arxXiv:1105.5481v1 [physics.comp-ph] 27 May 2011

Performance Acceleration of Kernel Polynomial Method
Applying Graphics Processing Units

Shixun Zhang and Shinichi Yamagiwa
School of Information
Kochi University of Technology/
JST PRESTO
Kami, Kochi 782-8502 Japan

Abstract—The Kernel Polynomial Method (KPM) is one
of the fast diagonalization methods used for simulations of
guantum systems in research fields of condensed matter physi
and chemistry. The algorithm has a difficulty to be parallelized
on a cluster computer or a supercomputer due to the fine-gain
recursive calculations. This paper proposes an implementin
of the KPM on the recent graphics processing units (GPU)
where the recursive calculations are able to be parallelizkin
the massively parallel environment. This paper also illugiates
performance evaluations regarding the cases when the acthia
simulation parameters are applied, the one for increased
intensive calculations and the one for increased amount of
memory usage. Finally, it concludes that the performance on
GPU promises very high performance compared to the one on
CPU and reduces the overall simulation time.

Keywords-GPGPU, Kernel Polynomial Method, Condensed
Matter Physics, CUDA

I. INTRODUCTION

Masahiko Okumura and Seiji Yunoki

Computational Condensed Matter Physics Laboratory

RIKEN ASI
Wako, Saitama, 351-0198 Japan,
JST CREST
Kawaguchi, Saitama 332-0012, Japan, and
Computational Materials Science Research Team
RIKEN AICS
Kobe, Hyogo, 650-0047 Japan

cally exactly. Because of exponential increase of degrées o
freedom with the number of electrors O(10%%), we must
still resort some sort of approximations. However, unlike
analytical treatments, numerical simulations can harfute t
strong correlation effects with controllable approxirnas.
Among many, well established numerical methods thus far
are exact diagonalization methad [3]] [4], quantum Monte
Carlo method [[B], density-matrix renormalization group
method [6], [7], [8], [9], and kernel polynomial method
(KPM) [10]. Each method is suited to particular sets of
problems and at the same time each has severe limitations.
For instance, the exact diagonalization method is able to
evaluate the ground state (and low energy excited states) in
high accuracy, but it is limited to a small size of systems.
The simulation evaluates various physical quantities such
as density of states (DoS) and Green’s functions for elec-
trons, which are necessary to study electronic structuines.

Today's technological achievement in our everyday lifeparticular, a straightforward method to calculate the DoS

is based on years of fundamental research for a widéy diagonalizing a Hamiltonian matrix requires computa-
variety of materials with fascinating functionalities buas tional complexity O(D?), where D is the system size.
semiconductors, magnets, and superconductors. Research&his complexity is a performance bottleneck to evaluate
in condensed matter physics revealed long ago that those difiigher energy excited states. In this respect, the KPM has
ferent properties of materials result from different bébess an exceptional advantage because the KPM reduces the
of electrons, which are described by quantum mechanicatomplexity of diagonalization t® (D) at most by truncating
equation of motion. Although it has been more than 80polynomial expansions, which in turn controls the accuracy
years since quantum mechanics was established, there ay&the approximation. Thus, this paper focuses on the KPM
still many properties of matters whose origins are yet towhich appropriately evaluates the DoS and Green'’s function
be understood. Such examples include copper based highcluding higher energy excited statés|[10].
temperature superconductolis [1] and some of magnetic The KPM is an approximation method based on poly-
insulators of organic compounds| [2]. The common featurenomial expansions from which physical quantities are eval-
of these systems is a strong quantum correlation betweemated. In particular, the Chebyshev expansion is the most
electrons, which is turned out to be crucial for determiningcommon and useful polynomial to be applied. To avoid
their properties. It is precisely this strong correlatitratt the Gibbs phenomenon due to truncated polynomial expan-
makes it difficult to treat these systems analytically witho sions with a finite order, modified kernel polynomials are
introducing any bias in theory. preferably used. For example, the Dirac’s delta function is
The best way to treat the strong quantum correlations isvell approximated by truncating Chebyshev expansion with
to solve quantum mechanical equation of motion numerithe Jackson kerne[[10]. Moreover, in quantum statistical

