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ABSTRACT

There is a clear trend towards using cloud resources in the scientific or the HPC

community, with a key attraction of cloud being the elasticity it offers. In execut-

ing HPC applications on a cloud environment, it will clearly be desirable to exploit

elasticity of cloud environments, and increase or decrease the number of instances

an application is executed on during the execution of the application, to meet time

and/or cost constraints. Unfortunately, HPC applications have almost always been

designed to use a fixed n umber of resources.

This work focuses on the goal of making existing MPI applications elastic for a

cloud framework. Considering the limitations of the MPI implementations currently

available, we support adaptation by terminating one execution and restarting a new

program on a different number of instances. The components of the system include a

decision layer which considers time and cost constraints, a framework for modifying

MPI programs, and a cloud-based runtime support that can enable redistributing of

saved data, and support automated resource allocation and application restart on a

different number of nodes.

Using two MPI applications, the feasibility of our approach is demonstrated, it

is shown that outputting, redistributing, and reading back data can be a reasonable

approach for making existing MPI applications elastic. The decision layer with a

feedback model is designed to monitor the application by interact with it at regular
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intervals, and perform scaling with the assistance of resource allocator when necessary.

This approach is tested using the same two applications and is used to meet the user

demands of maximum specified input time or budget.
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CHAPTER 1

INTRODUCTION

1.1 HPC Applications on Cloud

Scientific computing has traditionally been performed using resources on super-

computing centers and/or various local clusters maintained by organizations. How-

ever, in the last 1-2 years, cloud or utility model of computation has been gaining

momentum rapidly. Besides its appeal in the commercial sector, there is a clear trend

towards using cloud resources in the scientific or the HPC community.

The notion of on-demand resources supported by cloud computing has already

prompted many users to begin adopting the Cloud for large-scale projects, including

medical imaging [15], astronomy [3], BOINC applications [7], and remote sensing [9],

among many others. Many efforts have conducted cost and performance studies of

using Cloud environments for scientific or data-intensive applications. For instance,

Deelman et al. reported the cost of utilizing cloud resources to support a representa-

tive workflow application, Montage [3]. Palankar et al. conducted an in-depth study

on using S3 for supporting large-scale computing[12]. In another work, Kondo et

al. compared cost-effectiveness of AWS against volunteer grids [7]. Weissman and

Ramakrishnan discussed deploying Cloud proxies [16] for accelerating web services.
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Multiple cloud providers are now specifically targeting HPC users and applica-

tions. Though initial configurations offered by the cloud providers were not very

suited for traditional tightly-coupled HPC applications (typically because they did

not use high performance interconnects), this has been changing recently. In Novem-

ber 2010, Mellanox and Beijing Computing Center have announced a public cloud

which will be based on 40 Gb/s Infiniband. Amazon, probably the single largest

cloud service provider today, announced Cluster Compute Instances for HPC in July

2010. This allows up to a factor of 10 better network performance as compared to

a regular collection of EC2 instances, and an overall application speedup of 8.5 on a

“comprehensive benchmark suite”1.

The key attractions of cloud include the pay-as-you-go model and elasticity. Thus,

clouds allow the users to instantly scale their resource consumption up or down ac-

cording to the demand or the desired response time. Particularly, the ability to

increase the resource consumption comes without the cost of over-provisioning, i.e.,

having to purchase and maintain a larger set of resources than those needed most of

the time, which is the case for the traditional in-house resources. While the elasticity

offered by the clouds can be beneficial for many applications and use-scenarios, it also

imposes significant challenges in the development of applications or services. Some

recent efforts have specifically focused on exploiting the elasticity of Clouds for differ-

ent services, including a transactional data store [2], data-intensive web services [8],

and a cache that accelerates data-intensive applications [1], and for execution of a

bag of tasks [10].

1Please see www.hpcinthecloud.com/offthewire/Amazon-Introduces-Cluster-Compute-Instances-
for-HPC-on-EC2-98321019.html

2



While executing HPC applications on a cloud environment, it will clearly be desir-

able to exploit elasticity of cloud environments, and increase or decrease the number

of instances an application is executed on during the execution of the application. For

a very long running application, a user may want to increase the number of instances

to try and reduce the completion time of the application. Another factor could be the

resource cost. If an application is not scaling in a linear or close to linear fashion, and

if the user is flexible with respect to the completion time, the number of instances

can be reduced, resulting in lower nodes× hours, and thus a lower cost.

1.2 Specific Goals

Unfortunately, HPC applications have almost always been designed to use a fixed

number of resources, and cannot exploit elasticity. Most parallel applications today

have been developed using the Message Passing Interface (MPI). MPI versions 1.x

did not have any support for changing the number of processes during the execu-

tion. While this changed with MPI version 2.0, this feature is not yet supported by

many of the available MPI implementations. Moreover, significant effort is needed

to manually change the process group, and redistribute the data to effectively use a

different number of processes. Thus, existing MPI program are not designed to vary

the number of processes. Adaptive MPI [5] can allow flexible load balancing across

different number of nodes, but requires modification to the original MPI programs,

and can incur substantial overheads when load balancing is not needed. Other ex-

isting mechanisms for making data parallel programs adaptive also do not apply to

existing MPI programs [4, 17]. Similarly, the existing cloud resource provisioning

frameworks cannot help in elastic execution of MPI programs [6, 11, 13].
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1.3 Contributions

This thesis describes the work towards the goal of making existing MPI applica-

tions elastic for a cloud framework. Considering the limitations of the MPI imple-

mentations currently available, adaptation is supported by terminating one execution

and restarting a new program on a different number of instances. To enable this, a

decision layer constantly monitors the progress of the application and the communi-

cation overheads. This decision layer can terminate the application at certain points

(typically, at the end of an iteration of the outer time-step loop) during which the

live variables are collected and redistributed. These live variables are read by the

restarted application, which continues from the iteration at which it was terminated.

