that is based on this partitioning result. In Figure 5, the
schedule for each processor is embedded within an infinite
loop to achieve an iterative execution of indefinite duration,
which is a common execution format for DSP dataflow graph
applications. Such infinite loops can easily be replaced by
finite-iteration loops if needed by appropriate reconfiguration
of the four loop SCAs.

Recall that the “D” symbols in our dataflow graph draw-
ings correspond to delays, which are equivalent to initial
tokens. Note also that each of the four concurrent SDSGs
in Figure 5 has an edge directed from the last actor in
the associated actor chain back to the first actor, which is
a loop actor. This “feedback edge” represents the transfer
of execution from the end of a given loop iteration on the
processor back to the beginning of the next iteration. The
delay on each of these feedback edges indicates that the
execution on the given processor starts with the loop actor.

Each edge in Figure 4 that crosses the boundary of two
processors can be viewed as an interprocessor communica-
tion edge (IPC edge), and is mapped to a corresponding
pair of snd and rec actors in the CDSG of Figure 5. For
example, the edge (E, I) in Figure 4 represents an IPC edge
between Processor 1 and Processor 4. In the CDSG, this IPC
edge is implemented by snd1 and rec4, which are connected,
respectively to the output of the reference actor for E and
the input of the reference actor for I .

In summary, the CDSG provides a formal, dataflow-based
representation for modeling multiprocessor schedules of
dataflow application graphs. Although other representations
exist for managing schedules, the CDSG provides a novel
combination of features — in particular, 1) full adherence
to dataflow semantics, which helps to unify the model with
the associated application representation, and 2) flexible
integration of control constructs (through SCAs), which

Processor 4

A

H

F

CGB

IE
D

D

Processor 3

Processor 1

Processor 2

Figure 4. An application graph and a partitioning of the graph across four
processors.

SDSG 2

RHRI

RC RG

RA RE

DSDSG 1

D

1rec snd 1
loop

1

RB RF

D

D

DSDSG 4

SDSG 3D

D

D
rec4 snd44

loop

loop
3 rec3 snd 3

D

D

rec2 snd 22
loop

Figure 5. A CDSG representation of a multiprocessor schedule that
corresponds to the partitioning result shown in Figure 4.

allows for modeling of a wide range of static, quasi-static
and dynamic schedules.

IX. ADAPTIVE DATAFLOW SCHEDULE GRAPHS

A major benefit of the SDSG model is that in addition
to accommodating static schedules, it provides a common,
formal framework for representing a wide variety of dy-
namic dataflow schedules — i.e., schedules in which firing
sequences are adapted dynamically, based on characteristics
of the input data or operating environment.

We refer to an SDSG model of a dynamic dataflow
schedule as an adaptive dataflow schedule graph (ADSG).
Since ADSGs form a subclass of SDSGs, an ADSG can
contain at most one token across all of its edges at any
given time.

As a simple example, consider the dataflow-based
if-then-else construct illustrated in Figure 6(a). All
actors in Figure 6(a) produce and consume one token each
except for the switch (SW) and select (SE) actors.
Although the switch and select actors are commonly
associated with the Boolean dataflow model [19], they can
be mapped conveniently into CFDF semantics [20].

Both SW and SE consume the Boolean token produced
by actor E to determine whether Path 1 or Path 2 will be

followed subsequently. Although the path is determined at
run time, a schedule for each path can be determined at
compile time — (AESW BSED) and (AESW CSED) are
schedules corresponding to Path 1 and Path 2, respectively.

fiRA RE

RC

RB

RD

D

(b)(a)

F

TSW
IT

C
H

C

B

T

F

SE
L

E
C

T

A

E

D

Path 1

Path 2

if

Figure 6. (a) A dataflow-based if-then-else construct. (b) An
adaptive DSG for this construct.

Figure 6(b) shows a design example of an ADSG for
the application graph shown in Figure 6(a). In other words,
Figure 6(b) shows an ADSG model of a specific quasi-static
schedule for the application graph in Figure 6(a).

Intuitively, the cycle in Figure 6 that encapsulates the
actors (with feedback edge from RD to RA) models an
infinite, quasi-periodic schedule.

