
Auto-Generation of Parallel Finite-Differencing Code for MPI, TBB and CUDA

D. P. Playne
Computer Science, IIMS

Massey University
Auckland, New Zealand
d.p.playne@massey.ac.nz

K. A. Hawick
Computer Science, IIMS

Massey University
Auckland, New Zealand

k.a.hawick@massey.ac.nz

Abstract—Finite-difference methods can be useful for solv-
ing certain partial differential equations (PDEs) in the time
domain. Compiler technologies can be used to parse an
application domain specific representation of these PDEs and
build an abstract representation of both the equation and
the desired solver. This abstract representation can be used
to generate a language-specific implementation. We show
how this framework can be used to generate software for
several parallel platforms: Message Passing Interface (MPI),
Threading Building Blocks(TBB) and Compute Unified Device
Architecture(CUDA). We present performance data of the
automatically-generated parallel code and discuss the implica-
tions of the generator in terms of code portability, development
time and maintainability.

Keywords-automatic code generation; MPI; TBB; CUDA;
accelerators; portability; multi-platform.

I. INTRODUCTION

Finite-difference methods are a well known technique for
solving partial differential equations [1]. Although finite-
element and other matrix-formulated methods are very popu-
lar for irregular mesh problems [2], finite-difference methods
continue to find use in computational simulations and gener-
ally are straightforward to parallelise using geometric stencil
methods of decomposition which attain good computational
speedup [3]–[5]. Although finite-difference methods are
quite feasible to hand-parallelise for low-order stencils when
a small number of neighbouring cells is required for each
calculation, in cases when higher-order calculus operations
are employed [6] the codes become: very complex; hard
to implement manually; and very difficult to verify since a
small programming error concerning a data index may still
lead to a numerically plausible solution that is hard to spot
as being wrong. It is therefore very attractive to be able to
employ automatic code generation [7] to this problem [8],
[9].

In this paper we address two key issues associated with
finite-difference methods on parallel computing. The first is
the use of auto code-generation methods to specify partial
differential equations as a high-level problem using calculus
terminology and involves building a software tool-set to gen-
erate the programming language source-code to implement
the solvers. The second concerns the long-standing problem
of portability across parallel programming platforms.

Figure 1. An example three-dimensional Cahn-Hilliard system with a
size of 2563. Ray-traced rendered from a simulation using automatically
generated code.

At the time of writing parallel computing is once again
attracting great interest and attention as the world faces up
to the problems of power consumption of CPUs and the
non-continuance of the previous development trend [10] in
CPU clock frequencies which used to double approximately
every eighteen months in accordance with Moore’s law
[11]. It is possible to bring parallelism to bear on many
problems using hybrids of cluster-computing approaches;
accelerator technologies such as general purpose graphical
processing unit (GP-GPU); and the use of many threads
within a conventional multi-core CPU. These are typified by
software technologies such as the open standard Message
Passing Interface (MPI) [12], [13]; NVIDIA’s Compute
Unified Device Architecture (CUDA) [14]–[16] for GPUs;
and Intel’s Thread Building Blocks (TBB) [17], [18] soft-
ware for multi-threaded programming multi-core devices,
respectively. It is however tedious, error prone and non-

Figure 2. The architecture of the STARGATES generator. Shows logical steps of how an Equation is parsed into a Simulation Tree with input from the
Integration and Stencil Libraries and subsequently explored by an Output Generator to produce target code output.

trivial for a programmer or even a programming team to
implement an application that works well across all these
three parallel paradigms or platforms – even for a problems
like finite-difference equation solving that have relatively
well known solutions.

We have found that conceptually a great deal is shared
between hand-written applications for these platforms and
have been able to distill some of the commonalities out.
We have developed an automatic code generation system
based on compiler technologies such as ANTLR [19] and
our own code-generation engines. The use of automatic code
generation techniques for numerical solvers is not new [20],
but we have been able to go beyond the skeletal and template
approaches [21] that have had success in the past. This sys-
tem allows us to pose a partial differential equation problem
in calculus-like terminology and to generate efficient serial
or parallel code for a finite-difference solver. The parallel
platform that the actual C/C++ [22] compatible output code
is generated for can be: MPI; TBB; or CUDA, which we
discuss in this present paper, or other platforms such as
OpenMP [23], pThreads [24], and other open-standard or
proprietary systems.

