University

of Glasgow

Steuwer, M., Kegel, P. and Gorlatch, S. (2011) SkelCL - A Portable Skeleton Library for
High-Level GPU Programming. In: 25th IEEE International Symposium on Parallel and
Distributed Processing (IPDPS 2011), Anchorage, AK, USA, 16-20 May 2011, pp.
1176-1182. ISBN 9781612844251.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/148988/

Deposited on: 2 October 2017

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/148988/
http://eprints.gla.ac.uk/148988/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

SkelCL - A Portable Skeleton Library for High-Level GPU Programming

Michel Steuwer, Philipp Kegel, and Sergei Gorlatch

Department of Mathematics and Computer Science
University of Miinster, Miinster, Germany
Email: {michel.steuwer,philipp.kegel,gorlatch} @uni-muenster.de

Abstract—While CUDA and OpenCL made general-purpose
programming for Graphics Processing Units (GPU) popular,
using these programming approaches remains complex and
error-prone because they lack high-level abstractions. The
especially challenging systems with multiple GPU are not
addressed at all by these low-level programming models. We
propose SkelCL — a library providing so-called algorithmic
skeletons that capture recurring patterns of parallel compu-
tation and communication, together with an abstract vector
data type and constructs for specifying data distribution. We
demonstrate that SkelCL greatly simplifies programming GPU
systems. We report the competitive performance results of
SkelCL using both a simple Mandelbrot set computation and
an industrial-strength medical imaging application. Because the
library is implemented using OpenCL, it is portable across
GPU hardware of different vendors.

Keywords-GPU Computing, GPU Programming, CUDA,
OpenCL, SkelCL, Algorithmic Skeletons, Multi-GPU Systems

I. INTRODUCTION

Modern Graphics Processing Units (GPUs) provide large
numbers of processing units and a high memory band-
width. To enable General-Purpose Computation on GPU
(GPGPU), new programming models have been intro-
duced, the two most popular approaches being CUDA and
OpenCL [1], [2]. While both programming models are simi-
lar, CUDA is a proprietary software developed by NVIDIA,
whereas OpenCL is an open industry standard.

Programming GPUs with OpenCL (and CUDA as well)
still remains a difficult task because it is a low-level pro-
gramming model: Data has to be transferred explicitly from
the system’s main memory (accessible by the CPU) to the
GPU’s memory and back. Moreover, memory allocation
and deallocation also has to be explicitly controlled by the
programmer. All this results in a lot of low-level boilerplate
code in GPU programs.

In this paper, we present SkelCL — a library which
introduces an easy-to-use, high-level approach for GPU
programming. SkelCL provides an abstract vector data type
to perform data exchange between CPU and GPU implicitly.
Pre-implemented communication and computation patterns
(a.k.a. algorithmic skeletons) based on this data type hide
boilerplate code from the programmer inside the skeletons’

implementations. Because SkelCL is based on OpenCL, it
is not bound to a specific hardware and can be executed on
any OpenCL-capable device.

The remainder of this paper is organized as follows: A
brief introduction to GPU programming using OpenCL is
given in Section [[] In Section [, we describe the design
and implementation of SkelCL, in particular the abstract
vector data type and algorithmic skeletons. In Section [[V]
we present runtime experiments for a simple Mandelbrot
set computation, as well as for a real-world application
for medical imaging. Section |V| reviews related work, and
Section [V]| concludes the paper.

II. GPU PROGRAMMING USING OPENCL

The OpenCL standard [2]] can be used for programming
any OpenCL-capable device. These devices embrace most
modern GPUs and other accelerators, e. g., the Cell BE, as
well as standard multi-core CPUs.

OpenCL distinguishes between a host system, usually
containing one or several CPUs, and devices that are in-
tegrated into the host system. An OpenCL device logically
consists of one or more compute units (CUs) that are divided
into one or more processing elements (PEs). All computation
on the device is performed in the PEs. OpenCL applications
run on the host and call kernel functions which are executed
simultaneously by multiple PEs on one or more devices. A
single instance of a kernel function is called a work-item and
can be identified by its global ID. Every work-item executes
the same code, but the execution can vary per work-item
due to branching according to the global ID. Work-items
are organized in work-groups. When a kernel function is
started, the host code specifies how many work-items are
launched and how many work-items form a work-group. All
work-items in one work-group are executed on the same CU.
Therefore, the size of a work-group can have a significant
effect on the runtime performance.