The components of this system include:

• An automated framework for deciding when the number of instances for ex-

ecution should be scaled up or down, based on high-level considerations like

a user-desired completion time or budget, monitoring of the progress of the

application and communication overheads.

• A framework for modifying MPI programs to be elastic and adaptable. This is

done by finding certain points in the program where interation with the decision

layer has to be done, and where variables identified to be live can be output

to allow a restart from a different number of nodes if necessary. The long-term

goal is to develop a simple source-to-source transformation program to generate

the version with these capabilities.
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• A cloud-based runtime support that can enable redistributing of saved data, and

support for automated resource allocation and application restart on a different

number of nodes.
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1.4 Background: Amazon Cloud

This section gives some background on the Amazon Web Services (AWS), on which

this work has been performed.

AWS offers many options for on-demand computing as a part of their Elastic

Compute Cloud (EC2) service. EC2 nodes (instances) are virtual machines that can

launch snapshots of systems, i.e., images. These images can be deployed onto various

instance types (the underlying virtualized architecture) with varying costs depending

on the instance type’s capabilities.

For example, a Small EC2 Instance (m1.small), according to AWS2 at the time

of writing, contains 1.7 GB memory, 1 virtual core (equivalent to a 1.0-1.2 GHz 2007

Opteron or 2007 Xeon processor), and 160 GB disk storage. AWS also states that

the Small Instance has moderate network I/O. In stark contrast, an Extra Large EC2

instance (m1.xlarge) contains 15 GB memory, 4 virtual cores with 2 EC2 Compute

Units each, 1.69 TB disk storage with high I/O. Many other such instance types exist,

also with varying costs and capabilities.

Amazon’s persistent storage framework, Simple Storage Service (S3), provides a

key-value store with simple ftp-style API: put, get, del, etc. Typically, the unique

keys are represented by a filename, and the values are themselves the data objects, i.e.,

files. While the objects themselves are limited to 5 GB, the number of objects that

can be stored in S3 is unrestricted. Aside from the simple API, the S3 architecture has

been designed to be highly reliable and available. It is furthermore very inexpensive

to store data on S3.

2AWS Instance Types, http://aws.amazon.com/ec2/instance-types
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Another feature of AWS is the availability of compute instances with three op-

tions: on-demand instances, reserved instances, and spot instances. An on-demand

instance can be acquired and paid for hourly. Organizations can also make a one-

time payment for reserved instances, and then receive a discount on the hourly use of

that instance. With spot instances, Amazon makes its unused capacity, at any time,

available through a lower (but variable) price.

1.5 Organization

This work describes the runtime framework developed for the Amazon EC2 envi-

ronment to implement this overall idea. The former part of the thesis demonstrates

the feasibility of this approach using two MPI applications, and it is shown that the

monitoring framework has a negligible overhead, and outputting, redistributing, and

reading back data for adapting application can be a reasonable approach for making

existing MPI applications elastic. The latter part of the thesis validates framework

with the results obtained for user contraints of time and cost and indicates that the

system is able to meet the expectations of the user.
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CHAPTER 2

FRAMEWORK DESIGN

This section describes the dynamic resource allocation framework by giving a

simple illustration of the actual design. The overall goals of the framework are first

described followed by an explanation of the necessary modifications on the source code

for allowing elastic execution. This is followed by a description of the functionality

of the various modules of the framework in detail.

2.1 Overall Goals

As stated earlier, we are driven by the observation that parallel applications are

most often implemented using MPI and are designed to use a fixed number of processes

during the execution. This is a crucial problem considering the driving features of

cloud services, i.e., elasticity and the pay-as-you-go model.

The problems addressed with this framework can be categorized as dynamic re-

source (de)allocation and data distribution among the reallocated resources during

the execution. The two constraints that can be specified by the user are considered.

The user defined constraints are either based on a specific time frame within which

the user would want the application to complete, or based on a threshold value of the

cost that they are willing to spend. Clearly, it is possible that the execution cannot
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be finished within the specified time or the cost. Thus, these constraints are supposed

to be soft and not hard, i.e, the system makes the best effort to meet the constraints.

The system is also being designed to be capable of providing feedback to the user on

its ability to meet these constraints.

These goals are accomplished with several runtime support modules and making

modifications to the application source code. In the long-term, we expect these source

code modifications to be automated through a simple source-to-source transformation

tool.

2.2 Execution Model and Modifications to the Source Code

Here, a simple illustration of the idea of decision making is depicted. This frame-

work specifically assumes that the target HPC application is iterative in nature, i.e.,

it has a time-step loop and the amount of work done in each iteration is approxi-

mately the same. This is a reasonable assumption for most MPI programs, so this

does not limit the applicability of our framework. This assumption, however, has

two important consequences. First, the start of each (or every few) iteration(s) of

the time-step loop becomes a convenient point for monitoring of the progress of the

application. Second, because we only consider redistribution in between iterations

of the time-step loop, we can significantly decrease the check-pointing and redistri-

bution overhead. Particularly, a general check-pointing scheme will not only be very

expensive, it also does not allow redistribution of the data to restart with a different

number of nodes.