http://arxiv.org/abs/1105.5481v1

mechanics, it is required to evaluate the trace of large- [I. BACKGROUND AND DEFINITIONS
dimensional Hamiltonian matrices. This trace is efficigntl
approximated by using random vectois |[10] (we call it
“stochastic trace method” in this paper). Therefore, combi 1) Definition: The basis of KPM is the following (Cheby-
ing these two methods, truncated polynomial expansions anghev) polynomial expansion of a functiof{z) defined in

random vector bases, allows us to evaluate the DoS and other 1, 1],
physical quantities with significantly reduced complexity

A. Kernel polynomial method

The computational cost inevitably increases with system flz) = to + 2 Z wunTn(x)| 1)
sizes considered, and with the number of polynomials kept 1 —x? n=1
and random vectors generated to meet the desired accura
It is therefore expected to reduce the simulation latency 1
drastically by implementing the KPM in parallel platform. fin = / dz f(z)T,(2), (2)

Regarding computer hardware, the graphics processing !
units (GPU) have become available to be used for acce@ndT,(z) is the Chebyshev polynomial defined as
eration platform as a substitute of CPU. This is due to the

T, (x) = cos [narccos(x)] . (3)

recent drastic performance growth of GPU. The recent GPU

has already achieved the performance up to TFLOPS ordef should be mentioned that the Chebyshev polynomials

Therefore, it is applied to various scientific fields to solvegaisfies the following recursion relations,

the grand challenge applications under a personal congputin

environment[[11]. To(x) =1, Ti(z)==x, 4
The program on GPU is called stream-based program Thio(x) = 22T 41 (x) — Tn(x) . (5)

which processes each data unit contained in input data .]

streams, and generates the corresponding data unit formig°M is defined as

output data streams. This computing style has benefits of 1 N—1
1) eliminating memory access bottleneck, which is seen in fxpm(z) = e Jopto + 2 Z IntinTn(z)| , (6)
the von Neumann style architecture, and 2) data parallelism mvl-—z n=1

because each data unit does not have any dependency,jfere the additional coefficients, given by a kernel which
the data streams. The recent challenges to speedup ir€ens\¥,sisies the limit

computations enforce algorithms to be redesigned to fit

to GPU and to receive the benefit of especially the data If — fxem] 22250, (7)
parallelism characteristics assigning small operationthé

enormous number of the stream processors. This computinghere| - | is suitable well-defined norm.

style would become a typical computing style in the next 2) Application to quantum system# quantum physics,
supercomputing generation. we need to expand functions of the Hamiltonian matrix. In

This paper focuses on a GPU-based implementation dfiS Paper, we focus on the density of state (DoS). Then, we
the KPM applying the stream-based computing style. weshow an example of application of KPM for calculation of
propose an effective implementation of the KPM on GPU 0S.)] o
to accelerate its performance faster than the recent CPU. As e consider the system described by the Hamiltonian
seen in the next section, vectors (higher order polynomialsmat”XH' FII’.St, we apply the following linear transformation
are generated recursively. This characteristic is suffege N Order to fit the spectrum off to [-1,1],
parallelize the KPM effectively in a CPU-based large system H=(H-a.)ja_ ®)
Applying GPU resources and a stream-based programming ’
style, this paper will challenge to overcome the perforneanc where
limitation caused by the recursive operation. az = (Bupper = Blower)/2, 9)

This paper is organized as follows. Sectloh Il describes
the detailed explanation of KPM and the overview of the The parameter&, ;e and Eiowe, are the upper and lower
genera' purpose Computing on GPU Sec@] ||| proposegmits Of the eigenvalues OH Obtained by the GerSChgorin
the design and implementation of KPM on GPU. Sedfioh [vtheorem.
analyzes the performances of typical sets of input paramiete The density of state (DoS)(w) of the D-dimensional
used in condensed matter physics and discusses the progrdiamiltonian matrixH is defined by
behaviors when the parameters change to increase resource D_1

usage regarding processor and memory. Finally, se€fion V plw) = 1 5w — Ey), (10)

concludes this paper. D k=0

where E), is the k-th eigenvalue andi(x) is the delta Thenyu, is expressed by this expression as
function. We apply the linear transformatidd (8) and obtain