Our contributions in this paper are therefore: to show how
a problem like finite-differencing can be semi-automated to
produce correct and efficient parallel source code for use
on MPI, TBB and CUDA; but also to show how this tool
approach allows exploration of much more sophisticated and
complex algorithms and partial differential equations than
would otherwise be possible either with manually generated
parallel code let alone with a serial code.

In this paper we discuss and demonstrate our system us-
ing as an application example a second-order-space/second-
order-time partial differential equation – the Cahn-Hilliard

field equation [25]–[27] for phase separation in materials
science (See Figure 1). Our tools and methods apply to
much more complex and elaborate examples such as partial
differential equations in complex fluid flow; plasma dy-
namics; gravitational field theory and superconductors [28]–
[30] – and in which areas we are also working. In this
paper however, we focus on the parallel computing platform
generation aspects and although we do present performance
analysis results as proof of the value-add of our approach, we
do not dwell on the physics and other application domain-
specific details of the problem.

This article is structured as follows. In section II we
discuss the conceptual framework of our automatic code
generator and the details of the individual TBB, MPI and
CUDA code generators. In section III we present fragments
of the generated code and their performance results. Finally
in section IV we discuss the implications of the generator on
parallel code portability, maintainability and performance.

II. STARGATES ARCHITECTURE

Our simulation generator architecture is named STAR-
GATES or “Simulation Targeted Automatic Reconfigurable
Generator of Abstract Tree Equation Systems”. This ar-
chitecture parses a mathematical description of a partial-
differential field equation and generates a finite-difference
simulation of the equation. The concept behind this gener-
ator is to separate the simulation from the implementation.
The equation is parsed by an ANTLR [19] equation parser
and together with integration and finite-difference stencil
libraries can construct an abstract tree representation of
the entire simulation. This abstract representation can then
processed by output generators to create output code. The
architecture of STARGATES can be seen in Figure 2.

One benefit of this architecture is the ease with which
simulation code can be maintained. Because the equation
descriptions are not tied to any architecture, dimensionality
or integration method, only one equation definition needs
to be maintained to produce a large number of different
implementations. Simulation implementations can be easily
generated for any number of dimensions by using the Stencil
Library and for any integration method in the Integration
Library.

Another advantage of this architecture is the distinction
between the simulation description and the details of the
parallel implementation. All of the target specific informa-
tion is defined by the output generator which allows a new
target architecture to be easily included with no change to the
rest of the system. Because the individual generators have
full control over the output code, it allows a large degree of
freedom to implement different parallel decomposition algo-
rithms and heuristics for applying appropriate optimisations
depending on the properties of the simulation. These output
generators can be as complex as the developer wishes to
make them.

In this paper we specifically discuss how output generators
can be easily constructed to portably generate parallel code
for three of the most popular (and different) parallel archi-
tectures: Multi-Core processors using TBB, Cluster Nodes
with MPI and Graphical Processing Units using CUDA.

A. Cahn-Hilliard Equation Example

We use the Cahn-Hilliard field equation as our example
in this paper. The Cahn-Hilliard equation in it’s simple form
is shown in Equation 1. For a complete derivation of this
equation see [26].

∂u

∂t
= M∇2

(
−Bu + Uu3 − K∇2u

)
(1)

We write this equation in the following ASCII textual
form so it can be parsed by the STARGATES equation parser
which is implemented in ANTLR:

float M;
float B;
float U;
float K;
float[] u;
d/dt u = M * Laplacian{(-B*u + U*(u*u*u) -

K * Laplacian{u})};

This representation defines both the equation and the data
types of the variables and fields. When STARGATES parses
this equation description it will generate a tree representation
of the equation which can then be traversed by the output
generators to create the simulation code. When the equation
is parsed, any nested stencil operators (in this equation the
Laplacian operator) will be combined using the Stencil Li-
brary. This equation contains two nested Laplacian operators
which will be combined appropriately. A more complete

!