Figure 2.1 shows how the source code can be modified to handle monitoring of an

iterative application, by adding a small piece of code at end of a particular number of

9



Input: monitor iter, iter time req,
curr iter, range

Output: true if solution converges, false otherwise

{ * Initiate MPI * }
data := read data();
t0 := current time();
While curr iter<MAX ITER Do

{ * Call update module * }
rhonew := resid(data);
If rhonew<EPS Then

return true;
Endif
If (curr iter%monitor iter) = 0 and curr iter 6= 0 Then

t1 := current time();
avg time := (t1-t0)/curr iter;
If avg time>(iter time req + range) Then

{ * Store data to a file * }
{ * Inform decision layer and expand resources * }

Else If avg time<(iter time req − range) Then
{ * Store data to a file * }
{ * Inform decision layer and shrink resources * }

Endif
Endif
curr iter := curr iter+1;

Endwhile
return false;

Figure 2.1: Simple illustration of the idea

time step loops. The modification to the source code of an iterative application and

implementation of the decision logic is shown. The monitoring interval, the required

iteration time, current iteration, and the range are taken as runtime parameters. The

monitoring interval determines the number of iterations after which the monitoring

has to be done.
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Figure 2.2: Execution Flow

This approach assumes that the user has a fixed execution time in mind, and

the system can allocate more nodes to finish the execution if needed. In chapter 3

, it is shown that the framework can consider other constraints, such as the need to

minimize the execution cost while staying within a time-limit. In such a case, this

framework can reduce the number of nodes, provided the predicted execution time

will stay within the limit.

In Fig. 2.1, the required iteration time is calculated by the decision layer based

on the user’s input. This value is used for checking the progress of the program

based on the average iteration time. At any point, if there is a necessity to stop and

restart the program on a new number of nodes, it is important to know how many

iterations have already been completed and from which point the new set of nodes

have to continue. This is given as one of the inputs, curr iter, to the program. The

11



main iteration is thus started from curr iter. The value of this variable in the first

run is zero. It is also important to make sure that reallocation of the processing

nodes is not done so frequently, otherwise the overhead of restart of the nodes and

redistribution of the data might not be tolerable. A control parameter called range

in this code, is given as another input to the program. Hence, every time the average

iteration time is compared with the required iteration time, it is checked if the former

falls within a range around the latter. Based on the deviation from the range, the

decision to change the number of nodes is made. For each iteration, after processing

the matrix, the application checks the computation time if the monitoring interval

has been completed. If the average iteration time is above the required range, it

means that the progress is not good enough and hence scaling up of the number of

nodes will be necessary. On the contrary, if it is below the range, the application can

afford to run slower and instance cost can be cut down by deallocating some of the

nodes as the progress is much better than expected.

In the case where scaling has to be done, a decision is made and so the data needs

to be redistributed among a new number of processes. The data which is distributed

among the current set of processes needs to be collected at the master node and

redistributed to the new set of nodes.

It is important to note here that not all data involved in the program needs to be

carried over to the subsequent iterations. Only the live variables (and arrays) at the

start of a new iteration need to be stored and redistributed. Furthermore, if the array

is read-only, i.e. it has not been modified since the start of the execution, it does

not need to be stored back before terminating one execution. Instead, the original

dataset can be redistributed and loaded while restarting with a different set of nodes.
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In this elastic framework, each processes stores a portion of the array that needs

to be collected and redistributed to a file in the local directory. Other components

of our framework are informed of the decision of the monitoring layer to expand or

shrink the resources. The application returns true if the solution is converged, so that

the decision layer does not restart it again. In case, the solution is not converged,

false is returned which indicates that restarting and redistribution are necessary. The

application is terminated and the master node collects the data files from the worker

nodes and combines them . After launching the new nodes or deallocating the extra

nodes based on the decision made by the monitoring layer, the decision layer in the

master node splits the data and redistributes it to the new set of nodes.

The application is started again and all the nodes read the local data portions of

the live arrays that were redistributed by the decision layer. The main loop is con-

tinued from this point and the monitoring layer again measures the average iteration

time and makes a decision during the monitoring interval. If the need of restarting

does not arise and the desired iteration time is reached, then the application continues

running . Otherwise, the same procedure of writing the live data to local machines,

copying them to master node and restarting the processes are repeated. Figure 2.2

depicts the execution flow of the system.

This approach is based on a static decision layer model with no feedback, where

the required iteration time is assumed to be fixed. Chapter 3 shows how this model

is made dynamic by moving the monitoring layer from the application souce code

to the outer decision layer. As stated above, the main goal is to develop a simple

source-to-source transformation tool which can automatically modify the MPI source

code. The major steps in the transformation will be: 1) identifying the time-step loop,
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which is typically the outer-most loop over the most compute-intensive components

of the program, 2) finding live variables or arrays at the start of each iteration of the

time-step loop, and finding the read-only variables, and 3) finding the distribution of

the data used in the program.

2.3 Runtime Support Modules

Figure 2.3: Components of Our Framework

The various components of the framework are now described. The interaction

between these components is shown in Figure 2.3. Also, note that the role of the

monitoring layer has already been explained above, so we do not elaborate it any

further. The monitoring layer keeps interacting with the decision layer, which initiates

14



a checkpointing, to be followed by resource allocation, and then redistribution and

restart. The decision layer interacts with the user to get the inputs and preferences

of time and cost. It also interacts with the application program on monitoring the

progress and deciding if a redistribution is needed. Most of the underlying logic has

been explained in the previous subsection. The decision layer will be explained in

detail in Chapter 3 along with the improved feedback model. This model also taking

into consideration, the communication costs incurred by the application, in addition

to the per iteration cost, in order to allow a better prediction of the execution time

of the application while using fewer or more nodes.

