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Abstract—The Kernel Polynomial Method (KPM) is one
of the fast diagonalization methods used for simulations of
quantum systems in research fields of condensed matter physics
and chemistry. The algorithm has a difficulty to be parallelized
on a cluster computer or a supercomputer due to the fine-gain
recursive calculations. This paper proposes an implementation
of the KPM on the recent graphics processing units (GPU)
where the recursive calculations are able to be parallelized in
the massively parallel environment. This paper also illustrates
performance evaluations regarding the cases when the actual
simulation parameters are applied, the one for increased
intensive calculations and the one for increased amount of
memory usage. Finally, it concludes that the performance on
GPU promises very high performance compared to the one on
CPU and reduces the overall simulation time.
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I. I NTRODUCTION

Today’s technological achievement in our everyday life
is based on years of fundamental research for a wide
variety of materials with fascinating functionalities such as
semiconductors, magnets, and superconductors. Researchers
in condensed matter physics revealed long ago that those dif-
ferent properties of materials result from different behaviors
of electrons, which are described by quantum mechanical
equation of motion. Although it has been more than 80
years since quantum mechanics was established, there are
still many properties of matters whose origins are yet to
be understood. Such examples include copper based high
temperature superconductors [1] and some of magnetic
insulators of organic compounds [2]. The common feature
of these systems is a strong quantum correlation between
electrons, which is turned out to be crucial for determining
their properties. It is precisely this strong correlation that
makes it difficult to treat these systems analytically without
introducing any bias in theory.

The best way to treat the strong quantum correlations is
to solve quantum mechanical equation of motion numeri-

cally exactly. Because of exponential increase of degrees of
freedom with the number of electrons∼ O(1023), we must
still resort some sort of approximations. However, unlike
analytical treatments, numerical simulations can handle the
strong correlation effects with controllable approximations.
Among many, well established numerical methods thus far
are exact diagonalization method [3], [4], quantum Monte
Carlo method [5], density-matrix renormalization group
method [6], [7], [8], [9], and kernel polynomial method
(KPM) [10]. Each method is suited to particular sets of
problems and at the same time each has severe limitations.
For instance, the exact diagonalization method is able to
evaluate the ground state (and low energy excited states) in
high accuracy, but it is limited to a small size of systems.

The simulation evaluates various physical quantities such
as density of states (DoS) and Green’s functions for elec-
trons, which are necessary to study electronic structures.In
particular, a straightforward method to calculate the DoS
by diagonalizing a Hamiltonian matrix requires computa-
tional complexity O(D3), where D is the system size.
This complexity is a performance bottleneck to evaluate
higher energy excited states. In this respect, the KPM has
an exceptional advantage because the KPM reduces the
complexity of diagonalization toO(D) at most by truncating
polynomial expansions, which in turn controls the accuracy
of the approximation. Thus, this paper focuses on the KPM
which appropriately evaluates the DoS and Green’s function
including higher energy excited states [10].

The KPM is an approximation method based on poly-
nomial expansions from which physical quantities are eval-
uated. In particular, the Chebyshev expansion is the most
common and useful polynomial to be applied. To avoid
the Gibbs phenomenon due to truncated polynomial expan-
sions with a finite order, modified kernel polynomials are
preferably used. For example, the Dirac’s delta function is
well approximated by truncating Chebyshev expansion with
the Jackson kernel [10]. Moreover, in quantum statistical
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mechanics, it is required to evaluate the trace of large-
dimensional Hamiltonian matrices. This trace is efficiently
approximated by using random vectors [10] (we call it
“stochastic trace method” in this paper). Therefore, combin-
ing these two methods, truncated polynomial expansions and
random vector bases, allows us to evaluate the DoS and other
physical quantities with significantly reduced complexity.

The computational cost inevitably increases with system
sizes considered, and with the number of polynomials kept
and random vectors generated to meet the desired accuracy.
It is therefore expected to reduce the simulation latency
drastically by implementing the KPM in parallel platform.

Regarding computer hardware, the graphics processing
units (GPU) have become available to be used for accel-
eration platform as a substitute of CPU. This is due to the
recent drastic performance growth of GPU. The recent GPU
has already achieved the performance up to TFLOPS order.
Therefore, it is applied to various scientific fields to solve
the grand challenge applications under a personal computing
environment [11].