"

"

#

$

%

&

' (

"

(

(

"

((

"

&

(

!

"

"

#

$

%

&

' (

!)

"

(

(

"

((

"&

(

!)

!) !)

!*

Figure 3. A tree representation of the Cahn-Hilliard equation produced
by our ANTLR equation parser.

discussion on how finite-differencing stencils are combined
can be found in [31]. The tree representation of this equation
with combined operators is shown in Figure 3.

This equation tree can be traversed by the output genera-
tors to produce the code to compute the simulation. In this
case all three examples use C syntax and we show the code
to compute the equation for a single lattice cell in Listing 1.
However it should be noted that the system is not limited to
using C syntax, output generators can quite easily generate
simulation code in any target language.

Listing 1. The equation calculation code generated by traversing the Cahn-
Hilliard cook equation tree. Example shown in C syntax.

M∗ (
(−B)∗ ((unym1x) +

(unyxm1) + (−4∗unyx) + (unyxp1) +
(unyp1x)) +

U∗ ((unym1x∗unym1x∗unym1x) +
(unyxm1∗unyxm1∗unyxm1) +

(−4∗unyx∗unyx∗unyx) +
(unyxp1∗unyxp1∗unyxp1) +
(unyp1x∗unyp1x∗unyp1x))−

K∗ ((unym2x) +
(2∗unym1xm1)+(−8∗unym1x)+(2∗ unym1xp1) +

(unyxm2)+(−8∗unyxm1)+(20∗ unyx)+(−8∗ unyxp1) + (unyxp2)
+(2∗ unyp1xm1)+(−8∗ unyp1x)+(2∗ unyp1xp1) +

(unyp2x)))

B. Generating TBB code

Intel’s Threading Building Blocks allows applications to
be easily parallelised for computation on multi-core pro-
cessors. TBB provides a library of methods and common
parallel constructs that developers can use to perform ele-
ments of computation in parallel without having to explicitly

� � � �

� � � �

	
 �� ��

�� �� �� ��

�

�

�

�

Figure 4. Methods of parallel decomposition for TBB (left), MPI (centre) and CUDA (right). TBB partitions the field into compute blocks (numbered
0-15) which will be distributed one at a time to the available processor cores. MPI splits the field in the highest dimension to separate the computation
between available nodes (in this case four nodes), the dark cells represent the borders that must be communicated between nodes after each time-step.
CUDA creates one thread to perform the computation for each cell in the lattice, effectively partitioning the computation with the same resolution as the
lattice itself.

deal with threads and sychronisation between them. The
main advantages TBB provides over more low level systems
such as pThreads [24] is the ease of use simplicity of the
code. The TBB output generator we have written uses the
parallel_for to iterate over the lattice and perform the
computation in parallel.

Algorithm 1 Pseudo code for generating a TBB finite-
differencing solver. This generator creates one function for
each integration step and uses the parallel_for function
to iterate over the cells in parallel.

generate includes
generate parameters

for all steps in integration method do
generate TBB wrapper
generate TBB iteration code
generate neighbour access code
traverse equation tree to generate code

end for

MAIN
generate TBB initialisation
generate equation variables
generate integration method variables
generate time step iteration code
for all steps in integration method do

generate TBB parallel for call
end for

parallel_for will call an update function on each
block of data (determined by a block_range structure)
on any available core until all the computation has been

completed. The user can control the resolution with which
the field is decomposed into compute blocks. The optimal
size of compute block will depend on the simulation. In
general if the number of compute blocks is significantly
larger than the number of available cores then TBB will
be able to perform some automatic load balancing as it will
continue to distribute compute block to any idle core. This
method of block decomposition can be seen in Figure 4.

Algorithm 1 shows the process that the TBB output
generator performs to produce the output TBB code. Most of
these steps will depend on the parameters of the simulation
being generated. For example the iteration code will depend
on the dimensionality of the simulation being generated,
these simulation parameters are defined in the configuration
file.