2.3.1 Resource Allocator

One of the ways by which this framework enables elastic execution is by transpar-

ently allocating (or deallocating) resources in the AWS environment, and configuring

them for the execution of the MPI program. New instances are requested and mon-

itored by resource allocator until they are ready. For execution of the program, an

MPI cluster needs to be set-up. The MPI implementation used is MPICH2 and the

process manager employed is mpd (multipurpose daemon) that provides both fast

startup of parallel jobs and a flexible run-time environment that supports parallel

libraries. The mpd daemon needs to be started so that it can spawn the mpich pro-

cesses. The main advantage of mpd is that they can start a job on several nodes in

less than a second. It also has fault tolerance - it can start jobs and deliver signals

even in the face of node failure. For the mpd job launcher to work correctly, each of

the nodes has to open connection with two of its nearest neighbors and hence all the

nodes should form a communication ring. The order of this ring does not matter. A
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Python script is used for this MPI configuration process. It runs commands to get

the current state of the instances, their host-names and the external domain names.

A hosts file containing a list of host-names has to be present in every node, as this will

help mpd to initiate the execution among the processes. The nodes are configured for

a password-less login from the master node and the host file is copied over from the

master node to the slave nodes. Then, mpd is booted on the master node and all the

other nodes join the ring. Once this is completed, the MPI environment is set and

ready to run parallel jobs on multiple instances. The binary code has to be present

on all nodes before execution and is hence copied from the master node to the other

nodes by the resource allocator layer. The application can now be launched by giving

the required iteration time as a runtime parameter.

In case a reallocation or deallocation is needed, the data portions residing on the

nodes need to be collected at the master node, combined together, and then redivided

into the new number of nodes. This is illustrated in Figure 2.2 where the number of

nodes is being scaled from m to n. The redivided data is then transferred to the new

group of instances, which read the data and continue working on them from the point

where they were terminated. Thus the whole process is repeated until the program

finishes its execution.

2.3.2 Check-pointing and Data Redistribution Module

Data collection and redistribution depend on the type of application and the type

of data. Multiple design options were considered for this, in view of the support

available on AWS. Amazon S3 is a storage service provided by Amazon that can be

accessed by the EC2 instances. For arrays that are not modified at each iteration
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can be stored in small sized chunks in S3. Later, during a node launch, each of

the nodes can download the chunks of data required by them and continue with

their computation. This design is very efficient for unaltered data as it saves the

overhead of writing to and reading from a file. For variables that are modified in each

iteration, file writes and reads are used to write and read the data. The remote file

copy command, scp, is used to transfer files to the master node, and again for copying

the new pieces of each node.

Combining and redistributing data require the knowledge of how the original

dataset was divided among the processes (e.g.: row-wise, column-wise, two-dimensional

etc.). Currently, this information is provided as an annotation to the framework. In

the future, our source-to-source transformation tool can be used to automatically ex-

tract this information. Based on the data distribution information and the number

of initial and final instances, the redistribution module can generate the portions of

the dataset each node will need.

Note that the current design performs aggregation and redistribution of data cen-

trally on a single node. This can easily be a bottleneck if the initial and/or the final

number of instances is quite large. In the future, we will implement more decentralized

array redistribution schemes [14].
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2.4 Applications and Experimental Results

In this section, the approach and framework performance is evaluated with 2

applications. The feasibility of our approach is demonstrated and the performance of

the runtime modules we have implemented has been shown.

The experiments were conducted using 4, 8, and 16 Amazon EC2 small instances.

The processing nodes communicate using MPICH2. The framework was evaluated

with two MPI applications: Jacobi and Conjugate Gradient (CG). Jacobi is a widely

used iterative method which calculates the eigenvectors and eigenvalues of a sym-

metric matrix. Since the Jacobi application processes and manipulates the matrix

in each iteration, the updated matrix needs to be collected and redistributed among

the compute nodes in the case of adaptation. The data redistribution is done using

parallel data transfer calls, and the overhead of the data transmission time is signifi-

cantly reduced. The NAS CG is a benchmark application that calculates the largest

eigenvalue of a sparse, symmetric, positive definite matrix, using the inverse iteration

method. A specific number of outer iterations is used for finding the eigenvalue esti-

mates and the linear system is solved in every outer iteration. The dominant part of

the CG benchmark is a matrix vector multiplication. The matrix is a sparse one and

stored in compressed row format. This matrix is not manipulated during the program

execution, thus it can be stored in a shared storage unit, i.e. the Amazon S3. The

matrix is divided into chunks, and these chunks can be distributed, retrieved, and

processed by the allocated EC2 instances.

The matrix processed for our Jacobi execution had 9K × 9K double values (∼618

MB). This matrix needs to be collected and redistributed in the case of compute
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instance reallocation. For CG, the matrix has 150K × 150K double values. However,

only the vector needs to be redistributed, and its size is 1.14 MB.

Table 2.1: Jacobi application without scaling the resources

No.
Nodes

W/O
Redist.
(sec)

W/
Redist.
(sec)

MPI
Config.
(sec)

Data
Movement
(sec)

Overhead
(%)

4 2810 2850 71 3 1
8 1649 1720 89 2.5 4
16 1001 1087 87 3.6 9

The first experiment involved executing Jacobi for 1000 iterations, and redis-

tributing once (after 500 iterations). To be able to evaluate the redistribution and

restart overhead, we “redistributed” the execution with the same number of nodes.