The program on GPU is called stream-based program
which processes each data unit contained in input data
streams, and generates the corresponding data unit forming
output data streams. This computing style has benefits of
1) eliminating memory access bottleneck, which is seen in
the von Neumann style architecture, and 2) data parallelism
because each data unit does not have any dependency in
the data streams. The recent challenges to speedup intensive
computations enforce algorithms to be redesigned to fit
to GPU and to receive the benefit of especially the data
parallelism characteristics assigning small operations to the
enormous number of the stream processors. This computing
style would become a typical computing style in the next
supercomputing generation.

This paper focuses on a GPU-based implementation of
the KPM applying the stream-based computing style. We
propose an effective implementation of the KPM on GPU
to accelerate its performance faster than the recent CPU. As
seen in the next section, vectors (higher order polynomials)
are generated recursively. This characteristic is suffered to
parallelize the KPM effectively in a CPU-based large system.
Applying GPU resources and a stream-based programming
style, this paper will challenge to overcome the performance
limitation caused by the recursive operation.

This paper is organized as follows. Section II describes
the detailed explanation of KPM and the overview of the
general purpose computing on GPU. Section III proposes
the design and implementation of KPM on GPU. Section IV
analyzes the performances of typical sets of input parameters
used in condensed matter physics and discusses the program
behaviors when the parameters change to increase resource
usage regarding processor and memory. Finally, section V
concludes this paper.

II. BACKGROUND AND DEFINITIONS

A. Kernel polynomial method

1) Definition: The basis of KPM is the following (Cheby-
shev) polynomial expansion of a functionf(x) defined in
[−1, 1],

f(x) =
1

π
√
1− x2

[

µ0 + 2
∞
∑

n=1

µnTn(x)

]

, (1)

where

µn =

∫ 1

−1

dx f(x)Tn(x) , (2)

andTn(x) is the Chebyshev polynomial defined as

Tn(x) = cos [n arccos(x)] . (3)

It should be mentioned that the Chebyshev polynomials
satisfies the following recursion relations,

T0(x) = 1 , T1(x) = x , (4)

Tn+2(x) = 2xTn+1(x) − Tn(x) . (5)

KPM is defined as

fKPM(x) =
1

π
√
1− x2

[

g0µ0 + 2
N−1
∑

n=1

gnµnTn(x)

]

, (6)

where the additional coefficientsgn given by a kernel which
satisfies the limit

||f − fKPM|| N→∞−−−−→ 0 , (7)

where|| · || is suitable well-defined norm.
2) Application to quantum systems:In quantum physics,

we need to expand functions of the Hamiltonian matrix. In
this paper, we focus on the density of state (DoS). Then, we
show an example of application of KPM for calculation of
DoS.

We consider the system described by the Hamiltonian
matrixH . First, we apply the following linear transformation
in order to fit the spectrum ofH to [−1, 1],

H̃ = (H − α+)/α− , (8)

where
α± = (Eupper ± Elower)/2 , (9)

The parametersEupper andElower are the upper and lower
limits of the eigenvalues ofH obtained by the Gerschgorin
theorem.

The density of state (DoS)ρ(ω) of the D-dimensional
Hamiltonian matrixH is defined by

ρ(ω) =
1

D

D−1
∑

k=0

δ(ω − Ek) , (10)



where Ek is the k-th eigenvalue andδ(x) is the delta
function. We apply the linear transformation (8) and obtain
the equation

ρ(ω̃) =
1

D

D−1
∑

k=0

δ(ω̃ − Ẽk) , (11)

where
ω̃ = (ω − α+)/α− . (12)

In order to obtain the approximated DoS using KPM, the
coefficientsµn (2) in this case is obtained as

µn =

∫ 1

−1

dω̃ ρ(ω̃)Tn(ω̃)

=
1

D

D−1
∑

k=0

Tn(Ẽk)

=
1

D

D−1
∑

k=0

〈k|Tn(H̃)|k〉 = 1

D
Tr[Tn(H̃)] , (13)

where|k〉 is thek-th eigenvector and〈k| = |k〉†.
3) Stochastic evaluation of traces:In order to evaluate

the trace in Eq.(13), we introduce the stochastic evaluation
method of traces, which estimatesµn by average over only
a small numberR ≪ D of randomly chosen vector.