R—-1
e (528) o
_ 1 _ ~ r=0
p@) = D Z 0@ — Ei), (11) 4) Numerical complexity:The numerical complexity of
h=0 the KPM is O(SRN D) if the H is sparse matrix, where
where S is the number of the realization of the set of random
W=(w—ay)/a_. 12) variables{¢, ;}. The process costin@(D) is the making
In order to obtain the approximated DoS using KPM, thePart of [r,) shown in Eq. [(1B), which is the heaviest part
coefficientsy,, (@) in this case is obtained as in KPM._When theH is considered as a dense matrix, the
. complexity of the part become3(D?).The O(SR) comes
i = / & p(@) T (&) from the average and summation in Hq.J(19) &1{@V) from
-1 the summation in Eq[{6). This numerical c@2tSRN D)
1 D=1 ~ is very effective against the full diagonalization whictsto
) Z Tn(Eyx) O(D?) if S,R,N < D? and theH is a sparse matrix.
k=0 However, it is a dense matrix, the numerical cost becomes
1 Pl - 1 5 O(SRND?) due to all multiplications for all elements in
=5 2 kITu(H)|k) = 5 Te[Tn(H)], (13) the A and the|r,) must be performed straightly without
k=0 considering the CRS (Compressed Row Storage) format for
where|k) is the k-th eigenvector andk| = |k). a sparse matrix. This paper considers the simple case when

3) Stochastic evaluation of tracedn order to evaluate the CRS format is not applied to the memory maintenance
the trace in Eqi(d3), we introduce the stochastic evalnatiofor the H. Therefore, all the elements in thé matrix are
method of traces, which estimatgs by average over only applied to all the calculations in the KPM.

a small numbeR <« D of randomly chosen vector.

First, we introduce an arbitrary basfg)} a set of inde- B- General purpose computing on GPUs

pendent identically distributed random variab{gs ;|¢,.,; € 1) GPU architecture: A video adapter that includes a
R} which in terms of the statistical average) fulfill GPU and a Video RAM (VRAM) is connected to a CPU’s
peripheral bus such as PCI Express. The video adapter
(&rid =0, (&i&rir)) = Orrbuar, 14 \Wworks as a peripheral device of the CPU, and its GPU is
a random vector is defined through controlled by the CPU to help a part of visualization tasks
D1 in the system. To utilize the GPU as a computing resource
) = Z E0li) . (15) for GPGPU applications, the CPU downloads application
= program to the GPU'’s instruction memory and also prepares
. : input data for the program. The program fetches the data
Using them, we can approximately evaluate the trace a

and generates the result to the memory areas. The GPU

follows, reads/writes the VRAM directly to execute the calculation
iy = lTr [Tn(ﬁ)} for the program. In this case, the original data is prepaned i
D the main memory. The CPU copies the data to the VRAM.
1 =1 - During the execution of the program, the GPU generates the
-D Z [T" H)} i results to the VRAM. The CPU copies the results from the
i:% . VRAM to the main memory.
11 Z<<§) {T (]})} The recent GPUs have only a kind of processor called
T DR £ ST " ij the stream processorThe processor works for general
HI=0 ZZO purpose processes in any kind of calculation. However,

B <<il 5 |, (f{)|7’>>> (16) the computing style must be followed in the stream-based
. " ' one distributing elements included in streams into mutipl
~ stream processors. GPU uses two types of memory called
In order to make(r|T,,(H)|r), we use the following globalandsharedmemories. The global memory is provided
recursive relations for the vectoys,) := T,,(H)|r) derived by the memory placed outside of GPU such as DDR3
from the relations[(4) and(5), VRAM. The shared memory is placed besides of the stream
. A processor that works as if a cache.
Iro) = |T>~’ Ir1) = Hlro). (17) 2) CUDA: The Compute Unified Device Architecture
rnt2) = 2H]rni1) = [rn) - (18) (CUDA) has been proposed by NVIDIA corporatidn [12].