In OpenCL, host and device have separate memories.
Thus, functions are provided to transfer data from the host’s
to the device’s memory (upload) and back (download).
Memory areas have to be allocated on the device before
data can be accessed by it and deallocated thereafter.

For portability across a wide range of devices, kernel
functions are compiled at runtime. The host program passes

(©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI: [10.1109/IPDPS.2011.269

http://dx.doi.org/10.1109/IPDPS.2011.269

the kernel’s source code as a plain string to the OpenCL
driver to create executable binary code. This is different
compared to CUDA which provides a special compiler
nvcc to compile the device code and the host code.

Creating applications for multi-GPU systems introduces
new challenges, like partitioning the application appropri-
ately and, explicitly implementing data transfer between de-
vices [3]. The host application must coordinate and perform
synchronization and data exchange explicitly. The source
code for performing such exchanges further increases the
amount of boilerplate code.

In the following, we describe how our SkelCL library
addresses these problems of GPGPU programming.

III. SKELCL: AN OPENCL-BASED SKELETON LIBRARY

SkelCL is based on data-parallel algorithmic skeletons [4].
A skeleton can be formally viewed as a higher-order func-
tion: apart from plain values it also takes one or more user-
defined functions as arguments. These functions customize
a skeleton to perform a particular calculation in parallel.

SkelCL provides a set of basic skeletons. Two well-
known examples are the Zip skeleton combining two vec-
tors element-wise, and the Reduce skeleton combining all
elements of a vector using a binary operation (see Sec-
tion [[II-B). Listing[T] shows how a dot product of two vectors
is implemented in SkelCL using these two skeletons. Here,
the Zip skeleton is customized by usual multiplication, and
the Reduce skeleton is customized by usual addition.

For comparison, an OpenCL-based implementation of
a dot product computation provided by NVIDIA requires
approximately 68 lines of code (kernel function: 9 lines,
host program: 59 lines) [3].

The implementation principles of the SkelCL library are
as follows. SkelCL generates OpenCL code (kernel func-
tions) from skeletons which is then compiled by OpenCL at
runtime. User-defined customizing functions passed to the
skeletons are merged with pre-implemented skeleton code
during code generation. Since OpenCL is not able to pass
function pointers to GPU functions, user-defined functions
are passed as strings in SkelCL.

A. Abstract vector class and memory management

SkelCL offers the Vector class providing a unified
abstraction for a contiguous memory area that is accessible
by both, CPU and GPU. Internally, a vector comprises
pointers to corresponding areas of main memory (accessi-
ble by the CPU) and GPU memory. Upon creation of a
vector on the host system, memory is also allocated on the
GPU accordingly. Data transfer between these corresponding
memory areas is performed implicitly if the CPU accesses
the vector that previously has been modified by the GPU
or vice versa. Thus, the Vector class shields the user
from low-level memory operations like allocation (on the
GPU) and data transfer between CPU and GPU memory.

int main (int argc, char constx argv[]) {
SkelCL::init (); /# initialize SkelCL x*/

/* create skeletons #*/
SkelCL: :Reduce<float> sum (

"float sum (float x,float y){return x+y;}");
SkelCL: :Zip<float> mult (

"float mult (float x,float y){return x*y;}");

/+ allocate and initialize host arrays #*/
float *xa_ptr = new float [ARRAY_ SIZE];
float »b_ptr = new float [ARRAY_SIZE];
fillArray(a_ptr, ARRAY_SIZE);

fillArray (b_ptr, ARRAY_SIZE);

/* create input vectors #*/
SkelCL: :Vector<float> A (a_ptr, ARRAY_SIZE);
SkelCL: :Vector<float> B (b_ptr, ARRAY_SIZE);

/+ execute skeletons */
SkelCL: :Scalar<float> C = sum(mult(A, B));

/% fetch result =/
float ¢ = C.getValue();

/% clean up */

delete[] a_ptr;

delete[] b_ptr;
}

Listing 1. SkelCL program computing the dot product of two vectors.
Arrays a_ptr and b_ptr initialize the vectors.