In this ADSG, the output token that is produced by
RE encapsulates the data value that is produced by the
corresponding firing of E. This is different from the DSG
tokens in our earlier examples, where the tokens carried only
control (enabling) information and had no values associated
with them. The data encapsulation at the output of RE can
be ensured by the post function associated with RE .

The switch actor, modeled by the SCA if , examines
the output value v from E (through the DSG token that
encapsulates its value), and produces a token on one of its
output edges depending on whether v is true or false.
This output token, like all other tokens in this DSG except
for those at the output of RE , does not have any associated
data value.

The RAs RB and RC are “minimal” RAs that simply
perform guarded executions of their associated referenced
actors. By design of the quasi-static schedule that is modeled
by the enclosing DSG, the enabling conditions for these
guarded executions will be satisfied whenever the corre-
sponding reference actors are fired.

On each firing, the SCA fi consumes the token from its
unique, non-empty input edge (which is determined by the
“output path” taken by the preceding invocation of if), and
passes control to the RA RD.

X. EXPERIMENTAL RESULTS

Heterogeneous computing systems integrate different
kinds of hardware and software to work together based on
the given application requirements. Benefits of heteroge-
neous computing are often achieved at the expense of ad-
hoc, error prone integration processes due to diverse code
bases and the lack of unifying formal models. The DSG
representation developed in this paper helps to alleviate

this integration problem, leading to more systematic design
and implementation of solutions that leverage heterogeneous
computing platforms.

In this section, we demonstrate through design exam-
ples that the DSG is an efficient schedule representation,
which provides robustness and flexibility to the back-end of
dataflow-based design processes. Our experiments examine
the application of DSGs to improving simulation perfor-
mance of dataflow graphs, as well as to improving the pro-
cesses of hardware mapping and software implementation
from dataflow graphs. Overall, the experiments show the
utility of DSG-based design and implementation across a
heterogeneous variety of platforms.

A. Simulation Time Improvement

High level system simulation is a useful application of
dataflow graphs in DSP system design. Simulation time for
complex dataflow models is often dominated by the com-
putation time of the schedule [21]. For some applications,
this overhead can be reduced with well-designed quasi-static
schedules, which trade off relatively large amounts of static
schedule computations with relatively small amounts of run-
time schedule adjustments [10].

In this section, we apply the DSG representation to model
a quasi-static schedule, and demonstrate improvement in
simulation time achieved by this schedule.

Figure 7(a) demonstrates a Boolean-parameterized down-
sampler H , which can be used to achieve dynamic changes
in sampling rate for different parts of a data stream. The
actor H consumes α tokens and then sends one of the
consumed tokens to either actor B or C, as determined by
the value of the actor’s selection parameter. The values
of parameter α and the selection parameter are generated
by actor I and S, which are enclosed within the subsystems
labeled init and subinit. The operation of these sub-
systems as well as the periodic generation and updating of
new parameter values are based on parameterized dataflow
semantics [5]. For more details on parameterized dataflow,
we refer the reader to [5].

To accommodate dynamic changes to α and dynamic
selections between actors B or C based on the selection
parameter, we construct the ADSG representation shown in
Figure 7(b). Here, we utilize the ability to embed control
information within DSG tokens to achieve the dynamic
reconfiguration required by the given application.

The RA RI determines the updated value of the parameter
α, which we denote (with a minor abuse of notation) by
α(t), and embeds this value in the DSG token that is output
by RI . This value is then used to control the number of
iterations in the nested loop SCA labeled as loop2 . The if

and fi SCAs perform conditional execution of actor B or C

based on the current value of the selection parameter.
The current value of this parameter is embedded in the DSG

control token that is output by RS so that it can be queried
by the subsequent execution of the if SCA.

downsampler H
B

C

RC

RB

if fiRI

B

C

HA
init subinit

body

H

1
A D

1

1

I S

(a)

α

(b)

R RA S

D

D

21loop loop

Figure 7. (a) A PSDF model for a reconfigurable phase shift keying
application; (b) an ADSG representation for implementing this application.

Experimental results with different numbers of application
graph iterations (processed blocks of data samples) are
given in Table 8(a), and a corresponding chart is shown
in Figure 8(b). The experiments are performed using the
PSDFSim simulation environment, which can be adapted to
implement and experiment with different types of schedules
for PSDF graphs [21].