Memory |(I CPU

JC

() Peripheralbus ()
JC

: 2 >
‘ [[Vertex Threadl sue | [Geometry Thread Issue] [Pixel Thread Issue | ‘
;2

i . GPU 3
i A £ Stream —
o
EE E EE ESE EE EE Esgj ESE _| processors) 2| |Thread| |Thread| . |Thread
= s O || Block Block Block
gy ek gy e e et s g Shared Thread < |5
L1 L1 L1 L1 L1 L1 L1 L1 i
_jmemories \ > = || Thread| | Thread
i l"‘ B || Block | | Block : Mg
|.,---J-.,-J-.--g-.-..l.,---l.-.,-l.---.y . 1= .
o~ .
ROP ROP L2 ROP L2 ROP L2 ROP L2 ROP L2 \‘m ~l\
Global Pyjck
\DRAMCommn] [DRAM Controller H oba Thread Thread
64-bit 64-bit memories Block Block
@ @ @ @ @ O G) C) G) G) G) G) ———

m
block Mg,y

Figure 1. A GPU architecture. (a) Execution model of kernel threads in CUDA

int main(){
float *A, *B, *C;
: dim3 dlmGrld(mgm, B)i
The CUDA assumes an architecture model as illustrated in KernelFunc<<< dimGrid , dimBlock >>>(A, B, C);

Figure[2 (a). The model defines a GPU which is connected
to a CPU'’s peripheral bus. A VRAM (the global memory)
that maintains data used for calculation on the GPU is __global__ void KernelFunc(float *a, float *b, float *c){
connected to the GPU. The data is copied from the host 7yt = plockDim.x * blockDim.y *
memory before the CPU commands to execute a program (gridDim.x * blockldx.y + blockldx.x) + threadldx.x;
on the GPU. The program is executed as a thread in a cfil= ali] + b[i;
thread block. The thread blocks are tiled in a matrix of from }

one to three dimensions. In the figure, thread blocks are (b) Example CUDA code for array summation
tiled in two dimensions which size 84,4 X mgriq. Each . _ _
thread block has multiple threads in a matrix which size is Figure 2. CUDA programming environment.

varied from one to three dimensions. The figure also shows
a thread block that includesy; . X muocr threads. Each
thread block has individual shared memory space wheréhe elements in those arrays to a thread and returns thé resul
shared valuables accessed among threads in the block amethe array C. The function is called by the main program
stored temporally. Thus, the program targeted to GPU in thepecifying the sizes of the grid and the thread block with
CUDA environment is invoked as threads. The threads are<< >>>. Finally, reading data from the VRAM transferred
grouped by the unit of the thread block. Therefore, obtainin by the main program, the kernel function is assigned to GPU,
a large parallelism, a large number of threads are invokednd runs as multiple threads. Thus, because programmer can
concurrently. just simply consider the stream-based kernel function and
In the program on the CUDA environment, the threadsthe calling code for the function in the main program, using
are described as a stream-based function written in C calledie conventional C language manner, the CUDA provides an
akernel functioras shown in FigurEl2 (b). The program has €asy and transparent interface for GPGPU.
two parts of the codes targeted to CPU and GPU, which is According to the backgrounds we have mentioned above,
initially invoked by the CPU; a main program for CPU and it is important for the simulation in the quantum physics
a kernel function called as the thread on GPU. The kerneio apply a fast diagonalization method to reach the goal of
function is defined with the _global__ directive so that the simulation quickly. However, the KPM has difficulty of
it is executed on GPU. In the function, the global variablesfine-grain parallelization in large scale computers such as
namedgridDim, blockDim, blockIdx, threadIdx, cluster computers or supercomputers due to the recursive
implicitly declared by the CUDA runtime, are available to be calculation performed in the Eq.(|18). Therefore, it is vkort
used to specify the size of the grid and the thread block, théor us to implement the KPM on a GPU where the massively
indices of the thread block and of the thread respectively. F parallel environment is equipped with a large number of
example, using these global valuables, Fidure 2 (b) pedormstream processors. Thus, this paper focuses on design and
a summation of arrays A and B assigning each summation dfnplementation of the KPM on GPU that challenges to