When a two-dimensional simulation is being
generated, the field will be partitioned into blocks
using the blocked_range2d structure. Simulations
any other dimensionality will use the one-dimensional
blocked_range structure. This is one example of
how specific optimisations can be included in the output
generators. The main components of the generated TBB
code is shown in Listing 2 in Section III.

C. Generating MPI code

MPI is the most commonly used communication inter-
face for cluster or distributed computers [12]. MPI defines
methods for synchronising nodes and sending/receiving data
between distributed nodes. For such a system each node will
store a section of the field and update it’s part of the field.
The main challenge of decomposing a finite-differencing
simulation across such a system is managing the border
communication between the nodes.

Because the computation of a cell depends on the neigh-
bouring values, after each step the cell information on
the border of the field split must be communicated to the
neighbouring nodes. There are many ways of splitting the
field across nodes on a cluster and each has it’s individual
benefits. The code produced by this generator splits the field
evenly in the highest dimension as shown in Figure 4. The
high level algorithm of the MPI output generator is shown
Algorithm 2.

Algorithm 2 Pseudo code for generating an MPI finite-
differencing solver. Generates a MPI program with a single
update function that performs all the necessary steps of the
integration method and communicates the bordering cells
between each step.

generate includes
generate parameters

generate MPI function
for all steps in integration method do

generate iteration code
generate neighbour access code
traverse equation tree to generate code
generate MPI communication code

end for

MAIN
generate MPI initialisation
generate equation variables
generate integration method variables
generate time step iteration code
generate MPI function call

This MPI generator decomposes the field evenly between
the hosts in the highest dimension and communicates the
border information (as determined by the width of the
equation stencils) using MPI. This is only one of many
possible ways of decomposing the field between nodes
but has been chosen as a proof of concept. Listing 3 in
Section III shows the main features of the generated MPI
code.

D. Generating CUDA code

In recent years GPUs have emerged as a very popular
data-parallel computing architecture. NVIDIA’s CUDA has
proven itself to be the API of choice offering the best
ease of use and widest acceptance. Rather than traditional
methods of splitting computation into a number of units
comparable to the number of processors, CUDA programs
split computation into the smallest unit of work. Each unit
of work or kernel in a CUDA program performs the finite-
difference update on one single lattice cell. This method
of decomposition is shown in Figure 4 and the important

code to compute a finite-difference simulation can be seen
in Listing 4 in Section III.

Algorithm 3 Pseudo code for generating a CUDA finite-
differencing solver. This generator creates one function for
each integration step.

generate includes
generate parameters

for all steps in integration method do
generate CUDA function
generate thread id calculation
generate neighbour access code
traverse equation tree to generate code

end for

MAIN
generate CUDA initialisation
generate equation variables
generate integration method variables
generate device memory initialisation
generate copy data from host to device
generate CUDA run-time parameters
generate time step iteration code
for all steps in integration method do

generate CUDA call
end for
generate copy data from device to host

Because GPU devices have their own memory, all initial
data must be copied into the device and the results copied
back to the host afterwards. This does not represent a
significant overhead because no memory copies are neces-
sary during the computation of the simulation. These data
copies are shown in the CUDA generator algorithm (See
Algorithm 3).

One major performance consideration for CUDA applica-
tions is the type of memory used. This was very important
in previous generations of GPU as the had no automatic
cache available whereas the current generation Fermi cards
automatically cache access to global memory. Generators
can be easily written to make use of different memory types
based on the target GPU architecture.

III. GENERATED CODE AND PERFORMANCE RESULTS

The main results of this this work is STARGATES ability
to generate correct and efficient parallel code from a simple
equation description. We present code-segments from the
generated code produced by STARGATES for TBB, MPI
and CUDA (see Listings 2, 3 and 4). These code fragments
show the lattice allocation, main time-step loop and parallel
iteration code.

The TBB code in Listing 2 shows the important fragments
for the simulation. The lattices necessary for the integration

method (this example uses the Euler method for simplicity)
are allocated on the host using new. For each time step
the update function is called using parallel_for and
the update function will iterate through the compute block
defined by the blocked_range2d parameter. For each
lattice cell, the equation will be computed using the code
shown in Listing 1.