In SkelCL, Vector is a class template. It implements a
generic container class that is capable of storing data items
of any primitive C/C++ data type (e.g., int), as well as
user-defined data structures (structs).

All skeletons accept vectors as their input and output. Be-
fore execution, a skeleton’s implementation ensures that all
input vectors’ data is available on the GPU. This might result
in implicit data transfers from the main memory to GPU
memory. The data of the output vector is not copied back
to the main memory but rather resides in the GPU memory.
Before every data transfer, the vector implementation checks
whether the data transfer is necessary; only then the data
is actually transferred. Hence, if an output vector is used
as the input to another skeleton, no further data transfer is
performed. This lazy copying minimizes costly data transfers
between host and device.

B. Skeletons in SkelCL

Skeletons are higher-order functions because they take
so-called customizing functions as parametes. In SkelCL,
skeletons expect the customizing function to be a plain string
containing the function’s source code. This is merged with
the skeleton’s own source code to generate source code for
an OpenCL kernel. After compilation, the kernel function is
ready for execution. Compiling the source code every time
from source is a time-consuming task, taking up to several
hundreds of milliseconds. For a small kernel, this can be a
huge overhead. Therefore, SkelCL saves already compiled

kernels on disk. They can be loaded later if the same kernel
is used again. For our applications (presented in Section [[V),
we observed that loading kernels from disk is at least five
times faster than building them from source.

SkelCL currently provides four basic skeletons: Map,
Zip, Reduce, and Scan. Each skeleton consumes vectors
as input and produces vectors as output. A skeleton is called
by using the name of the skeleton as a function and passing
the appropriate number of arguments to it. This behavior is
implemented using the C++ operator overloading feature.

The Map skeleton takes a unary function and applies it to
all elements of a given input vector. The result is a vector of
the same length as the input vector. For a given function f
and vector v = [z, . .., Z,_1] of length n, the mathematical
definition of Map is given by

map f [xo,...,Tn-1] = [f(x0),..., f(@n=1)] (1)

The customizing function f takes each element of the
input vector and returns the corresponding element of the
output vector. The output vector can be computed in parallel,
because the calculations are independent of each other.

The Zip skeleton takes a customizing binary operator and
applies it to corresponding elements of two equally sized
input vectors; the result is a vector of the same size. For a
given operator & and two vectors vy = [zg,...,Z,—1] and

v1 = [Yo,--.,Yn—1] Of length n, Zip is defined as
le@ [w()v"‘vxnfl]a[yO:"wynfl] (2)
= [IO D Yo, -, Tn-1D yn—l]

Thus, it is a generalized dyadic form of Map. By chaining
Zip skeletons, variadic forms of Map can be implemented.
Z1ip is parallelizable in the same manner as Map.

The Reduce skeleton uses a binary operator to combine
all elements of the input vector and returns a scalar result.
For a given operator & and a vector v = [zg,...,Z,_1] Of
length n, Reduce is defined as

reduce ® [To,...,Tpn-1] =20 D ... D Tp_1 3)

The parallelization approach for Reduce depends on
whether the binary operator is commutative and/or associa-
tive. SkelCL requires the operator to be associative, such that
it can be applied to arbitrarily sized subranges of the input
vector in parallel. The final result is obtained by recursively
combining the intermediate results for the subranges. To
improve the performance, SkelCL saves the intermediate
results in the device’s fast local memory.

The Scan skeleton applies a customizing binary operator
@ to the elements of an input vector. It returns a vector
of the same size as the input vector, such that element ¢ is
calculated by combining elements from O to ¢ — 1 of the
input vector using @. For a given binary operator ¢ and a
vector v = [z, ..., Z,—1] of length n Scan is defined as

. axn—l]

= [id, xg, o B X1, . . .

scan @ [xo, . . @
,$0€B...€B£Bn,2]

Map<float> mult_num("float f(float input, float
number) { return input * number }");

Arguments arguments;
arguments.push (5) ;

mult_num(input, arguments) ;

Listing 2. Passing additional arguments to a Map skeleton.

where id is the identity element of the operator @.