The quasi-static schedule provided by the DSG is com-
pared to the standard PSDF scheduling approach, which
can be viewed as a dynamic scheduling approach, of re-
computing the schedule dynamically every time graph pa-
rameters change. The dynamic scheduling approach is more
general and easier to apply, while a quasi-static approach
has the potential for significant performance improvements
by exploiting application-specific structure in the schedule.
The DSG representation helps to capture this structure in a
standard, dataflow-based format that is easily integrated into
the PSDFSim environment.

The performance of the quasi-static schedule is consis-
tently better than the performance of the dynamic schedule.
The degree of performance improvement generally increases
with increasing numbers of iterations, which correspond to
increasing numbers of input samples that are processed in
the simulation. This is due to overhead in construction of the
DSG representation that is more effectively amortized across
the input data set as the size of the data set increases. Thus,
for larger numbers of iterations, the DSG-based quasi-static
schedule significantly outperforms the dynamic schedule.

B. Hardware Architecture Mapping from a DSG

In this section, we experiment with a reconfigurable
phase-shift keying (RPSK) modulator application, which
can be configured as binary PSK (BPSK), quadrature PSK

Dynamic schedule (Sec.)
Iteration 1 10 102 103 104 105 106

CPU Time 1.00 1.06 0.97 0.97 1.16 1.19 320.70
Total Time 2.29 2.35 2.60 3.21 8.65 62.08 585.97

Quasi-static schedule (DSG) (Sec.)
CPU Time 0.60 0.59 0.59 0.59 0.59 0.61 0.64
Total Time 1.86 1.87 1.93 1.95 2.28 5.67 47.45

(a) Simulation results for DSG-based quasi-static scheduling.

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1e+006

T
im

e
(S

ec
)

Iteration

Dynamic schedule
Quasi-static schedule

(b) Performance chart from simulation.

Figure 8. Performance comparison between DSG-based quasi-static
scheduling, and dynamic scheduling.

(QPSK) or 8PSK based on the desired trade-off between
communication quality and performance. As in the previous
section, we apply the parameterized synchronous dataflow
(PSDF) model of computation for application modeling and
scheduling.

Figure 9 shows our PSDF-based model of the RPSK mod-
ulator. Two parameters are employed for dynamic reconfig-
uration — β (analogous to the α parameter in Section X-A)
provides the consumption rate of actor T , and ν, a parameter
of actor X12, provides the modulation frequency. Since ν

does not affect the dataflow (production and consumption)
rate of its associated actor, it does not show up in the
dataflow rate annotations of Figure 9.

In a previous study with this RPSK application, we de-
fined a general methodology for mapping PSDF graphs into
hardware, and demonstrated synthesis results for the RPSK
application using this methodology [21]. Analogous to the
dynamic scheduling approach described in Section X-A, this
methodology is easy to apply due to its generality, and is also
useful as it provides a standard method to realize hardware
implementations of PSDF graphs. The DSG provides a
complementary method, which can be used (e.g., in later
stages of the design process) to specialize the hardware
mapping for a specific application, and capture the structure
of such specialized mappings in an abstract form that can be
targeted subsequently to platform-specific, hardware control
structures.

From its formal, dataflow-based structure, the DSG is
well-suited for transformation into optimized finite state

XS T A

I

Sinit

subinit

H1

H2

1 1 1 2 12
C

β

1

2

12

Figure 9. RPSK modulator.

machine (FSM) structures that provide control logic for
hardware implementation of the associated schedules. Fig-
ure 10(b) illustrates a DSG representation for the RPSK
targeted application, along with an FSM that is derived from
the DSG. Most of the states map to distinct RAs, and execute
the functionality associated with the associated RAs. Since
the loop iteration count of loop

2
is fixed, the state RS2

is
designed to implement loop control as well as firing the actor
S2.

D

RS RT RA
loop2loop1

D

SRRI1
RX122

(a) A DSG for the RPSK modulator of Figure 9.

1

S

IDLE

RT

RA

DONE

1. fire the actor I
2. query the parameter

1. get response from query
2. fire the actor S

fire the actor XRX12

SR
2

IR
1

if counter = 2
go to state R

else

fire the actor S

go to state R

counter++

A

X12

2

12

R

(b) An FSM for the DSG in Fig-
ure 10(a).

Figure 10. Hardware architecture mapping for a DSG.