—> (1) Create [[]7 cydicaly
., changing
(2) \ BLOCK, mE g pointers
(2.1) Get T, from T o Cyclcsly
7 changin
FE) = F RS BLOCK, gzﬁ pointgersg
N BLOCK_SIZE o
rn=Hr, | L7
n = 2xHi_ —T_,ro) EEEEE B
2 T2 ical
Lo O - W] S
I = . 7 pointers
ors~ @2T [r = u,) ENEEN N
3 O(H _SIZE) HSIZE R
) 1 _ - a) Parallelizing generation of 7,
—) M, = U, (nOON
RS |Z:l " " ((Q)) < Summation for 4,
T ﬁl
Figure 3. Design and implementaion of KPM on GPUs. - H,

achieve the advanced performance with applying the stream-
based computing style on the massively parallel environ-
ment.

IIl. KERNEL POLYNOMIAL METHOD APPLYING GPUs

RS
BLOCK_SIZE

BLOCK,

BLOCK,

EEEEN -
oo | NHEENE - N

¥

O

My

My
Hy

Hy

| 2

ﬁZ

|

ANEEN
H_SIZE
b) Parallelizing generation of 4,

A. Design for massively parallel platform

Figure[3 summarizes the KPM algorithm. The step (1)
generates randomly a vectef that the number of elements
is H_SIZE (this equals to theD in sectiorI[-A). The step
(2) gets7,, from 7 ,,_, and 7 ,,_, recursively calculating a
matrix multiply of # and7,,_; in the step (2.1). This mul-
tiplication is very hard to parallelize using MPI or OpenMP B |mplementation
because of the dependencies due to the recursive iteration
although the part needs the most intensive calculationn The
a dot product is calculated using,, again with 7 at the

Figure 4. Parallelization of KPM.

We have implemented a kernel program for GPU using
CUDA. The kernel receives thél_SIZE, N that is the
step (2.2) and generatg@s,. Then the generation of the, number of moments an.S as the arguments. All calcula-
is iterated forRS times. This means each generationigf tions are performed based on double precision. The kernel
can be massively parallelized on GPUs. Finally, the averagicludes two important concepts. One is how to keep high
of all the i,,s is generated at the step (3)./\s are finally parallelism. Another is an effective memory management for
generated from the RS-time iterations of the step (1) and (2fhe parallelism.

This generation of the moments achieves the objective of the 1) Parallelization of calculationsAs we discussed in the
KPM. This summation to generafe, can be parallelized last section, two heavy calculation parts (the a) and the b))
on GPU. Therefore, implemented on GPUs, two paralleshould be parallelized and it would give the largest impact
processing parts are entirely performed during the evalnat for the speedup.

of the moments using KPM: a) generation @f and b) Figure[@ a) shows the generation part for fhe,. 7,
generation ofu,,. The maximum number of parallelism at needs7,_1, 7n_» and 7 that is randomly generated.
the both a) and b) parts becomes & because the total These four vectors are obtained in the global memory and
number of threads executed in the stream processai®is each block will write those vectors swapping the pointers.
Here, GPU has an architectural restriction to the numbeHere the number of blocks BS/BLOCK _SIZE. In each

of threads in a thread block referred as BLOGHZE in block, BLOCK_SIZFE stream processors are concurrently
this paper. Therefore, the number of thread blocks becomesorking to generate a part of those vectors including the
RS/BLOCK_SIZE. Considering the parallelization tech- random number generation for’. Therefore, this part
nigues above, let us explain the implementation of a kernelill be fully parallelized into the total number of stream
program on CUDA that invokes both the a) and b) parts. processors equipped on GPUs. This part will genefate