The implementation of Scan provided in SkelCL is a
modified version of [6]. It is highly optimized and makes
heavy use of local memory, as well as it tries to avoid
memory bank conflicts which can occur when multiple
work-items access the same memory location. Possible ap-
plications of the Scan skeleton are stream compaction or a
radix sort implementation [6].

C. Passing Additional Arguments to Skeletons

In general, a skeleton’s definition dictates how many input
arguments can be passed to the skeleton. The Map skeleton,
for example, specifies that the provided function has to be
a unary function, such that only one input vector can be
passed to the skeleton. However, not all algorithms easily fit
into this strict pattern.

SkelCL allows the user to pass an arbitrary number of
arguments to the function called inside of a skeleton: first,
the function definition must be changed, such that it expects
additional arguments; second, the additional arguments have
to be passed to the skeleton upon execution. A simple
example is presented in Listing 2| The function definition for
the Map skeleton in the listing takes two arguments instead
of one, which would be common for Map. In this example,
an additional increment value is passed to the function. Thus,
the Map skeleton can now be used for adding an arbitrary
increment to all elements of an input vector, instead of a
fixed increment. The additional argument is packaged into
an Arguments object that is passed to the skeleton. The
implementation ensures passing the argument to all kernel
instances called during execution.

Arbitrary types can be passed as arguments; a pointer and
the size of the type has to be provided. It is particularly easy
to pass vectors as arguments because no information about
the size has to be provided. The arguments will be passed
to the skeleton in the same order in which they are added to
the Arguments object. Hence, their order has to resemble
the order of parameters in the function definition.

D. Towards multiple GPUs

Using multiple GPUs introduces additional challenges
in the programming process. Neither CUDA nor OpenCL
offer any particular support to program multiple devices.
Basically, every GPU is available to OpenCL as a separate

device. To support multi-GPU systems, SkelCL can dis-
tribute a Vector to all available devices: the Vector is
either completely copied to every device, or evenly divided
into one part per device. When a Vector that is split across
multiple devices is passed as an input to a skeleton, it is
executed in cooperation by multiple devices: each device
processes a different part of the input vector’s data in par-
allel. This requires a skeleton to synchronize computations
and exchange data between multiple devices.

The user may either rely on a skeleton-specific default
distribution, or can control a Vector’s distribution explic-
itly. It is also possible to redistribute a Vector, i.e., change
its distribution; data exchange between multiple devices is
performed automatically by SkelCL. We will provide more
detail on multi-GPU programming using SkelCL in our next
papers.

IV. APPLICATION STUDIES AND EXPERIMENTS

We developed implementations of two application case
studies using the SkelCL library: 1) the calculation of a
Mandelbrot fractal as a simple benchmark application, and,
2) a real-world algorithm for medical image reconstruction.
In this section, both implementations are compared to similar
implementations in CUDA and OpenCL regarding program-
ming effort and runtime performance.

For our runtime experiments we use a common PC with
a quad-core CPU (Intel Xeon E5520, 2.26 GHz) and 12 GB
of memory. The system is connected to a Tesla S1070 com-
puting system equipped with 4 Tesla GPUs. Its dedicated
16 GB of memory (4 GB per GPU) is accessed with up to
408 GB/s (102 GB/s per GPU). Each GPU comprises 240
streaming processor cores running at up to 1.44 GHz.

A. Case study: Mandelbrot set

The Mandelbrot [[7]] set are all complex numbers ¢ € C
for which the sequence

Zipg1 =20 +c,i €N 5)

starting with zp = 0 does not escape to infinity. If drawn as
an image with each pixel representing a complex number,
the boundary of the Mandelbrot set forms a fractal. The
calculation of such an image is a time-consuming task,
because the sequence given by (5) has to be calculated for
every pixel. If this sequence does not cross a given threshold
for a given number of steps, it is presumed that the sequence
will converge. The respective pixel is thus taken as a member
of the Mandelbrot set, and it is painted black. Other pixels
outside are assigned a color that corresponds to the number
of iterations of the sequence given by (5). Computing a
Mandelbrot fractal is easily parallelizable, as all pixels of
the fractal can be computed simultaneously.

1) Programming effort: We created three similar parallel
implementations for computing a Mandelbrot fractal using
CUDA, OpenCL, and SkeCL.