Listing 2. TBB code automatically generated by STARGATES for a finite-
differencing simulation using Euler integration in two-dimensions. Uses
parallel_for to call operator for each compute block.

void operator () (c o n s t b locked range2d<i n t> &r) {
i n t yb = r . rows () . b e g i n () ;
i n t ye = r . rows () . end () ;
i n t xb = r . c o l s () . b e g i n () ;
i n t xe = r . c o l s () . end () ;
f o r (i n t i y = yb ; i y != ye ; i y ++) {

f o r (i n t i x = xb ; i x != xe ; i x ++) {
/ / compute e q u a t i o n f o r c e l l i x , i y

}
}

i n t main () {
t a s k s c h e d u l e r i n i t i n i t ;
. . .
f l o a t ∗un = new f l o a t [X∗Y] ;
f l o a t ∗unh = new f l o a t [X∗Y] ;
f o r (i n t t = 0 ; t < 1024 ; t ++) {

p a r a l l e l f o r (b locked range2d<i n t >(
0 , Y, Y/ 1 6 , 0 , X, X/ 1 6) ,
e u l e r (un , unh , h)) ;

swap(&un , &unh) ;
}
. . .

}

Listing 3 shows the important code for the MPI implemen-
tation of the Cahn-Hilliard simulation. The main function
contains code that initialises MPI and identifies the node’s
id and neighbours. The memory for the lattices are allocated
for each node store the section of the field that the node is
responsible for as well as the extra bordering cells necessary
to compute the simulation. In the update function each node
will compute the equation for its section of the field and
communicate the borders to its neighbours using MPI Isend
and MPI Irecv.

Listing 3. Generated MPI code for a two-dimensional finite-differencing
simulation using Euler integration. euler performs a single computation
step for each node’s field and communicates the borders to the neighbouring
nodes.

void e u l e r (f l o a t ∗un , f l o a t ∗unh , f l o a t h) {
f o r (i n t i y = HALO; i y < Y+HALO; i y ++) {

f o r (i n t i x = 0 ; i x < X; i x ++) {
/ / compute e q u a t i o n f o r c e l l i x , i y

}
}
MPI Isend (&um[HALO∗X] , HALO∗X,

MPI FLOAT , idm1 , 0 ,
MPI COMM WORLD, &sendm1) ;

MPI Irecv (&um [(Y∗X) + (HALO∗X)] , HALO∗X,
MPI FLOAT , idp1 , 0 ,
MPI COMM WORLD, &re cv p1) ;

MPI Isend (&um[Y∗X] , HALO∗X,
MPI FLOAT , idp1 , 0 ,
MPI COMM WORLD, &sendp1) ;

MPI Irecv (&um [0] , HALO∗X,
MPI FLOAT , idm1 , 0 ,
MPI COMM WORLD, &recvm1) ;

MPI Wait(&recvm1 , MPI STATUS IGNORE) ;
MPI Wait(& recvp1 , MPI STATUS IGNORE) ;
MPI Wait(&sendm1 , MPI STATUS IGNORE) ;
MPI Wait(& sendp1 , MPI STATUS IGNORE) ;

}

i n t main (i n t argc , char ∗∗ a rgv) {
M P I I n i t (& argc , &argv) ; i n t num hosts ;
MPI Comm size (MPI COMM WORLD, &num hosts) ;
MPI Comm rank (MPI COMM WORLD, &i d) ;
idm1 = (i d == 0) ? num hosts−1 : i d − 1 ;
idp1 = (i d == num hosts −1) ? 0 : i d + 1 ;
MPI Request sendm1 ;
MPI Request sendp1 ;
MPI Request recvm1 ;
MPI Request r ec v p1 ;
. . .
f l o a t ∗un = new f l o a t [((HALO∗2)+Y) ∗ X] ;
f l o a t ∗unh = new f l o a t [((HALO∗2)+Y) ∗ X] ;
f o r (i n t t = 0 ; t < 1024 ; t ++) {

e u l e r (un , unh , h) ;
swap(&un , &unh) ;

}
M P I F i n a l i z e () ;

}

The main code sections of the CUDA implementation is
shown in Listing 4. In the main function the memory for
the lattices are allocated on the device with cudaMalloc
and the data is copied in and out of the device using
cudaMemcpy. One thread is created for each lattice cell and
performs the update function euler which will calculate
that thread’s id and compute the equation for that cell using
the equation code given in Listing 1.