fi2 ... iy using 7 and 7, for N time iteration. 2500 4

Figure[4 b) depicts the parallelization of generation for o e ya— — —

35 o»

n- It performs just parallel summations for generating a g

scalaru,, where all blocks works in parallel. 21500 r3 5

. . . 2 -_— i °

2) Memory consumptioniet us consider the required o CPU (Corei?) 25 3

. - . £ === GPU (C2050) s

memory amount for the operations in Figlile 4 in the casez 100 @
. . o —— -

of double precision. For the operation a), because fours Speedup (CPUIGPL) 2 <

7 vectors are stored in the global memory for a block. % soo
Each 7 vector hasH_SIZE elements. Therefore, this
part consumesNumber of Blocks x 4 x H_SIZE x 8 0
bytes. The operation b) is parallelized into thg numt_)er of 128N where S=2152,R=128, H_E’;ZE= 10001024
blocks. Each block performs a part of summation using N
@s. The length ofis is H_SIZE. Therefore, it needs totally Figure 5. Performances applying the lattice made of cubasegl in
Number of Blocks x N x H_SIZFE x 8 bytes. 10x10x10.

The operation a) writeg,, into the global memory. This
needs to be kept with” vectors simultaneously. Therefore, 10 ‘ ‘ ‘
the total number of memory isNumber of Blocks x i
H_SIZE x (8 x N + 32).

Due to the recursive relationships amont,, 7,._1
and 7,_», the KPM is treated generally as one of very
hard parallelized algorithms. However, as we can see in this
section, on the GPU, a massively parallel environment, the
KPM is fully parallelized due to the stream-based computing
concept. Thus, we can expect an effective speedup that will
be proportional to the number of stream-processors.

IV. EXPERIMENTAL PERFORMANCE ANALYSIS 0 s s s

This section shows performance evaluations of the KPM
implemented on GPU. The performance based on GPU isigure 6. The DoS comparison with trancations between N=256
Compared with the one based on CPU. The experimenté'=512 when the lattice is made of cubes placed in 10x10x1Q,4Rand
environment is a PC that consists of an Intel's Core i7 930° 2%
processor at 2.80GHz with 12GB DDR3 memory, and the
NVIDIA Tesla C2050 with 3GB Memory is connected to A. Performance analysis using actual simulation paranseter
the PCI Express bus. The configuration of the cache in the”
GPU is set to 16KB and the shared memory size is 48KB. In the field of the computational condensed matter
The OS of the PC is the Cent OS of the Linux Kernel 2.6.18physics, the KPM is applied to a simulation to evaluate the
The driver version of the GPU is 3.0. All KPM calculations DoS in a three dimensional lattice model. Let us consider a
are performed with double precision floating point. The CPUlattice model made of cubes i) x 10x 10 where an electron
version is compiled with GCC 4.4.1 with O3 option. is placed in each corner. This model needs a Hamiltonian

We perform three kinds of performance analysis: (1)matrix sized in1000 x 1000 due to the presentations of cor-
evaluation using actual sets of parameters, (2) the one witfelations among the electrons at each corner. The significan
increasing calculation size and (3) the one with increasingharacteristics of the matrix include that 1) it is sparsé an
memory usage. The first evaluation hires sets of parametegymmetric and 2) any row contains seven non-zero elements
used in actual simulations of the meaningful model appliedvith the condition where all diagonal ones are zeros and the
to the condensed matter physics field. The second evalwther non-zero ones arels.
ation analyses the behavior of the performances when the We evaluate the DoS in the case of the lattice that we
parameterN is increased. This means that more intensiveassumed above using the fixed parameters of the KPM with
calculation is loaded to the CPU and the GPU following theS = 14 and R = 128. Varying N from 128 to 1024 in
increase ofN. The last evaluation shows the performancethe steps o™, Figure[® shows the execution times and the
impacts when theéd_SIZFE is increased. This case needs speedup comparing the performances on the CPU with the
the square sized memory to store thie matrix that is ones on the GPU. The speedup keeps 3.5 times for all the
increased by the impact df _SIZE>. cases. This means that the simulation can be accelerated by