CUDA and SkelCL require a single line of code for
initialization in the host code, whereas OpenCL requires a
lengthy creation and initialization of different data structures
which take about 20 lines of code.

The host code differs significantly between all imple-
mentations. In CUDA, the kernel is called like an ordinary
function. A proprietary syntax is used to specify the size
of work-groups executing the kernel. With OpenCL, several
API functions are called to load and build the kernel,
pass arguments to it and to launch it using a specified
work-group size. In SkelCL, the kernel passed to a newly
created instance of a Map skeleton (see Section [[II-B). A
Vector of complex numbers, each of which is represented
by a pixel of the Mandelbrot fractal, is passed to the Map
skeleton upon execution. Specifying the work-group size is
mandatory in CUDA and OpenCL, whereas this is optional
in SkelCL. However, it is sometimes reasonable to also
hand-optimize the work-group size in SkelCL, since it can
have a considerable impact on performance.

Program size: The OpenCL-based implementation has
118 lines of code (kernel: 28 lines, host program: 90 lines)
and is thus more than twice as long as the CUDA and
SkelCL versions with 49 lines (28, 21) and 57 lines (26,
31), respectively (see Figure [T). The length of the CUDA-
and SkelCL-based implementations differs by only a few
lines.

Kernel size: The kernel function is similar in all
implementations: it takes a pixel’s position (i.e., a complex
number) as input, performs the iterative calculation for this
pixel, and returns the pixel’s color. However, while the input
positions have to be given explicitly when using the Map
skeleton in SkelCL, no positions are passed to the kernel in
the CUDA- and OpenCL-based implementations.

CUDA OpenCL SkelCL

< 30

3

()

[

<2 20

‘s

=]

= 10

=

=]

&~

Y

3 L] L] L]

Q

2 40

S

3

= 80

gﬂ host program

<)

£ 120 kernel function.
Figure 1. Runtime and program size of the Mandelbrot application.

2) Performance experiments: We tested our implemen-
tations on a single GPU of our test system to compute a
Mandelbrot fractal of size 40963072 pixels. In CUDA and
OpenCL, work-groups of 16x16 are used; SkelCL uses its
default work-group size of 256. The results are shown in
Figure |1} As compared to the runtime of the SkelCL-based
implementation (26 seconds), the implementation based on
OpenCL (25 seconds) and CUDA (18 seconds) are faster
by 4% or 31%, respectively. Since SkelCL is built on top of
OpenCL, the performance difference of SkelCL and OpenCL
can be regarded as the overhead introduced by SkelCL. Pre-
vious work [8]] also reported that CUDA was usually faster
than OpenCL, which also explains the higher performance
of the implementation based on CUDA. The Mandelbrot
application demonstrates that SkelCL introduces a tolerable
overhead of less than 5% as compared to OpenCL. A clear
benefit of this overhead is the reduced programming effort
required by the SkelCL programm.

B. List-mode OSEM

List-Mode Ordered Subset Expectation Maximization (list-
mode OSEM) is a time-intensive, production-quality algo-
rithm from a real-world application in medical image recon-
struction. It is used to reconstruct three-dimensional images
from huge sets of so-called events recorded in positron
emission tomography (PET). Each event represents a line
of response (LOR) which intersects the scanned volume. A
simplified sequential implementation of list-mode OSEM is
shown in Listing [3] The algorithm splits the events into
subsets which are processed iteratively: All LORs of a
subset’s events and their corresponding intersection paths are
computed and merged into an error image which is merged
with the reconstruction image, thus refining a reconstruction
image in each iteration.

In a parallel implementation of list-mode OSEM, the
loops for calculating the error image (c) and for updating
the reconstruction image (f) can be parallelized.

for (1 = 0; 1 < num_subsets; 1++) {
// read events from file
Vector<Event> events (read_events());

// distribute events to devices
events.setDistribution (
Distribution::block);
// copy reconstruction (f) and error image (c)
to all devices
f.setDistribution (Distribution: :copy);
c.setDistribution (Distribution: :copy) ;

// prepare arguments of error image
computation

SkelCL: :Arguments arguments;

arguments.push (events) ;

arguments.push (events.size());

arguments.push (paths); // memory for paths

arguments.push (f) ;

arguments.push(c) ;

// compute error image (map skeleton)
compute_c (index, arguments);