First, we introduce an arbitrary basis{|i〉} a set of inde-
pendent identically distributed random variables{ξr,i|ξr,i ∈
R} which in terms of the statistical average〈〈·〉〉 fulfill

〈〈ξr,i〉〉 = 0 , 〈〈ξr,iξr′,i′〉〉 = δrr′δii′ , (14)

a random vector is defined through

|r〉 =
D−1
∑

i=0

ξr,i|i〉 . (15)

Using them, we can approximately evaluate the trace as
follows,

µn =
1

D
Tr

[

Tn(H̃)
]

=
1

D

D−1
∑

i=0

[

Tn(H̃)
]

ii

≃ 1

D

1

R

D−1
∑

i,j=0

R−1
∑

r=0

〈〈ξr,iξr,j〉〉
[

Tn(H̃)
]

ij

=

〈〈

1

D

1

R

R−1
∑

r=0

〈r|Tn(H̃)|r〉
〉〉

. (16)

In order to make〈r|Tn(H̃)|r〉, we use the following
recursive relations for the vectors|rn〉 := Tn(H̃)|r〉 derived
from the relations (4) and (5),

|r0〉 = |r〉 , |r1〉 = H̃ |r0〉 , (17)

|rn+2〉 = 2H̃|rn+1〉 − |rn〉 . (18)

Thenµn is expressed by this expression as

µn ≃
〈〈

1

D

1

R

R−1
∑

r=0

〈r0|rn〉
〉〉

. (19)

4) Numerical complexity:The numerical complexity of
the KPM is O(SRND) if the H̃ is sparse matrix, where
S is the number of the realization of the set of random
variables{ξr,i}. The process costingO(D) is the making
part of |rn〉 shown in Eq. (18), which is the heaviest part
in KPM. When theH̃ is considered as a dense matrix, the
complexity of the part becomesO(D2).TheO(SR) comes
from the average and summation in Eq. (19) andO(N) from
the summation in Eq. (6). This numerical costO(SRND)
is very effective against the full diagonalization which costs
O(D3) if S,R,N ≪ D2, and theH̃ is a sparse matrix.
However, it is a dense matrix, the numerical cost becomes
O(SRND2) due to all multiplications for all elements in
the H̃ and the|rn〉 must be performed straightly without
considering the CRS (Compressed Row Storage) format for
a sparse matrix. This paper considers the simple case when
the CRS format is not applied to the memory maintenance
for the H̃. Therefore, all the elements in thẽH matrix are
applied to all the calculations in the KPM.

B. General purpose computing on GPUs

1) GPU architecture: A video adapter that includes a
GPU and a Video RAM (VRAM) is connected to a CPU’s
peripheral bus such as PCI Express. The video adapter
works as a peripheral device of the CPU, and its GPU is
controlled by the CPU to help a part of visualization tasks
in the system. To utilize the GPU as a computing resource
for GPGPU applications, the CPU downloads application
program to the GPU’s instruction memory and also prepares
input data for the program. The program fetches the data
and generates the result to the memory areas. The GPU
reads/writes the VRAM directly to execute the calculation
for the program. In this case, the original data is prepared in
the main memory. The CPU copies the data to the VRAM.
During the execution of the program, the GPU generates the
results to the VRAM. The CPU copies the results from the
VRAM to the main memory.

The recent GPUs have only a kind of processor called
the stream processor. The processor works for general
purpose processes in any kind of calculation. However,
the computing style must be followed in the stream-based
one distributing elements included in streams into multiple
stream processors. GPU uses two types of memory called
globalandsharedmemories. The global memory is provided
by the memory placed outside of GPU such as DDR3
VRAM. The shared memory is placed besides of the stream
processor that works as if a cache.

2) CUDA: The Compute Unified Device Architecture
(CUDA) has been proposed by NVIDIA corporation [12].
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Figure 1. A GPU architecture.

The tools and APIs for programming on CUDA environment
is now provided by the company’s website.