Listing 4. Generated two-dimensional Cahn-Hilliard simulation using
Euler integration in CUDA. block and grid are parameter to control
the threads to compute the simulation and euler is the function that each
thread will perform.

g l o b a l void e u l e r (f l o a t ∗un , f l o a t ∗unh , f l o a t h) {
i n t i x = (b l o c k I d x . x∗blockDim . x) + t h r e a d I d x . x ;
i n t i y = (b l o c k I d x . y∗blockDim . y) + t h r e a d I d x . y ;
/ / compute e q u a t i o n f o r c e l l i x , i y

}
i n t main () {

c u d a S e t D e v i c e (0) ;
. . .
f l o a t ∗un , ∗unh ;
cudaMal loc ((void ∗∗) &un , X∗Y∗ s i z e o f (f l o a t)) ;
cudaMal loc ((void ∗∗) &unh , X∗Y∗ s i z e o f (f l o a t)) ;
cudaMemcpy (un , u , X∗Y∗ s i z e o f (f l o a t) ,

cudaMemcpyHostToDevice) ;
cudaMemcpy (unh , u , X∗Y∗ s i z e o f (f l o a t) ,

cudaMemcpyHostToDevice) ;
dim3 b l o c k (3 2 , 3 2) ;
dim3 g r i d (Y/ b l o c k . y , X/ b l o c k . x) ;
f o r (i n t t = 0 ; t < 1024 ; t ++) {

e u l e r <<< g r i d , b l o c k >>>(un , unh , h) ;
c u d a T h r e a d S y n c h r o n i z e () ;
swap(&un , &unh) ;

}
cudaMemcpy (u , un , X∗Y∗ s i z e o f (f l o a t) ,

cudaMemcpyDeviceToHost) ;
}

Automatically generating parallel simulation code is only

Table I
SPEEDUP FACTORS OF AUTOMATICALLY GENERATED PARALLEL

IMPLEMENTATIONS OVER A SINGLE CORE CPU IMPLEMENTATION.
DATA ACCURATE TO ONE DECIMAL PLACE.

Architecture Speedup
C++ (3.33GHz Intel i7-980X) 1.0
TBB (3.33GHz Intel i7-980X) 6.6

MPI (2x 2.66GHz Intel Core2 Quad Q9400) 1.8
MPI (4x 2.66GHz Intel Core2 Quad Q9400) 3.7
MPI (8x 2.66GHz Intel Core2 Quad Q9400) 7.3

CUDA (NVIDIA GTX480) 97.9

useful if the generated simulations offer a useful perfor-
mance benefit. To give an idea of the performance of the
generated simulations we have compared them to a hand-
written single-core CPU implementation of the simulation.
This implementation has been compared to the generated
TBB implementation on a six-core Intel i7 980X, the MPI
implementation on 2, 4 and 8 Intel Core2 Quad Q9400 nodes
in a cluster and the CUDA implementation on a NVIDIA
GeForce GTX480. These performance results are shown in
Table I.

All of the generated parallel implementations provide a
useful speed-up over the single-core implementation. Most
notably the CUDA implementation which provides a speed-
up of almost 100x.

IV. SUMMARY & CONCLUSIONS

We have shown that human-readable source code for
finite-differencing simulations can be automatically gener-
ated from a simple ASCII textual representations of the
calculus of a partial differential equation. The method of
creating an abstract simulation representation allows the
source code generation to be completely separated from
the equation specification. This allows simulation source
code for widely different parallel architectures to be gener-
ated from the same equation representation. This generator
structure also allows dimension and architecture specific
optimisations to be included in the code-generation while
also maintaing the ability to generate code for arbitrary
architectures, dimensionality and integration methods.