~
o
IS

r 3.9

== CPU (Corei7) 5000

GPU (C2050) === CPU (Corei7) - 38

e== Speedup (CPU/GPU) _ GPU (C2050) \r
/ r o = Speedup (ch/U
- 36

_ 3000 - 35
/ - 3.4

2000 —
L33

1000 1 32
— . L34
o : : 0 0 — - s

(128,14, 128) (256,14, 128) (512,14,128) (1024, 14,128) (2048, 14, 128) 512 1024 2048 4096
(N,R, S) H_SIZE

w
3

[o2]
o

w
'S
o
o
o

53
o

N

5]

'S
o

w
o

Execution Time (sec,

Execution time (sec)
_—\ N
(4]
(Nd9/NdD) dnpasads

(NdDINdD) dnpsads

N
o
-

-
o

o

(3]

Figure 7. Performance comparison increasing N. Figure 8. Performance comparison increasingSHE.

the GPU and the execution time becomes almost 40% fasteache a part of the matrix into very fast shared memory and
than the one on CPU at most. accesses the memory in the stream-based manner. Thus, the
We shall pickup two DoS data combinations from theexecution time of the GPU version does not increase more
parameter sets of Figuié 5 and plot it to a graph as depictetthan the complexity @Q(H_SIZ E?)). This causes almost
in Figure[6. The graph shows the DoS wh&h= 256 and four times faster performance than the CPU version.
N = 512. When N is the smaller number, the truncation ~As we discussed in three kinds of evaluations above,
reduces to the resolution of the DoS. However, the processhe performances on GPU achieve better performances than
ing time is smaller than the case of a larye Therefore, the ones on CPU due to the highly parallelism caused by
although the case aV = 512 shows higher resolution of the GPU-based implementation explained in this paper. The
the DoS, it takes longer calculation time. implementation achieves the advanced performance even if
S)) it is applied to the actual examples from the condensed
E_3. Performance analysis with increased intensive calculay,atter physics or the cases with hard conditions virtually
tions when the amounts of the computation and the memory usage
Obtaining the fixed parameters di_SIZE = 128, are increased. Thus, we have confirmed that the KPM is a
R = 14 and S = 128, we measure the performances suitable algorithm that fits well to the GPU environment
with varying the N from 128 to 2048. The graph of the and the performance acceleration accomplishes amazingly
performances is illustrated in Figufé 7. The graph showshe high performance.
the execution times with bars and the speedups (i.e. the
CPU time is divided by the corresponding GPU time) with V. CONCLUSIONS
a line. As increasing theV, that is, as increasing the
calculation amount, the speedup increases to almost 4.times This paper has proposed an implementation of the KPM
This means that the performance with the higher intensivevidely used in the physics and the chemistry field to
calculations affected by the largdf causes higher effective simulate various quantum states. Our GPU version shows
data parallelism on GPU when the calculation amount isabout 4 times faster than the CPU one. Therefore, using
increased without changing the size of the memory usagea GPU, productivity of the moments for a quantum state
Thus, our implementation on GPU clearly achieves higheis accelerated to four times. Therefore, the GPU version is
performance than the CPU-based KPM as increasing thexpected to be used for various grand challenge simulations

calculation amount. to find a new quantum state that resolves unknown physical
S theories in the natural phenomenon.
C. Performance analysis with increased memory usage For the future plans, we are considering to quest a method

This analysis fixesV = 128, R = 14 and S = 128. to find the best block size used in the GPU that defines
We vary H_SIZFE from 512 to 4096 with the step &f*. the size of the stream processors’ block. Moreover, the
The performance presents effects caused by increasing tiparallelization of the KPM on a message passing and a
memory usage. The graph of the performance is depicted ishared memory paradigm is also challenging because the
Figure[8. When the amount of memory usage increases, thecursive reference to gét,, becomes a bottleneck to be
number of memory accesses increases. Therefore, the CRirallelized in fine-grain. Moreover, we are also plannimg t
version needs to read/write the memory as increased thextend the GPU-based implementation to a GPU cluster for
size of H matrix. On the other hand, because the GPU carits parallelization.