The CUDA assumes an architecture model as illustrated in
Figure 2 (a). The model defines a GPU which is connected
to a CPU’s peripheral bus. A VRAM (the global memory)
that maintains data used for calculation on the GPU is
connected to the GPU. The data is copied from the host
memory before the CPU commands to execute a program
on the GPU. The program is executed as a thread in a
thread block. The thread blocks are tiled in a matrix of from
one to three dimensions. In the figure, thread blocks are
tiled in two dimensions which size isngrid ×mgrid. Each
thread block has multiple threads in a matrix which size is
varied from one to three dimensions. The figure also shows
a thread block that includesnblock × mblock threads. Each
thread block has individual shared memory space where
shared valuables accessed among threads in the block are
stored temporally. Thus, the program targeted to GPU in the
CUDA environment is invoked as threads. The threads are
grouped by the unit of the thread block. Therefore, obtaining
a large parallelism, a large number of threads are invoked
concurrently.

In the program on the CUDA environment, the threads
are described as a stream-based function written in C called
a kernel functionas shown in Figure 2 (b). The program has
two parts of the codes targeted to CPU and GPU, which is
initially invoked by the CPU; a main program for CPU and
a kernel function called as the thread on GPU. The kernel
function is defined with the__global__ directive so that
it is executed on GPU. In the function, the global variables
namedgridDim, blockDim, blockIdx, threadIdx,
implicitly declared by the CUDA runtime, are available to be
used to specify the size of the grid and the thread block, the
indices of the thread block and of the thread respectively. For
example, using these global valuables, Figure 2 (b) performs
a summation of arrays A and B assigning each summation of
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Figure 2. CUDA programming environment.

the elements in those arrays to a thread and returns the result
to the array C. The function is called by the main program
specifying the sizes of the grid and the thread block with
<<< >>>. Finally, reading data from the VRAM transferred
by the main program, the kernel function is assigned to GPU,
and runs as multiple threads. Thus, because programmer can
just simply consider the stream-based kernel function and
the calling code for the function in the main program, using
the conventional C language manner, the CUDA provides an
easy and transparent interface for GPGPU.

According to the backgrounds we have mentioned above,
it is important for the simulation in the quantum physics
to apply a fast diagonalization method to reach the goal of
the simulation quickly. However, the KPM has difficulty of
fine-grain parallelization in large scale computers such as
cluster computers or supercomputers due to the recursive
calculation performed in the Eq. (18). Therefore, it is worth
for us to implement the KPM on a GPU where the massively
parallel environment is equipped with a large number of
stream processors. Thus, this paper focuses on design and
implementation of the KPM on GPU that challenges to
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Figure 3. Design and implementaion of KPM on GPUs.

achieve the advanced performance with applying the stream-
based computing style on the massively parallel environ-
ment.

III. K ERNEL POLYNOMIAL METHOD APPLYING GPUS

A. Design for massively parallel platform

Figure 3 summarizes the KPM algorithm. The step (1)
generates randomly a vector−→r that the number of elements
is H SIZE (this equals to theD in section II-A). The step
(2) gets−→r n from−→r n−1 and−→r n−2 recursively calculating a
matrix multiply ofH and−→r n−1 in the step (2.1). This mul-
tiplication is very hard to parallelize using MPI or OpenMP
because of the dependencies due to the recursive iteration
although the part needs the most intensive calculation. Then
a dot product is calculated using−→r n again with−→r at the
step (2.2) and generates̃µn. Then the generation of thẽµn

is iterated forRS times. This means each generation ofµ̃n

can be massively parallelized on GPUs. Finally, the average
of all the µ̃ns is generated at the step (3). Nµns are finally
generated from the RS-time iterations of the step (1) and (2).
This generation of the moments achieves the objective of the
KPM. This summation to generatẽµn can be parallelized
on GPU. Therefore, implemented on GPUs, two parallel
processing parts are entirely performed during the evaluation
of the moments using KPM: a) generation ofµ̃n and b)
generation ofµn. The maximum number of parallelism at
the both a) and b) parts becomes theSR because the total
number of threads executed in the stream processors isSR.
Here, GPU has an architectural restriction to the number
of threads in a thread block referred as BLOCKSIZE in
this paper. Therefore, the number of thread blocks becomes
RS/BLOCK SIZE. Considering the parallelization tech-
niques above, let us explain the implementation of a kernel
program on CUDA that invokes both the a) and b) parts.
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Figure 4. Parallelization of KPM.