// signal modification of error image

c.dataOnDevicesModified() ;

// distribute reconstruction image to all
devices

f.setDistribution (Distribution: :block) ;

// reduce (element-wise add) all copies of
error image; re-distribute to all devices
after reduction

c.setDistribution (Distribution: :block, add);

// update reconstruction image (zip skeleton)
update (f, c, f); }

for (1 = 0; 1 < num_subsets; 1++) {
/+ read subset from file #*/

events = read_events();
/* compute error image c #*/
for (i = 0; i1 < num_events; i++) {

/* compute path of LOR */
path = compute_path (events[i]);
/% compute error =/
for (fp = 0, m = 0; m<path_len; mt++)
fp += f[path[m].coord] x path[m].len;
/+ add path to error image */
for (m = 0; m<path_len; m++)
c[path[m] .coord] += path[m].len / fp;
}
/* update reconstruction image f */
for (j = 0; J < image_size; Jj++)
if (c[j) > 0.0) £[3] *= cl[3l; }

Listing 3.

Sequential implementation of list-mode OSEM.

Listing 4. Implementation of list-mode OSEM in SkelCL.

1) Programming effort: We develop implementations of
list-mode OSEM using OpenCL and SkelCL; a CUDA-
based implementation using multiple GPUs has already been
implemented [3]. Both, CUDA and OpenCL, require us to
add a considerable amount of boilerplate code for running
a kernel on multiple GPUs, in particular for uploading and
downloading data to and from the GPUs. In CUDA, we have
to create one CPU thread for each device to be managed.
This introduces the additional challenge of multi-threaded
programming, including the need of thread synchronization.

With SkelCL, we use the Vector class and the Map
and Zip skeletons to implement list-mode OSEM (see
Listing E[) The events of a subset, as well as the error
image and the reconstruction image are stored in a SkelCL
Vector. Thus, we can easily distribute subsets across all
GPUs and copy both images to all devices. We use a Map
skeleton to implement the computation of the error image.
However, we must not compute too many paths in parallel to
avoid excessive memory consumption. Therefore, the input
of the Map skeleton is not a subset, but rather a vector of 512
indices. These indices refer to disjoint sub-subsets of events,
each of which is processed within a single kernel instance
on the GPUs. For each event, this kernel performs the same

steps as the first inner loop in the sequential implementation.
The reconstruction and the error image, as well as the events,
are passed to the Map skeleton as additional arguments. The
skeleton produces no result, but updates the error image by
side-effect. Therefore, the error image has to be marked as
“modified on the device” after executing the Map skeleton.

So far, separate copies of the error image have been used
on all GPUs. To obtain the final error image, we have to
merge all copies into a single image. Afterwards, the final
error image and the reconstruction image are distributed
across all GPUs, such that each device processes a part of
these images. In SkelCL, the aforementioned data movement
is easily achieved by changing the kind of distribution of
the vectors that contain this data. A Zip skeleton is used
to implement the update of the reconstruction image, taking
the distributed images as input. The kernel function of this
skeleton resembles the body of the second inner loop of the
sequential implementation.

The parallelization using SkelCL is quite similar to
our CUDA- and OpenCL-based implementations. However,
when using SkelCL’s vector data type, we avoid additional
programming effort to implement data transfer between host
and GPU or between multiple GPUs, and we obtain a multi-
GPU-ready implementation of list-mode OSEM for free.
The SkelCL-based implementation is the shortest with 232
lines of code (kernel function: 200 lines, host program:
32 lines). The CUDA- and OpenCL-based implementations
are considerably longer with 329 (199, 130), or even 436
lines of code (193, 243), respectively (see Figure [2).

2) Performance experiments: We tested our implementa-
tions of list-mode OSEM using a typical data set of about
107 events for 150 x 150 x 280 PET image. The data set is
split into 10 equally sized subsets. We measured the average
runtime of processing all subsets. Figure 2] shows the runtime
of our three implementations of list-mode OSEM using one,
two, and four GPUs.