By focusing on a specific type of simulation based, our
STARGATES system is able to produce simulation code
with serial and parallel computing performance that compa-
rable to (very close to) that of hand-written code. The main
advantage this generator provides is the ability to maintain a
large number of equations and simulation methods without
having to maintain a large number of code files. It also
allows any number of simulations to be migrated to a new
architecture with the addition of a single output generator.
It is also useful in trying out different solver algorithm
subtleties relatively quickly for a new PDE whereas hand

generated code is generally much harder to debug and verify.
We have shown that this generator can produce code

for three very different parallel architectures from the same
simple equation description. These parallel implementations
provide a significant speed-up over a single-core simulation
showing that the code generated is efficient as well as
correct.

We plan to extend STARGATES to cope with other
potential parallel platforms such as OpenMP. There is also
scope for adding further parallel-specific optimisations and
heuristics to our code generator [32]. We also anticipate
further developing the library of solvers and the support
available for higher order calculus operations such as the
bi and tri-harmonic operators. Finite-difference methods
lend themselves well to problems that need high orders
of accuracy and neighbour gathering stencil operations that
extend beyond short neighbour ranges.

REFERENCES

[1] A. Mitchell and D. Griffiths, The Finite Difference Method
in Partial Differential Equations. Wiley, 1980, no. ISBN
0-471-27641-3.

[2] A.I.Khan and B. Topping, “Parallel adaptive mesh genera-
tion,” Computing Systems in Engineering, vol. 2, no. 1, pp.
75–101, 1991.

[3] D. Playne and K. Hawick, “Hierarchical and Multi-level
Schemes for Finite Difference Methods on GPUs,” in Proc.
CCGrid 2010, Melbourne, Australia, no. CSTN-099, May
2010.

[4] R. F. Barrett, P. C. Roth, and S. W. Poole, “Finite difference
stencils implemented using chapel,” Oak Ridge National Lab-
oratory, Tech. Rep. ORNL Technical Report TM-2007/122,
2007.

[5] S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Ac-
celeration of Finite-Difference Time-Domain (FDTD) Using
Graphics Processor Units (GPU),” IEEE MIT-S Digest, vol.
WEIF-2, pp. 1033–1036, 2004.

[6] D. Greenspan and D. Schultzt, “Fast finite-difference solu-
tion of biharmonic problems,” Communications of the ACM,
vol. 15, no. 5, pp. 347–350, May 1972.

[7] C. Lengauer, D. Batory, C. Consel, and M. Odersky, Eds.,
Domain-Specific Program Generation, ser. LNCS. Springer,
2003, no. 3016, ISBN 3-540-22119-0.

[8] P. McMullin, P. Milligan, and P. Corr, “Knowledge assisted
code generation and analysis,” in High-Performance Comput-
ing and Networking, ser. LNCS, vol. 1225, no. ISBN 978-3-
540-62898-9. Springer, 1997, pp. 1030–1031.

[9] K. A. Hawick and D. P. Playne, “Automated and parallel code
generation for finite-differencing stencils with arbitrary data
types,” in Proc. Int. Conf. Computational Science, (ICCS),
Workshop on Automated Program Generation for Compu-
tational Science, Amsterdam June 2010., no. CSTN-106,
December 2010.

[10] S. K. Moore, “Multicore is bad news for supercomputers,”
IEEE Spectrum, vol. 45, no. 11, p. 11, 2008.

[11] G. E. Moore, “Cramming more components onto integrated
circuits,” Electronics Magazine, vol. April, p. 4, 1965.

[12] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable
Parallel Programming with the Message-Passing Interface.
MIT Press, 1994, ISBN 0-262-57104-8.

[13] W. Gropp, E. Lusk, N. Doss, and A. Sjkellum, A High-
Performance, Portable Implementation of the MPI Message
Passing Interface Standard. Argonne National Laboratories,
1996.