B. Implementation

We have implemented a kernel program for GPU using
CUDA. The kernel receives theH SIZE, N that is the
number of moments andRS as the arguments. All calcula-
tions are performed based on double precision. The kernel
includes two important concepts. One is how to keep high
parallelism. Another is an effective memory management for
the parallelism.

1) Parallelization of calculations:As we discussed in the
last section, two heavy calculation parts (the a) and the b))
should be parallelized and it would give the largest impact
for the speedup.

Figure 4 a) shows the generation part for the−→r n. −→r n

needs−→r n−1, −→r n−2 and −→r that is randomly generated.
These four vectors are obtained in the global memory and
each block will write those vectors swapping the pointers.
Here the number of blocks isRS/BLOCK SIZE. In each
block,BLOCK SIZE stream processors are concurrently
working to generate a part of those vectors including the
random number generation for−→r . Therefore, this part
will be fully parallelized into the total number of stream
processors equipped on GPUs. This part will generateµ̃1,



µ̃2 ... µ̃N using−→r and−→r n for N time iteration.
Figure 4 b) depicts the parallelization of generation for

µn. It performs just parallel summations for generating a
scalarµn where all blocks works in parallel.

2) Memory consumption:Let us consider the required
memory amount for the operations in Figure 4 in the case
of double precision. For the operation a), because four
−→r vectors are stored in the global memory for a block.
Each −→r vector hasH SIZE elements. Therefore, this
part consumesNumber of Blocks × 4 × H SIZE × 8
bytes. The operation b) is parallelized into the number of
blocks. Each block performs a part of summation using N
µ̃s. The length of̃µs isH SIZE. Therefore, it needs totally
Number of Blocks×N ×H SIZE × 8 bytes.

The operation a) writes̃µn into the global memory. This
needs to be kept with−→r vectors simultaneously. Therefore,
the total number of memory isNumber of Blocks ×
H SIZE × (8×N + 32).

Due to the recursive relationships among−→r n, −→r n−1

and −→r n−2, the KPM is treated generally as one of very
hard parallelized algorithms. However, as we can see in this
section, on the GPU, a massively parallel environment, the
KPM is fully parallelized due to the stream-based computing
concept. Thus, we can expect an effective speedup that will
be proportional to the number of stream-processors.

IV. EXPERIMENTAL PERFORMANCE ANALYSIS

This section shows performance evaluations of the KPM
implemented on GPU. The performance based on GPU is
compared with the one based on CPU. The experimental
environment is a PC that consists of an Intel’s Core i7 930
processor at 2.80GHz with 12GB DDR3 memory, and the
NVIDIA Tesla C2050 with 3GB Memory is connected to
the PCI Express bus. The configuration of the cache in the
GPU is set to 16KB and the shared memory size is 48KB.
The OS of the PC is the Cent OS of the Linux Kernel 2.6.18.
The driver version of the GPU is 3.0. All KPM calculations
are performed with double precision floating point. The CPU
version is compiled with GCC 4.4.1 with O3 option.

We perform three kinds of performance analysis: (1)
evaluation using actual sets of parameters, (2) the one with
increasing calculation size and (3) the one with increasing
memory usage. The first evaluation hires sets of parameters
used in actual simulations of the meaningful model applied
to the condensed matter physics field. The second evalu-
ation analyses the behavior of the performances when the
parameterN is increased. This means that more intensive
calculation is loaded to the CPU and the GPU following the
increase ofN . The last evaluation shows the performance
impacts when theH SIZE is increased. This case needs
the square sized memory to store theH matrix that is
increased by the impact ofH SIZE2.
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Figure 6. The DoS comparison with trancations between N=256and
N=512 when the lattice is made of cubes placed in 10x10x10, R=14 and
S=128.