This version included overheads of MPI configuration, data redistribution, copying

of the source files to all nodes, and the actual program restart. Table 2.1 presents

the execution times and the major overheads associated with redistribution of data,

particularly, the MPI configuration and data movement costs. The overheads of this

system range from 0.01% to 0.1% and show small increments with increasing number

of compute instances. The main reason for the overhead is due to the MPI config-

uration time. It consists of collecting the host information of the newly initiated

computing instances and preparing the configuration file that lets MPI daemon set

up the MPI groups. This process can introduce small overheads, however the larger

computation times are expected to further dominate these times. The parallel data
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redistribution effectively transfers the updated data, and minimizes the data trans-

mission time.

Some reasonable speedups are also observed with increasing number of instances.

Since the communication tends to be relatively slow between Amazon EC2 instances,

the speedups are not close to linear. As stated above, redistribution is done once

between 1000 iterations. The overheads will be relatively higher if the redistribution

is done more often. But, even if the redistribution was done after every 50 iterations,

based on the above experiments, the overheads will still be less than 2%.

Table 2.2: Jacobi application with scaling the resources

Starting
Nodes

Final
Nodes

MPI
Config.
(sec)

Data
Movement
(sec)

Total
(sec)

Overhead
(%)

4 8 81 3 2301 3
4 16 84 3 1998 5
8 4 80 3 2267 2
8 16 95 3.8 1386 4
16 4 99 3.5 2004 5
16 8 97 3 1390 5

Table 2.2 shows how the runtime modules perform when the system actually scales

up and down. The Overhead column now shows the estimated overheads, considering a

projected execution time derived from the related W/O Redist. columns of Table 2.1.

As we saw in the previous experiments, the overheads stay very low (0.02-0.05%

overhead for redistributing once in 1000 iterations). The MPI configuration is the

dominating factor for the overall overhead and it increases while the numbers of final

nodes increase for the same starting nodes configuration.
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Table 2.3: CG application without scaling the resources

No.
Nodes

W/O
Redist.
(sec)

W/
Redist.
(sec)

MPI
Config.
(sec)

Data
Movement
(sec)

Overhead
(%)

4 834 879 25 2.5 5
8 997 980 58 3 0
16 1030 1105 96 2.7 7

The same set of experiments were reported with CG and the results are presented

in Tables 2.3 and 2.4. Redistribution was now performed once during 75 iterations

of the application. The first observation from these results is that unlike Jacobi,

the performance of CG does not improve with an increasing number of nodes. This

is because CG is more communication-intensive. It is expected that improvements

in communication performance in clouds will help speedup an application like CG in

the future (Amazon Cluster Compute Instance apparently has improved performance,

although this has not been experimented with so far).

Table 2.4: CG application with scaling the resources

Starting
Nodes

Final
Nodes

MPI
Config.
(sec)

Data
Movement
(sec)

Total
(sec)

Overhead
(%)

4 8 43 3 930 2
4 16 60 3 999 7
8 4 40 4 942 3
8 16 81 3 1060 5
16 4 58 3 1003 8
16 8 82 3 1080 7
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Table 2.4 shows the execution times when the system scales up and down. The

overhead of the system increases with the increasing number of the compute nodes.

The short computation time, the nodes that need to be configured and the data redis-

tribution result in extra overhead with large number of compute instances. However,

the overheads are still quite low.
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2.5 Summary

This chapter has described the initial work towards the goal of making existing

MPI applications elastic for a cloud framework. A simple illustration of the overall

approach has been proposed and several runtime modules have been developed. This

approach is based on terminating one execution and starting another with a different

number of nodes. It is a static model based on a fixed iteration time where the mon-

itoring is done withing the application itself. The evaluation with 2 applications has

shown that this has small overheads, and elastic execution of MPI programs in cloud

environments is feasible.

The following chapter gives a detailed account of the design and implementation

of the decision layer and its ability to meet the constraints specified by the userusing

a dynamic feedback model.
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CHAPTER 3

DECISION LAYER

The first part of the thesis focuses on the design of the overall structure of the

framework and gives a simple depiction of how the elasticity can be made possible by

making a small modification to the source code. The control flow and the execution

flow have been discussed in detail. The various components including check pointing,

resource allocator, redistribution and restart and monitoring layer along with their

functions have been described elaborately. The framework has been evaluated with

a couple of applications to show that the overhead of redistribution and restart are

negligible as compared to the overall execution time.

This chapter shows how the framework has been extended and modified to meet

the user constraints of time and cost, with the help of a feedback model. It shows

how the decision layer can completely handle the monitoring of the application by

communicating frequently with the it and using the inputs fed by it. There are several

factors that should be taken into consideration while modeling the decision layer. The

user has the flexibility of choosing between the maximum time that the application

can take to complete, or the maximum cost that he can afford to spend. The decision

layer is the uppermost layer that decides the number and type of EC2 instances that

are required to be deployed to meet these constraints.
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The following section gives a detailed account of the decision layer design and

implementation, which is followed by the experimental section showing the results

and comparison of experiments conducted on two different applications. Section 3.5

summarizes the work.