[14] CUDATM 3.1 Programming Guide, NVIDIA R© Corporation,
2010, last accessed August 2010. [Online]. Available:
http://www.nvidia.com/

[15] W.-M. Hwu, C. Rodrigues, S. Ryoo, and J. Stratton, “Com-
pute Unified Device Architecture Application Suitability,”
Computing in Science and Engineering, vol. 11, pp. 16–26,
2009.

[16] A. Leist, D. Playne, and K. Hawick, “Exploiting Graphical
Processing Units for Data-Parallel Scientific Applications,”
Concurrency and Computation: Practice and Experience,
vol. 21, pp. 2400–2437, December 2009, CSTN-065.

[17] J. Reinders, Intel Threading Building Blocks: outfitting C++
for multi-core processor parallelism, 1st ed. O’Reilly, 2007,
no. ISBN 978-0596514808.

[18] Intel, Intel(R) Threading Building Blocks Reference Manual,
1st ed., Intel, July 2009.

[19] T. Parr, The Definitive ANTLR Reference - Building Domain-
Specific Languages. Pragmatic Bookshelf, 2007, no. ISBN
978-0-9787392-5-6.

[20] P. Milligan, R. McConnell, and T. Benson, “The Mathemati-
cian’s Devil: An Experiment In Automating The Production
Of Parallel Linear Algebra Software,” in Parallel and Dis-
tributed Processing, 1994. Proceedings. Second Euromicro
Workshop on, Jan 1994, pp. 385–391, ISBN: 0-8186-5370-
1.

[21] H. Bischof, S. Gorlatch, and R. Leshchinskiy, “Generic
parallel programming using c++ templates and skeletons,” in
Domain-Specific Program Generation, 2003, pp. 107–126.

[22] B. Stroustrup, The C++ Programming Language, 3rd ed.
Addison-Wesley, 2004, no. ISBN 0-201-88954-4.

[23] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and
J. McDonald, Parallel Programming in OpenMP. Morgan
Kaufmann Publishers Inc., 2001.

[24] IEEE, IEEE Std. 1003.1c-1995 thread extensions, 1995.

[25] J. W. Cahn and J. E. Hilliard, “Free Energy of a Nonuniform
System. I. Interfacial Free Energy,” The Journal of Chemical
Physics, vol. 28, no. 2, pp. 258–267, 1958.

[26] K. A. Hawick and D. P. Playne, “Modelling and visualizing
the Cahn-Hilliard-Cook equation,” in Proceedings of 2008
International Conference on Modeling, Simulation and Visu-
alization Methods (MSV’08), Las Vegas, Nevada, July 2008.

[27] D. Playne and K. Hawick, “Data Parallel Three-Dimensional
Cahn-Hilliard Field Equation Simulation on GPUs with
CUDA,” in Proc. 2009 International Conference on Paral-
lel and Distributed Processing Techniques and Applications
(PDPTA’09) Las Vegas, USA., no. CSTN-073, 13-16 July
2009.

[28] V. L. Ginzburg and L. D. Landau, “(Published in English in
Collected papers of L.D.Landau, Oxford Press, 1965, pp138-
167),” Zh. Eksp. Teor. Fiz., vol. 20, p. 1064, 1950, edited I.D.
ter Haar.

[29] A. A. Abrikosov, “Ginzburg-Landau equations for the ex-
tended saddle-point model,” Phys. Rev. B, vol. 56, no. 1, pp.
446–452, Jul 1997.

[30] K. A. Hawick and D. P. Playne, “Numerical Simulation of the
Complex Ginzburg-Landau Equation on GPUs with CUDA,”
Massey University, Tech. Rep. CSTN-070, January 2010, to
appear in Proc. IASTED International Conference on Parallel
and Distributed Computing and Networks (PDCN), 14-16
Feb. 2011, in Innsbruck, Austria.

[31] ——, “Automatically Generating Efficient Simulation Codes
on GPUs from Partial Differential Equations,” Computer
Science, Massey University, Tech. Rep. CSTN-087, 2010,
submitted to Springer J. Sci. Computing.

[32] C. Lengauer, “Program optimization in the domain of high-
performance parallelism,” in Domain-Specific Program Gen-
eration, 2003, pp. 73–91.