A. Performance analysis using actual simulation parameters

In the field of the computational condensed matter
physics, the KPM is applied to a simulation to evaluate the
DoS in a three dimensional lattice model. Let us consider a
lattice model made of cubes in10×10×10 where an electron
is placed in each corner. This model needs a Hamiltonian
matrix sized in1000× 1000 due to the presentations of cor-
relations among the electrons at each corner. The significant
characteristics of the matrix include that 1) it is sparse and
symmetric and 2) any row contains seven non-zero elements
with the condition where all diagonal ones are zeros and the
other non-zero ones are−1s.

We evaluate the DoS in the case of the lattice that we
assumed above using the fixed parameters of the KPM with
S = 14 and R = 128. Varying N from 128 to 1024 in
the steps of2n, Figure 5 shows the execution times and the
speedup comparing the performances on the CPU with the
ones on the GPU. The speedup keeps 3.5 times for all the
cases. This means that the simulation can be accelerated by
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Figure 7. Performance comparison increasing N.

the GPU and the execution time becomes almost 40% faster
than the one on CPU at most.

We shall pickup two DoS data combinations from the
parameter sets of Figure 5 and plot it to a graph as depicted
in Figure 6. The graph shows the DoS whenN = 256 and
N = 512. WhenN is the smaller number, the truncation
reduces to the resolution of the DoS. However, the process-
ing time is smaller than the case of a largeN . Therefore,
although the case ofN = 512 shows higher resolution of
the DoS, it takes longer calculation time.

B. Performance analysis with increased intensive calcula-
tions

Obtaining the fixed parameters ofH SIZE = 128,
R = 14 and S = 128, we measure the performances
with varying theN from 128 to 2048. The graph of the
performances is illustrated in Figure 7. The graph shows
the execution times with bars and the speedups (i.e. the
CPU time is divided by the corresponding GPU time) with
a line. As increasing theN , that is, as increasing the
calculation amount, the speedup increases to almost 4 times.
This means that the performance with the higher intensive
calculations affected by the largerN causes higher effective
data parallelism on GPU when the calculation amount is
increased without changing the size of the memory usage.
Thus, our implementation on GPU clearly achieves higher
performance than the CPU-based KPM as increasing the
calculation amount.

C. Performance analysis with increased memory usage

This analysis fixesN = 128, R = 14 and S = 128.
We varyH SIZE from 512 to 4096 with the step of2n.
The performance presents effects caused by increasing the
memory usage. The graph of the performance is depicted in
Figure 8. When the amount of memory usage increases, the
number of memory accesses increases. Therefore, the CPU
version needs to read/write the memory as increased the
size ofH̃ matrix. On the other hand, because the GPU can
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Figure 8. Performance comparison increasing HSIZE.

cache a part of the matrix into very fast shared memory and
accesses the memory in the stream-based manner. Thus, the
execution time of the GPU version does not increase more
than the complexity (O(H SIZE2)). This causes almost
four times faster performance than the CPU version.

As we discussed in three kinds of evaluations above,
the performances on GPU achieve better performances than
the ones on CPU due to the highly parallelism caused by
the GPU-based implementation explained in this paper. The
implementation achieves the advanced performance even if
it is applied to the actual examples from the condensed
matter physics or the cases with hard conditions virtually
when the amounts of the computation and the memory usage
are increased. Thus, we have confirmed that the KPM is a
suitable algorithm that fits well to the GPU environment
and the performance acceleration accomplishes amazingly
the high performance.

V. CONCLUSIONS

This paper has proposed an implementation of the KPM
widely used in the physics and the chemistry field to
simulate various quantum states. Our GPU version shows
about 4 times faster than the CPU one. Therefore, using
a GPU, productivity of the moments for a quantum state
is accelerated to four times. Therefore, the GPU version is
expected to be used for various grand challenge simulations
to find a new quantum state that resolves unknown physical
theories in the natural phenomenon.

For the future plans, we are considering to quest a method
to find the best block size used in the GPU that defines
the size of the stream processors’ block. Moreover, the
parallelization of the KPM on a message passing and a
shared memory paradigm is also challenging because the
recursive reference to get−→r n becomes a bottleneck to be
parallelized in fine-grain. Moreover, we are also planning to
extend the GPU-based implementation to a GPU cluster for
its parallelization.
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