Running on a single GPU, the CUDA-based implementa-
tion (3.03 seconds) outperforms the ones based on OpenCL
and SkelCL (3.66 seconds each) by about 20%. These
relative performane differences also hold for using two
GPUs, with only negligible overhead of SkelCL compared to
OpenCL. With four GPUs, the CUDA-based implementation
again is faster than the SkelCL- (23%) and OpenCL-based
(17%) implementations. SkelCL provides a speedup of 3.1,
while OpenCL and CUDA provide speedups of 3.24 and
3.15 respectively. On four GPUs the SkelCL code runs 2.56
times faster than the CUDA on one GPU.

The SkelCL-based implementation only introduces a mod-
erate overhead of less than 5% as compared to OpenCL.
Since the OpenCL-based implementation requires a lot of
low-level boilerplate code (over 100 lines of code only
for initialization), the SkelCL-based implementation clearly
provides a higher level of programming. Especially, the
additional argument feature and the data distributions are

SkelCL OpenCL CUDA
—§ 1GPU R
§ 3 2 GPUs
% 4 GPUs
=2
Q)
g
E 1
=
o0
@]
8 100
S
5 200
g
a 300 host program
5 kernel function M
400
Figure 2. Runtime and program size of parallel list-mode OSEM using

CUDA, OpenCL, and SkelCL.

crucial for this application as it cannot be implemented
efficiently without these two features. In conclusion, this
example shows that SkelCL is suitable for implementing a
real-world application and provides performance close to a
native OpenCL implementation.

V. RELATED WORK

There are a number of other projects aiming at high-level
GPU programming.

SkePU [9]] uses container classes and algorithmic skele-
tons to ease multi-GPU computing. Although SkePU and
SkelCL have been developed independently, both projects
share some concepts: SkePU provides a vector class similar
to SkelCL’s Vector class, but unlike SkelCL it does not
support different kinds of data distribution on multi-GPU
systems. SkePU and SkelCL both provide a map and a
reduce skeleton. However, SkelCL additionally provides the
Zip and Scan skeleton, while SkePU supports two addi-
tional variants of the map skeleton. Unlike SkelCL, which
allows for an arbitrary number of arguments, in SkePU
the user-defined functions are restricted to a fixed skeleton-
specific number of arguments. Currently, SkePU is the only
project other than SkelCL that supports data-parallel com-
putations on multi-GPU systems. SkelCL provides a more
flexible memory management than SkePU, as data transfers
can be expressed by changing data distribution settings.
Only this flexibility provides the best performance for our
second case study (Section [V-B) and similar applications.
Both projects differ significantly in the way how functions
are passed to skeletons. While functions are defined as
plain strings in SkelCL, SkePU uses a macro language,
which brings some serious drawbacks. For example, it is
not possible to call mathematical functions like sin or cos
inside a function generated by a SkelPU macro, because
these functions are either named differently in all three target
programming models or might even be missing entirely.

The same holds for functions and keywords related to
performance tuning, e. g., the use of local memory. SkelCL
does not suffer from these drawbacks because it relies on
OpenCL and thus can be executed on a variety of devices.

CUDPP [10] is a C++ library based on CUDA. It provides
data-parallel algorithm primitives similar to skeletons. These
primitives can be configured using only a predefined set of
operations, whereas skeletons in SkelCL are true higher-
order functions, which accept any user-defined function.
CUDPP does not simplify data management, because data
still has to be exchanged between CPU and GPU explicitly.
There is also no support for multi-GPU applications.

Thrust [11] is an open-source library by NVIDIA. It
provides two vector types similar to the vector type of the
C++ Standard Template Library. While these types refer
to vectors stored in CPU or GPU memory, respectively,
SkelCL’s vector data type provides a unified abstraction
for CPU and GPU memory. Thrust also contains data-
parallel implementations of higher-order functions, similiar
to SkelCL’s skeletons. SkelCL adopts several of Thrust’s
ideas, but it is not limited to CUDA-capable devices and
supports multiple GPUs.

Unlike SkelCL, PGI Acccelerator [12|] and HMPP [13]]
are compiler-based approaches to GPU programming, sim-
ilar to the popular OpenMP [14]. The programmer uses
compiler directives to mark regions of code to be executed
on a GPU. A compiler generates executable code for the
GPU, based on the used directives. Although source code
for low-level details like memory allocation or data exchange
is generated by the compiler, these operations still have to
be specified explicitly by the programmer using suitable
compiler directives. We consider these approaches low-level,
as they do not perform data transfer automatically to shield
the programmer from low-level details.