3.1 Decision Layer Design

The main goals of the decision layer is to meet the user demands. As mentioned

before, these constraints being soft and not hard, the decision layer, on recieving

a maximum time or maximum cost input from user, will make best efforts with

the available resources and components to complete the execution of the application

within the specifications given. The term Best Effort here means that there is no

guarantee that the execution will be completed within the given time or cost. The

time taken per iteration, which is communicated by the application to the decision

layer, is used to determine the progress of the application. In addition to this, the

communication time between nodes is also taken into consideration, as an increase

in the communication time affects scalability to a large extent. For communication

intensive applications, it is obvious that an increase in the number of nodes will not

improve the processing time. So rather than scaling up the number of nodes, the

decision layer shifts to large instances on EC2, which have higher input/output as

compared to the small instances, hence speeding up the communication. When time

is specified as a criteria, the framework makes an attempt to finish within the given

time, minimizing the cost as much as possible for the given time input. Similarly,

when cost is specified as criteria, the framework makes its best attempt to finish

within the budget, with the best processing time possible.
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The decision layer has to interact with the application at regular intervals to mon-

itor it and determine its progress. Hence there has to be some kind of communication

between the two layers. TCP is used for message communication between the decision

and the application layer. During the monitoring interval (which is specified by the

decision layer), the application layer informs the decision layer of the average time

taken for each iteration till that point. The latter makes a decision with its feedback

model and informs the application if it has to continue or change. In the case of

a decision being made to change, the data (live variables and matrices) should be

collected and redistributed to the new set of nodes. The reason for using TCP is that

the overhead of communication using TCP is very small and negligible. In addition,

TCP also provides a reliable, ordered delivery of a stream of bytes from one program

to the other.

There are a plethora of factors to be considered while designing the decision mak-

ing model. Some of the primary factors include total input time / cost, current

progress of the application, total number of iterations in the application, number of

iterations completed, present node count, communication time per iteration and the

overhead costs, which include the extra time taken for restart, redistribution and file

read of the data set. A feedback model is used and the above parameters are given

as input to the model. The application is started on a particular number of nodes,

which can be varied. Typically , a minimum number of instances is used at start and

depending on the progress, this number is scaled.
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3.2 The Feedback Model

The model initially designed was a simple one with no feedback. It was targeted

on achieving a fixed iteration time , which was calculated using the total input time

and the number of iterations. The required iteration time is given by equation (3.1).

Table 3.1: Legend

Symbol Meaning

trit Required Iteration Time
tc Time Constraint
toh Overhead Time
ittot Total Number Of Iterations
itrem Remaining Number Of Iterations
nc Current Node Count
np Predicted Node Count
ttn Time Taken Till Now
test Estimated Time Using Current Nodes
ctn Cost Taken Till Now
cpn Cost Per Node Per hour
cc Cost Constraint
bc Billing cycle

trit =
tip

ittot
(3.1)

After every monitoring interval, the current iteration time was checked to see if

it was close to the above value. The number of nodes was decreased on account of

the current iteration time being lesser than the required iteration time. If vice versa

was true, then the number of nodes was increased. This model, being a static one,

did not take the present state of the network into consideration. Since performance
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on the cloud vary from time to time, this model was replaced by a feedback model

which was more stable and made dynamic estimations rather than a static one.

3.2.1 Time Constraint

The time taken for one iteration on one node (Assuming perfect scalability) is

given by

nc × tpi (3.2)

Time taken for remaining iterations on new number of nodes is given by

nctpiitrem

nn

(3.3)

Time taken for remaining iterations on new number of nodes should ideally be

tc − ttn (3.4)

By equating (3.3) and (3.4) , the new number of nodes can be found out as

nn =
nctpiitrem

tc − ttn
(3.5)

A measure of communication time per iteration is also made during each mon-

itoring interval. If this value contributes to more than 30% of the total iteration

time, the application is run on large instances which have higher input output per-

formance as compared to the small instances . This will help reducing the time taken

for communication.

3.2.2 Cost Constraint

The main factors that determine cost are the number of instances active, the time

for which they are active, and the billing cycle. The billing cycle term here, refers

28



to the period between billing of the instances. The instance count is generally not

changed when in the middle of a billing cycle, as termination of instances is still going

to result in those instances being charged for the entire billing cycle. The decision

layer thus waits till the billing cycle is completed, before making decisions. It is

not possible to consider perfect scalability here, since a perfectly scalable model will

result in decreasing time with increase in the number of instances. For example, if

the number of instances is doubled, the time will be halved. So in both the cases the

total cost spent will be the same. However since real life applications do not have

perfect scalability, certain predictions can be made.

The communication time is observed and if it is too high, it is obvious that scaling

up will not help reducing the processing time to a great extent. In this case, the

number of instances is not increased, but a decision might be made to shift to large

instances, depending on whether they will meet the cost constraints or not. If the

communication cost is not so high, a node count which will meet the current cost

constraints is predicted using equation(3.6). A check is then done by comparing

the predicted time using the predicted nodecount and the estimated time using the

current node count. If the current configuration is better, then the application is

continued without termination. Otherwise it is terminated and restarted on the new

number of instances.

np =
bc(cc − ctn)

itremtpicpn
(3.6)

tp = ttn +
itremtpinc

np

(3.7)
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test = ttn + itremtpi (3.8)

Equation(3.7) and Equation(3.8) give the predicted time using the predicted node

count and estimated time using current node count respectively.

3.2.3 Additional Factors

In addition to the above model, there are some additional factors that should be

taken into consideration to make the decision layer more stable and reliable. Ex-

periments were conducted using the above model with the two applications - jacobi

and cg. It was observed that the results were not very close to the desired ones and

the feedback model was not accurate. When scaling of nodes is done, in addition

to processing of application, extra time was taken for restart, redistribution and file

read and write. There was some loss of accuracy and frequent node changes as these

costs were not considered. The results of this inaccurate model is listed in the ex-

perimental section. Hence the model was modified by taking the overhead time into

consideration. Equation(3.5) and equation(3.7) will thus be modified as follows.

nn =
nctpiitrem

tc − ttn − toh
(3.9)

tp = ttn + toh +
itremtpinc

np

(3.10)

Equation(3.9) and Equation(3.10) show the modified versions with the overhead

time taken into consideration.