In our experiments with hardware mapping, we targeted
ASIC implementation using the Cadence Encounter RTL
Compiler for back-end synthesis. The results reported here
are synthesis results only (the design was tested thoroughly
but not actually fabricated). Table II shows the improvement

in area that is achieved by the streamlined DSG represen-
tation compared to the general-purpose PSDF-to-hardware
mapping approach of [21]. This improvement is accompa-
nied by a formal, dataflow based representation of schedule
logic, which can be retargeted systematically to other types
of platforms for rapid prototyping and experimentation with
platform-specific implementation trade-offs.

Table II
AREA COMPARISON FOR RPSK MODULATOR UNDER CONSTANT SPEED

(100 MHZ).

DSG General-purpose Reduction
mapping

Area (cell) 18949 20004 5.27%

C. Application to Software Implementation

We use the core functional dataflow (CFDF) model of
computation (see Section III), and the lightweight dataflow
(LWDF) programming method [22] for software design
and implementation of the RPSK application described
in Section X-B, and for DSG-based experimentation with
alternative schedules in this software context. LWDF can
be viewed as a “minimalistic” approach for integrating
coarse grain dataflow programming structures into arbitrary
simulation- or platform-oriented languages, such as C, C++,
CUDA, Java, Verilog, and VHDL. For more details on
LWDF programming, we refer the reader to [22].

Figure 11(a) illustrates a C language implementation using
CFDF and LWDF. In Figure 11(a), actors S and T are CFDF
actors with three modes each. The variable M is set to 1,
2 or 3 depending on whether the current communication
mode is is BPSK, QPSK or 8PSK, respectively. Depending
on the modes of S and T , data is routed to one of the
actors C1, C2 or C3. The consumption rates of these actors
are different, as the annotations in Figure 11(a) show. In
Figure 12, the function guarded_execution carries out
a CFDF guarded execution of the given actor, and returns
true if the associated actor firing was carried out (i.e., if
the actor was enabled to begin with).

A DSG representation of a canonical schedule is shown
in Figure 11(b). A canonical schedule for a CFDF graph
can be viewed as a simple, brute force way to schedule the
graph [20]. Canonical schedules usually have high run-time
overhead, but can be useful for rapid prototyping purposes
because they can be constructed very easily and quickly.

Compared to the canonical schedule, the schedule mod-
eled by the DSG in Figure 11(c) is more efficient. This
schedule model employs SCAs to direct control flow based
on the active communication mode, and minimize run-time
overhead due to fireability (enable condition) checking.

Experiments with these schedules were carried out on
a Windows-based desktop computer with a 2.8 GHz CPU

X2

A

X1

T: table for phase value
F: duplicate phase
X1 and X2: multiplier
A: adder

S: binary Sequence Generator
C1: one−bit consumer
C2: two−bit consumer
C3: three−bit consumer

C1

C2

C3

T FS

1

2

3

1

1

1

(a) Application graph for RPSK system.

D

S RC1 RC2 RC3 RT RF RX1 RX2 RA

D

loop R

(b) Canonical schedule represented by an SDSG.

D

FRTRS

RC1

RC2

RC3

RX1 RX2 RA

D

1 2loop loop if fi R

(c) A more efficient schedule represented by an ADSG.

Figure 11. RPSK system and alternative DSGs.

do {
progress ← 0
M = query(S)
for 1 to M{progress ← progress OR guarded execution(S)}
switch(M){

case 1: progress ← progress OR guarded execution(C1) break
case 2: progress ← progress OR guarded execution(C2) break
case 3: progress ← progress OR guarded execution(C3) break

}
progress ← progress OR guarded execution(T)
progress ← progress OR guarded execution(F)
progress ← progress OR guarded execution(X1)
progress ← progress OR guarded execution(X2)
progress ← progress OR guarded execution(A)

} while (progress)

Figure 12. Outline of software implementation structure for the DSG
shown in Figure 11(c).

and 1GB RAM. The gcc version 3.4.4 compiler was
used in the back end of the implementation process.

Table III compares the performance of the canonical
schedule DSG (denoted by C.Sched), and the DSG of the
more efficient schedule (denoted by E.Sched). The overall
performance measurement is performed using preS and
postA, which record the starting and stopping time for ex-
ecution, respectively. Such implementation of performance
measurement functionality represents a useful application of
RA subfunctions, which in this case help to modularize,
cleanly separate, and formally connect performance instru-
mentation code with respect to application (actor) and sched-
ule code. The difference in performance between the two
schedules is largely due to the higher frequency of guarded
execution failures (i.e., calls to the guarded_execution
function that return false) that result from the canonical
schedule.