ACKNOWLEDGMENT

This work is partially supported by the Japan Science
Technology Agency (JST) PRESTO program.

(1]

(2]

(3]

(4]

REFERENCES

J. G. Bednorz and K. A. Miller, “Possible high. supercon-
ductivity in the Ba-La-Cu-O systemZeitschrift fir Physik B
Condensed Mattewol. 64, no. 2, pp. 189-193, 1986.

M. Yamashita, N. Nakata, Y. Senshu, M. Nagata, H. M.
Yamamoto, R. Kato, T. Shibauchi, and Y. Matsuda, “Highly
mobile gapless excitations in a two-dimensional candidate
guantum spin liquid,'Sciencevol. 328, no. 5983, pp. 1246—
1248, June 2010.

E. Dagotto, “Correlated electrons in high-temperatsoper-
conductors,”"Review of Modern Physicwol. 66, no. 3, pp.
763-840, July-September 1994,

S. Yamada, T. Imamura, T. Kano, Y. Ohashi, H. Matsumoto,
and M. Machida, “Ultra large-scale exact-diagonalization
for confined fermion-hubbard model on the earth simulator:
Exploration of superfluidity in confined strongly correldte
systems,”Journal of the Earth Simulatorvol. 7, no. , pp.
23-35, June 2007.

[5] W. Foulkes, L. Mitas, R. Needs, and G. Rajagopal, “Quentu

(6]

monte carlo simulations of solidsReview of Modern Physics
vol. 73, no. 1, pp. 33-83, January 2001.

S. White, “Density matrix formulation for quantum remaal-
ization groups,’Physical Review Lettersol. 69, no. 19, pp.
2863—-2866, November 1992.

[7] ——, “Density-matrix algorithms for quantum renormadiz

(8]

9]

[10]

[11]

[12]

tion groups,’Physical Review Bvol. 48, no. 14, pp. 10 345—
1035, October 1993.

U. Schollwdck, “The density-matrix renormalizatiomogip,”
Review of Modern Physicsiol. 77, no. 1, pp. 259-315,
January 2005.

S. Yamada, M. Okumura, and M. Machida, “Direct extension
of density-matrix renormalization group to two-dimengibn
quantum lattice systems: Studies of parallel algorithncuac
racy, and performanceJournal of the Physical Society of
Japan vol. 78, no. 9, p. 094004, September 2009.

A. WeilRe, G. Wellein, A. Alvermann, and H. Fehske, “The
kernel polynomial method,"Review of Modern Physics
vol. 78, no. 1, pp. 275-306, January 2006.

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Kruger, A. E. Lefohn, and T. J. Purcell, “A survey of
general-purpose computation on graphics hardwareEun
rographics 2005, State of the Art Reporsug. 2005, pp.
21-51.

NVIDIA Corporation, “CUDA: Compute Uni-
fied Device Architecture programming guide,
http://developer.nvidia.com/cuda.”

	I Introduction
	II Background and definitions
	II-A Kernel polynomial method
	II-A1 Definition
	II-A2 Application to quantum systems
	II-A3 Stochastic evaluation of traces
	II-A4 Numerical complexity

	II-B General purpose computing on GPUs
	II-B1 GPU architecture
	II-B2 CUDA

	III Kernel polynomial method applying GPUs
	III-A Design for massively parallel platform
	III-B Implementation
	III-B1 Parallelization of calculations
	III-B2 Memory consumption

	IV Experimental performance analysis
	IV-A Performance analysis using actual simulation parameters
	IV-B Performance analysis with increased intensive calculations
	IV-C Performance analysis with increased memory usage

	V Conclusions
	References