The monitoring interval is another factor which should be given an optimum value.

If monitoring is done too frequently, it might result in unnecessary overhead. If it is
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done occasionally, it might result in loss of accuracy and failure to scale up at the

right time to meet the constraints. There is an option of varying monitoring interval

as well, where the monitoring interval is increased everytime a decision is made to

continue on the same number of nodes. Experiments were conducted with each of

these different cases and an optimum value of monitoring interval was chosen.

There might be cases where the user constraints provided might not be realizable ;

for instance, the time or cost constraint might be so small, that it might not be possible

to finish within the given budget or time. In such situations, the decision layer does its

best by using maximum instances when the criteria is time, and minimum instances

when the criteria is cost.

3.3 Implementation

The decision layer interacts with the user to obtain user inputs that include the

application name, time or cost criteria, the initial node count on which the applica-

tion needs to be started on and the initial monitoring interval. The resource allocator

allocates the necessary resources and also takes care of the MPI setup and configura-

tion before every restart of the application. MPICH2 hydra process manager is used

in this part of the work as its setup and configuration is much simpler compared to

that of the mpd process manager.

Fig. 3.3 shows the outline of the decision layer. The inputs are taken from the

user and the output includes total process time or total cost depending on the criteria

chosen. The node count is initialized to the initial node count given by the user. The

resource allocator module is called with the current node count for allocation of the

necessary resources. The application source file is copied to all the instances using
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scp command and this is done using parallel threads to reduce overhead. Module

scpDtoM() does a copy of the source code from the Decision layer to the other worker

nodes. If the loopcount is greater than 1 (if the application is not starting for the

first time, but rather restarting due to a node change decision), the scpDtoM module

is used to redistribute the matrix portions to all the nodes. The application is then

launched with run time arguments that include monitoring interval, the hostname of

the local machine and the tcp port number which are used for tcp socket communi-

cation. The application launcher module is used for this. The decision layer waits on

a receive till a particular number of iterations is over and the iteration time, commu-

nication time, the iteration number and a message is sent by the master node which

is running the MPI application. If the message is read as ’finished’, it signifies the

completion of the application and the while loop terminates. If a finished message is

not received, then the decision layer with the received inputs - the iteration time and

the communication time, makes a decision using the feedback model and sends an

instruction to the Master node to either continue or change. On receiving continue,

the application continues running until the next monitoring interval and on receiving

change, the application outputs its live matrices either to a file or to an Amazon S3

bucket. These are collected at the decision layer which combines all of them and

re-splits them using combineandsplit module. This process repeats itself until the

application completes.
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Input: monitor iter,criteria, init nodecount
time criteria or cost criteria

Output:process time, process cost

complete := False;
nodecount := init nodecount;
loopcount := 1;
While complete 6= True Do

Call resourceallocator(nodecount);
Call scpDtoM(filename);
If loopcount>1 Then

Call scpDtoM(portions);
Endif
Call applicationlauncher(nodecount);
While True Do

Call receive(message,itertime,commtime);
If message =′ finished′ Then

complete := True;
break;

Endif
decision := feedbackmodel(itertime,commtime);
Call send(decision);
If decision =′ change′ Then

break;
Endif

Endwhile
If complete 6= True Then

Call scpMtoD(active);
Call combineandsplit();

Endif
loopcount := loopcount+1;

Endwhile

Figure 3.1: Execution Structure : Decision layer
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3.4 Experimental Results

In this section, the decision layer is evaluated and the performance is measured

for different values of time and cost criteria. The same applications - jacobi and cg

were used for the experiments. The dataset of jacobi consists of a matrix consisting of

(5K × 5K) double values. The solution converges in about 1000 iterations and it is a

compute intensive application. The dataset of CG is a sparse matrix of (150K× 150K)

and the total number of iterations is about 75 iterations. CG is a communication

intensive application.

3.4.1 Criteria - Time

The time criteria was chosen and experiments were conducted with different values

of time criteria in seconds. The decision layer starts the application and monitors it

and uses the feedback model to figure out if a restart is necessary. The total process-

ing times (Actual Time) were recorded to see how close they are to the time criteria

and observations were made.
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Figure 3.2: Time Criteria vs Actual Time - Jacobi

Jacobi

Figure 3.2 shows the different values of total process times for various time criteria

in seconds. It is observed that the actual time taken is lesser than the time for all

values other than 800 seconds. In this case, the system is not able to meet the

requirements even with maximum number of nodes. Hence it uses the maximum

number of resources and makes a best effort to give a good performance. For a time

criteria of 800 seconds, the actual time is 875 seconds. For all other values of time

criteria, the system keeps the actual time within the specified limit, at the same time

minimizing the cost by using an optimum number of resources
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Figure 3.3 shows the final node count values for different values of time criteria.

Although each of these runs start at a specified initial value of node count, they

converge to an optimum value after a certain point and remain there. With the

increase in maximum specified user time, the system uses fewer number of resources

as it can finish within the specified time and still reduce the cost as much as possible.

Figure 3.3: Time Criteria vs Nodecount - Jacobi

It is observed that the final node count value decreases with increase in time

criteria. For a time criteria of 800 secs, the system uses 19 nodes , which is the

maximum in this case. For a higher time criteria, the decision layer allocates fewer
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nodes so that the cost is minimized as much as possible, at the same time keeping

the total process time within the given limit.

Figure 3.4 shows the node changes for different time criteria.