Table III
PERFORMANCE COMPARISON BETWEEN ALTERNATIVE SCHEDULES

BASED ON DSG MODELING. THE UNITS OF TIME IN THIS TABLE ARE
SECONDS.

of bits 3 × 103 3 × 104 3 × 105 3 × 106 3 × 107

M = 1 (BPSK)
C.Sched 0.64 0.89 3.49 28.05 275.96
E.Sched 0.63 0.83 3.21 25.69 251.72
Improv. 1.56% 6.74% 8.02% 8.41% 8.78%

M = 2 (QPSK)
C.Sched 0.64 0.83 3.10 25.16 264.46
E.Sched 0.63 0.73 2.05 14.79 142.26
Improv. 1.56% 12.05% 33.87% 41.22% 46.21%

M = 3 (8PSK)
C.Sched 0.62 0.81 2.91 23.82 234.18
E.Sched 0.62 0.71 1.60 10.83 103.88
Improv. 0.00% 12.35% 45.02% 54.53% 55.64%

This experiment helps to demonstrate how the DSG
representation can be used as a common framework for
experimenting with alternative schedules for software im-
plementation. In this case, the DSG representation is used
for initial functional validation using the canonical schedule,
followed by a natural progression to a more sophisticated
schedule, which provides opportunities for performance opti-
mization once initial functional validation has been achieved.
Recall from the formal semantics of dataflow graphs that for
all valid schedules (i.e., schedules that respect the dataflow
properties of the application), functional correctness is in-
dependent of the schedule. Thus, such a progressive or
incremental approach to schedule exploration is attractive
from the viewpoints of separating concerns, structuring the
design process, and improving overall productivity. These
are all useful viewpoints to help designers leverage the
power of heterogeneous computing platforms.

XI. EXTENSIONS

For concreteness, we have presented the DSG model in
the context of CFDF semantics. However, the DSG model
can be adapted to other dataflow models or environments
that can support a notion of guarded execution — i.e., a
check for fireability followed by execution of the associated
actor if it is found to be fireable.

In contrast, models in which fireability checking and
actor invocation are interleaved (with blocking reads) cannot
be integrated directly into the proposed DSG framework.
However, a more restricted form of DSG can be employed
in which RAs fire their associated actors unconditionally.
Such DSGs require more care in their construction (to
avoid run-time deadlock), and can be useful for modeling
static or quasi-static scheduling structures where significant
information is available at compile time for DSG derivation.

XII. CONCLUSIONS

In this paper, we have introduced the dataflow schedule
graph (DSG) as a formal, dataflow-based model for repre-

senting and interpreting schedules for dataflow graphs. We
have shown that both sequential and parallel schedules can
be accommodated in the DSG framework. The DSG is not
restricted to any specific dataflow model, and provides for
a wide range of static, quasi-static, and dynamic schedul-
ing structures. Furthermore, the model is easily extended
with new types of schedule control actors and reference
actor subfunctions so that the structures of the represented
schedules can be flexibly customized by designers, tool
developers, and adaptive scheduling strategies. We have
demonstrated the utility of the DSG representation through
various examples with emphasis on demonstrating the utility
across a heterogeneous variety of computing platforms.
Useful directions for future work include the application
of DSGs as a substrate for optimized integration of hybrid
scheduling techniques.

XIII. ACKNOWLEDGMENTS

This research was sponsored in part by the US Air Force
Research Laboratory, and the Laboratory for Telecommuni-
cation Sciences.

REFERENCES

[1] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala,
Eds., Handbook of Signal Processing Systems. Springer,
2010.

[2] M. Ade, R. Lauwereins, and J. Peperstraete, “Data memory
minimisation for synchronous data flow graphs emulated on
DSP-FPGA targets,” in Proceedings of the Design Automation
Conference, June 1997, pp. 64–69.

[3] S. S. Bhattacharyya, R. Leupers, and P. Marwedel, “Software
synthesis and code generation for DSP,” IEEE Transactions
on Circuits and Systems — II: Analog and Digital Signal
Processing, vol. 47, no. 9, pp. 849–875, September 2000.