VI. CONCLUSION

We developed and implemented SkelCL — an OpenCL-
based skeleton library for high-level GPU programming,
based on an abstract data type and algorithmic skeletons.
Currently, it provides a vector data type and four basic
skeletons (Map, Zip, Reduce, Scan). SkelCL shields the
user from the low-level details of GPU programming. Data
transfer and synchronization are performed implicitly.

Our application examples show that SkelCL provides
competitive performance and scalability on real-world ap-
plications as compared with CUDA and OpenCL. While
SkelCL adds a minor performance overhead, it significantly
reduces the programming effort, since much of the boiler-
plate code required in CUDA or OpenCL is replaced by
shorter and more intuitive high-level constructs.

ACKNOWLEDGMENT

We would like to thank NVIDIA for providing hardware
for developing and testing SkelCL.

REFERENCES

[1] D. B. Kirk and W. W. Hwu, Programming Massively Parallel
Processors - A Hands-on Approach. Morgan Kaufman, 2010.

[2] A. Munshi, The OpenCL Specification, Beaverton, OR, 2010,
version 1.1, Document Revision: 33.

[3] M. Schellmann, J. Vording, and S. Gorlatch, “Systematic
parallelization of medical image reconstruction for graphics
hardware,” in Euro-Par 2008 Parallel Processing, ser. LNCS,
vol. 5168. Springer, 2008, pp. 811-821.

[4] F. A. Rabhi and S. Gorlatch, Eds., Patterns and skeletons for
parallel and distributed computing. Springer-Verlag, 2003.

[5] “NVIDIA CUDA SDK code samples,” February 2010,
version 3.0. [Online]. Available: http://developer.nvidia.com/
object/cuda_3_0_downloads.html

[6] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix
sum (scan) with CUDA,” in GPU Gems 3, H. Nguyen, Ed.
Addison Wesley, August 2007, ch. 39, pp. 851-876.

[7] B. B. Mandelbrot, “Fractal aspects of the iteration of z +—
Az(1 — z) for complex A and z,” Annals of the New York
Academy of Sciences, vol. 357, pp. 249-259, December 1980.

[8] J. Kong, M. Dimitrov, Y. Yang et al., “Accelerating MATLAB
image processing toolbox functions on GPUs,” in GPGPU
’10: Proc. of the 3rd Workshop on General-Purpose Compu-
tation on Graphics Processing Units. ACM, 2010.

[9] J. Enmyren and C. Kessler, “SkePU: A multi-backend skele-
ton programming library for multi-gpu systems.” in Proc.
4th Int. Workshop on High-Level Parallel Programming and
Applications, 2010.

[10] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan
primitives for GPU computing,” in Graphics Hardware 2007.

[11] J. Hoberock and N. Bell, “Thrust: A Parallel Template
Library,” 2009, version 1.1. [Online]. Available: http:
/[www.meganewtons.com

[12] T.P. Group, PGI Accelerator Programming Model for Fortran
& C, November 2010.

[13] S. Bihan, G. Moulard, R. Dolbeau et al., “Directive-based
heterogeneous programming a gpu-accelerated rtm use case,”
in Proceedings of the 7th International Conference on Com-
puting, Communications and Control Technologies, 2009.

[14] OpenMP Application Program Interface, ~OpenMP
Architecture Review Board, 2008, version 3.0. [Online].
Available: http://www.openmp.org/mp-documents/spec30.pdf]

http://developer.nvidia.com/object/cuda_3_0_downloads.html
http://developer.nvidia.com/object/cuda_3_0_downloads.html
http://www.meganewtons.com
http://www.meganewtons.com
http://www.openmp.org/mp-documents/spec30.pdf

	Introduction
	GPU programming using OpenCL
	SkelCL: An OpenCL-based skeleton library
	Abstract vector class and memory management
	Skeletons in SkelCL
	Passing Additional Arguments to Skeletons
	Towards multiple GPUs

	Application studies and experiments
	Case study: Mandelbrot set
	Programming effort
	Performance experiments

	List-mode OSEM
	Programming effort
	Performance experiments

	Related work
	Conclusion
	References