Figure 3.4: Nodechanges for different Time Criteria - Jacobi

All the node changes are within 140 iterations of the 1000 total iterations, after

which it stabilizes to an optimum value for the remaining iterations. This shows the

decision layer is able to make the right decision quickly without restarting too many

number of times.
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Figures 3.5, 3.5 and 3.7 compare the two different versions of the feedback model.

The first one was where the overhead of restart and redistribution were not given

as inputs to the feedback model. The second version was one which included this

overhead. These comparisons are shown for three different values of input time.

Figure 3.5: Comparison of different versions for Time Criteria=1000 secs
- Jacobi

It is observed that the second version is able to make a better decision as compared

to the first one. In the first version, since the overhead is not taken into account,

even after restart the system does not behave as it predicted. Hence restart occurs

again and finally reaches the maximum node count in every case.
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Figure 3.6: Comparison of different versions for Time Criteria=1200 secs - Jacobi
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Figure 3.7: Comparison of different versions for Time Criteria=1400 secs - Jacobi
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Conjugate Gradient (CG)

Similar experiments were repeated with the CG application and interesting ob-

servations were made. Since CG is a communication intensive application, it behaves

very differenly from that of Jacobi. With different values of start nodes, Table 3.2

shows how node changes occur for different values of input time.

Table 3.2: Node Changes for different Time Criteria and start node types-CG
Start Node 4 small 4 large

Time Criteria(sec) Nodechange Iteration
Number

Actual
Time(sec)

Nodechange Iteration
Number

Actual
Time(sec)

300 4 small to 4
large

5 448 remains at
4 large

- 357

600 4 small to 4
large

35 592 remains at
4 large

- 371

800 stays at 4
small

- 764 4 large to 4
small

5 690

The experiments were conducted with different start node types - small and large.

It was observed that all the experiments with the same time criteria ,converged to the

same instance type at the end. When a small time criteria is given , changing to large

instance will speed up the application to a large extent, since the communication time

of this application is very high. On the contrary, when a large time criteria is given

, the system continues to run the application on small instances as they would turn

out to be less expensive than the large ones, hence reducing the overall cost, at the

same time meeting the time constraint.
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3.4.2 Criteria - Cost

This section shows the experimental results for cost criteria in jacobi and cg. The

second criteria - cost was chosen and the experiment was run for different values for

cost criteria for which the actual cost, time and nodechanges were recorded.

Jacobi

Figure 3.8 gives the actual cost for different values of cost criteria, for jacobi

application.

Figure 3.8: Cost Criteria vs Actual Cost - Jacobi
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The observation is similar to the time section of jacobi, as the demand is met

for all values of cost criteria except the first one , i.e 3$. When this input is given,

the system does its best by trying to minimize the cost as much as possible by using

minimum resources. For all values, an optimum number of resources are used, hence

taking the time also into consideration. The more the user can afford to spend, the

better performance he will get out of it. This is seen in Figure 3.9, where the output

processing time improves as the cost criteria increases.

Figure 3.9: Cost Criteria vs Actual Time - Jacobi

Figure 3.10 shows the final node count value for different values of cost criteria.
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Figure 3.10: Cost Criteria vs Final Nodecount - Jacobi

As cost increases, more number of resouces are allocated to complete the applica-

tion within lesser time.

Figure 3.11 shows the nodechanges for different values of cost criteria. Similar to the
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time criteria, the decision layer is able to stabilize and optimize the resources, while

satisfying the cost criteria

Figure 3.11: Nodechanges for Different values of Cost Criteria - Jacobi

Conjugate Gradient (CG)

Figure 3.12 shows the actual cost for different values of cost criteria in CG.

Simlar to jacobi, we observe that the actual cost is very close to the cost criteria.

Figure 3.13 shows the actual time for different values of cost criteria. The process

time improves and gets better as the cost increases.

Figure 3.3 shows the node changes for different cost criteria. When the cost is

really low, smaller nodes are used to minimize the cost. In other cases, the nodechange
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Figure 3.12: Cost Criteria vs Actual Cost - CG

from small to large occur at different iterations to optimize between time and total

cost.
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Figure 3.13: Cost Criteria vs Actual Time - CG

Table 3.3: Node Changes for different Cost Criteria - CG

Cost
Criteria
($)

Iter.
No

Nodechange

4 Never 4 small
5 45 4 small to 4 large
6 40 4 small to 4 large
7 35 4 small to 4 large
8 25 4 small to 4 large
9 5 4 small to 4 large

47



3.5 Summary

In this work, the feedback model is used for determining the progress and type

of application, whether it is a compute or communication intensive application. This

information is necessary for finding out the number of resources that are to be allo-

cated and the type of instances (large or small) that should be used. The decision

layer meets the user demands of time or cost by making use of this feedback model.

A compute intensive application (jacobi) and a communication intensive applica-

tion (CG) were used to evaluate the system. The results show that the decision layer

makes best effort in meeting the user demands. The pattern of the node changes

also shows that the number of instances stabilizes after certain number iterations,

avoiding excessive overhead of node change.
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CHAPTER 4

CONCLUSIONS

In this work, we have proposed a method for scientific applications to exploit the

elasticity of the cloud environments. MPI applications are designed for a fixed number

of nodes. We have designed a framework that can make existing MPI applications

elastic and adaptable using an automated framework which decides the number of

instances for execution based on user demands of time or cost.

The Framework is tested using 2 MPI applications , one of them is communication

intensive and the other one is compute intensive. The experiments show that the

overheads during elastic execution are low and tolerable. Is is also shown that ths

system makes best efforts to meet the given user constraints of time or budget.
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