[4] S. Ha and E. A. Lee, “Compile-time scheduling of dynamic
constructs in dataflow program graphs,” IEEE Transactions
on Computers, vol. 46, no. 7, July 1997.

[5] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized
dataflow modeling for DSP systems,” IEEE Transactions on
Signal Processing, vol. 49, no. 10, pp. 2408–2421, October
2001.

[6] B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten,
S. V. Gheorghita, and S. Stuijk, “A scenario-aware data
flow model for combined long-run average and worst-case
performance analysis,” in Proceedings of the International
Conference on Formal Methods and Models for Codesign,
July 2006.

[7] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten,
A. J. M. Moonen, M. J. G. Bekooij, B. D. Theelen, and
M. R. Mousavi, “Throughput analysis of synchronous data
flow graphs,” in Proceedings of the International Conference
on Application of Concurrency to System Design, June 2006.

[8] M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhattacharyya,
B. Kienhuis, and E. Deprettere, “Parameterized looped sched-
ules for compact representation of execution sequences in
DSP hardware and software implementation,” IEEE Trans-
actions on Signal Processing, vol. 55, no. 6, pp. 3126–3138,
June 2007.

[9] H. Oh, N. Dutt, and S. Ha, “Memory optimal single ap-
pearance schedule with dynamic loop count for synchronous
dataflow graphs,” in Proceedings of the Asia South Pacific
Design Automation Conference, 2006, pp. 497–502.

[10] S. Sriram and S. S. Bhattacharyya, Embedded Multiproces-
sors: Scheduling and Synchronization, 2nd ed. CRC Press,
2009.

[11] E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,”
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245,
September 1987.

[12] A. Gerasoulis and T. Yang, “On the granularity and cluster-
ing of directed acyclic task graphs,” IEEE Transactions on
Parallel and Distributed Systems, pp. 686–701, June 1993.

[13] V. Kianzad and S. S. Bhattacharyya, “Efficient techniques
for clustering and scheduling onto embedded multiproces-
sors,” IEEE Transactions on Parallel and Distributed Systems,
vol. 17, no. 7, pp. 667–680, July 2006.

[14] Y. Kwok and I. Ahmad, “Static scheduling algorithms for
allocating directed task graphs to multiprocessors,” Journal
of the Association for Computing Machinery, vol. 31, no. 4,
pp. 406–471, December 1999.

[15] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, and Y. A.
Li, “Heterogeneous computing,” in Parallel and Distributed
Computing Handbook, A. Y. Zomaya, Ed. McGraw-Hill,
1996.

[16] L. Wang, H. J. Siegel, and V. Roychowdhury, “A genetic-
algorithm-based approach for task matching and scheduling
in heterogeneous environments,” in Proceedings of the Het-
ergeneous Computing Workshop, April 1996, pp. 72–85.

[17] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S.
Bhattacharyya, “Functional DIF for rapid prototyping,” in
Proceedings of the International Symposium on Rapid System
Prototyping, Monterey, California, June 2008, pp. 17–23.

[18] B. Kienhuis and E. F. Deprettere, “Modeling stream-based
applications using the SBF model of computation,” in Pro-
ceedings of the IEEE Workshop on Signal Processing Systems,
September 2001, pp. 385–394.

[19] J. T. Buck and E. A. Lee, “Scheduling dynamic dataflow
graphs using the token flow model,” in Proceedings of the
International Conference on Acoustics, Speech, and Signal
Processing, April 1993.

[20] W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya,
“Heterogeneous design in functional DIF,” in Proceedings
of the International Workshop on Systems, Architectures,
Modeling, and Simulation, Samos, Greece, July 2008, pp.
157–166.

[21] H. Wu, H. Kee, N. Sane, W. Plishker, and S. S. Bhattacharyya,
“Rapid prototyping for digital signal processing systems using
parameterized synchronous dataflow graphs,” in Proceedings
of the International Symposium on Rapid System Prototyping,
Fairfax, Virginia, June 2010.

[22] C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya, “A
lightweight dataflow approach for design and implementation
of SDR systems,” in Proceedings of the Wireless Innovation
Conference and Product Exposition, Washington DC, USA,
November 2010, pp. 640–645.

